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∑
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Sums of powers

∑
k

(n
k
)2 = (2n

n
)

∑
n≥0

(2n
n
)xn = 1√

1 − 4x ,
not a rational function (quotient of two polynomials)

∑
k

(n
k
)3 =??

Even worse! Generating function is not algebraic.
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A diagram (poset) associated with Pascal’s triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

0

1

2

3

4

Each point lies directly above two points.

The diagram is planar.

Every extends to

These properties characterize the diagram.



Two further properties
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Each label is the sum of those on the level above connected
by an edge

Each label is the number of paths from that label to the top.
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Stern’s triangle

Similar to Pascal’s triangle, but we also “bring down” (copy) each
number from one row to the next.

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1⋮

Stern’s triangle
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Some properties

Number of entries in row n (beginning with row 0): 2n+1 − 1
Sum of entries in row n: 3n

Largest entry in row n: Fn+1 (Fibonacci number)

Let ⟨n
k
⟩ be the kth entry (beginning with k = 0) in row n.

Write

Pn(x) = ∑
k≥0

⟨n
k
⟩xk .

Then Pn+1(x) = (1 + x + x2)Pn(x2) , since x Pn(x2)
corresponds to bringing down the previous row, and(1 + x2)Pn(x2) to summing two consecutive entries.



Stern analogue of binomial theorem

Corollary. Pn(x) = n−1∏
i=0

(1 + x2i + x2⋅2i)



Historical note

An essentially equivalent array is due to Moritz Abraham Stern
around 1858 and is known as Stern’s diatomic array:

1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1⋮



Sums of squares

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1⋮
u2(n) ∶= ∑

k

⟨n
k
⟩2 = 1, 3, 13, 59, 269, 1227, . . .



Sums of squares

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1⋮
u2(n) ∶= ∑

k

⟨n
k
⟩2 = 1, 3, 13, 59, 269, 1227, . . .

u2(n + 1) = 5u2(n) − 2u2(n − 1), n ≥ 1



Sums of squares

1
1 1 1

1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1⋮
u2(n) ∶= ∑

k

⟨n
k
⟩2 = 1, 3, 13, 59, 269, 1227, . . .

u2(n + 1) = 5u2(n) − 2u2(n − 1), n ≥ 1

∑
n≥0

u2(n)xn = 1 − 2x
1 − 5x + 2x2
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⟩2 + (⟨n

k
⟩ + ⟨ n

k + 1⟩)
2 + ⟨ n

k + 1⟩
2 +⋯

= 3u2(n) + 2∑
k

⟨n
k
⟩⟨ n

k + 1⟩.

Thus define u1,1(n) ∶= ∑k ⟨nk⟩⟨ n

k+1
⟩, so

u2(n + 1) = 3u2(n) + 2u1,1(n).
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What about u1,1(n)?

u1,1(n + 1) = ⋯ + (⟨ n

k − 1⟩ + ⟨
n

k
⟩) ⟨n

k
⟩ + ⟨n

k
⟩(⟨n

k
⟩ + ⟨ n

k + 1⟩)
+(⟨n

k
⟩ + ⟨ n

k + 1⟩) ⟨
n

k + 1⟩ +⋯
= 2u2(n) + 2u1,1(n)

Recall also u2(n + 1) = 3u2(n) + 2u1,1(n).
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Two recurrences in two unknowns

Let A ∶= [ 3 2
2 2

]. Then

A [ u2(n)
u1,1(n) ] = [

u2(n + 1)
u1,1(n + 1) ] .

⇒ An [ u2(1)
u1,1(1) ] = [

u2(n)
u1,1(n) ]

Characteristic (or minimum) polynomial of A: x2 − 5x + 2
(A2 − 5A + 2I)An−1 = 02×2

⇒ u2(n + 1) = 5u2(n) − 2u2(n − 1)
Also u1,1(n + 1) = 5u1,1(n) − 2u1,1(n − 1).
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Sums of cubes

u3(n) ∶= ∑
k

⟨n
k
⟩3 = 1, 3, 21, 147, 1029, 7203, . . .

u3(n) = 3 ⋅ 7n−1, n ≥ 1
Equivalently, if

n−1∏
i=0

(1 + x2i + x2⋅2i) = ∑ajx
j , then

∑a3j = 3 ⋅ 7n−1.
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Why so simple?

Same method gives the matrix [ 3 6
2 4

].
Characteristic polynomial: x(x − 7) (zero eigenvalue!)

Thus u3(n + 1) = 7u3(n) and u2,1(n + 1) = 7u2,1(n) (n ≥ 1).
In fact,

u3(n) = 3 ⋅ 7n−1
u2,1(n) = 2 ⋅ 7n−1.

Much nicer than ∑k (nk)3
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What about ur(n) for general r ≥ 1?

By the same technique, can show that

∑
n≥0

ur(n)xn

is rational.

Example. ∑
n≥0

u4(n)xn = 1 − 7x − 2x2
1 − 10x − 9x2 + 2x3

Much more can be said!
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These properties characterize the diagram.
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Two further properties
1

111

1121211

112132313231211

Each label is the sum of those on the level above connected
by an edge
Each label is the number of paths from that label to the top.

The kth label (beginning with k = 0) at rank n is ⟨n
k
⟩:

∑
k

⟨n
k
⟩xk = n−1∏

i=0

(1 + x2i + x2⋅2i) .
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A Fibonacci product

Fibonacci numbers: F1 = F2 = 1, Fn = Fn−1 + Fn−2 (n ≥ 3)
In(x) = n∏

i=1

(1 + xFi+1)

I4(x) = (1 + x)(1 + x2)(1 + x3)(1 + x5)
= 1 + x + x2 + 2x3 + x4 + 2x5 + 2x6 + x7 + 2x8 + x9 + x10 + x11

v2(n): sum of squares of coefficients of In(x)
Goal: ∑

n≥0

v2(n)xn = 1 − 2x2
1 − 2x − 2x2 + 2x3



The Fibonacci triangle F

1

1 1
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The Fibonacci triangle F

1

1 1

1 1 ● 1 1

1 1 ● 1 2 1 ● 1 1

1 1 ● 1 2 1 ● 2 2 ● 1 2 1 ● 1 1

1 1 ● 1 2 1 ● 2 2 ● 1 3 2 ● 2 3 1 ● 2 2 ● 1 2 1 ● 1 1

Copy each entry of row n ≥ 1 to the next row.

Add two entries if separated by at bullet (and form group of 3)

Copy once more the middle entry of a group of three (group
of 2)

Adjoin 1 at beginning and end of each row after row 0.
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“Binomial theorem” for F

[n
k
]: kth entry (beginning with k = 0) in row n (beginning with

n = 0) in F
Theorem. ∑

k

[n
k
]xk = In(x) ∶= n∏

i=1

(1 + xFi+1)
Proof omitted.
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n
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2

Now can obtain a system of recurrences analogous to

u2(n + 1) = 3u2(n) + 2u1,1(n)
u1,1(n + 1) = 2u2(n) + 2u1,1(n)

for Stern’s triangle.

Need such sums as ∑k [nk]2, where k ranges over all integers for
which the kth entry in row n is the last in its group of two or three.

Seven sums in all ⇒ 7 × 7 matrix.

Probably a simpler argument using this method.
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A diagram (poset) associated with F

1

1 1

1 1 1 1

1 1 1 2 1 1 1

1 1 1 1 2 2 1 2 1 1 12

1 1 1 2 1 2 2 1 3 2 2 3 1 2 2 1 2 1 11

Each point lies directly above two points.

The diagram is planar.

Every extends to

These properties characterize the diagram.



Two further properties

1

1 1

1 1 1 1

1 1 1 2 1 1 1

1 1 1 1 2 2 1 2 1 1 12

1 1 1 2 1 2 2 1 3 2 2 3 1 2 2 1 2 1 11

Each label is the sum of those on the level above connected
by an edge

Each label is the number of paths from that label to the top.
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Number of elements at level n

pn: number of elements of F at level n

(p0,p1, . . . ) = (1,2,4,7,12, 20, . . . )
Each entry lies above two entries. Each entry at level n ≥ 3 is the
bottom element of a hexagon (with top at level n − 3)

⇒ pn = 2pn−1 − pn−3.

Solution with p0 = 1,p1 = 2 is pn = Fn+3 − 1
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The groups of size two and three

1

1 1

1 1 1 1

1 1 1 2 1 1 1

1 1 1 1 2 2 1 2 1 1 12

1 1 1 2 1 2 2 1 3 2 2 3 1 2 2 1 2 1 11

What is the sequence of group sizes on each level? E.g., on level 5,
the sequence 2,3,2,3,3,2,3, 2.
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The limiting sequence

As n →∞, we get a “limiting sequence”

2,3,2,3,3,2,3, 2, 3, 3, 2,3,3, 2, 3, 2, 3,3,2, 3, . . . .

Let φ = (1 +√5)/2, the golden mean.

Theorem. The limiting sequence (c1, c2, . . . ) is given by

cn = 1 + ⌊nφ⌋ − ⌊(n − 1)φ⌋.
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Properties of cn = 1 + ⌊nφ⌋ − ⌊(n − 1)φ⌋

2,3,2,3,3,2,3, 2, 3, 3, 2,3,3, 2, 3, 2, 3,3,2, 3, . . . .

γ = (c2, c3, . . . ) characterized by invariance under 2→ 3,
3→ 32 (Fibonacci word in the letters 2,3).

γ = z1z2 . . . (concatenation), where z1 = 3, z2 = 23,
zk = zk−2zk−1

3 ⋅ 23 ⋅ 323 ⋅ 23323 ⋅ 32323323⋯
Sequence of number of 3’s between consecutive 2’s is the
original sequence with 1 subtracted from each term.

2 3´¸¶
1

2 33´¸¶
2

2 3´¸¶
1

2 33´¸¶
2

2 33´¸¶
2

2 3´¸¶
1

2 33´¸¶
2

2 . . . .



An edge labeling of F

The edges between ranks 2k and 2k + 1 are labelled alternately
0,F2k+2,0,F2k+2, . . . from left to right.



An edge labeling of F

The edges between ranks 2k and 2k + 1 are labelled alternately
0,F2k+2,0,F2k+2, . . . from left to right.

The edges between ranks 2k − 1 and 2k are labelled alternately
F2k+1,0,F2k+1,0, . . . from left to right.



Diagram of the edge labeling

0 1

2 0 2 0

0 3 0 3 0 3 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0

3



Connection with sums of Fibonacci numbers

Let t ∈ F. All paths (saturated chains) from the top to t have the
same sum of their elements σ(t).



Connection with sums of Fibonacci numbers

Let t ∈ F. All paths (saturated chains) from the top to t have the
same sum of their elements σ(t).

If rank(t) = n, this gives all ways to write σ(t) as a sum of distinct
Fibonacci numbers from F2,F3, . . . ,Fn+1.



An example

0 1

2 0 2 0

0 3 0 3 0 3 0 4

5 0 5 0 5 0 5 0 5 0 5 0 5 0

t

2 + 3 = F3 + F4



An example

0 1

2 0 2 0

0 3 0 3 0 3 0 4

5 0 5 0 5 0 5 0 5 0 5 0 5 0

t

5 = F5
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Second proof: factorization in a free monoid

In(x) ∶= n∏
i=1

(1 + xFi+1)
= ∑

k

[n
k
]xk

[n
k
] =#{(a1, . . . ,an) ∈ {0,1}n ∶ ∑

i

aiFi+1 = k}

v2(n) ∶= ∑
k

[n
k
]2

= #{( a1 a2 ⋯ an
b1 b2 ⋯ bn

) ∶ ∑ aiFi+1 = ∑biFi+1}
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A concatenation product

Mn ∶= {( a1 a2 ⋯ an
b1 b2 ⋯ bn

) ∶ ∑aiFi+1 = ∑biFi+1}
Let

α = ( a1 ⋯ an
b1 ⋯ bn

) ∈Mn, β = ( c1 ⋯ cm
d1 ⋯ dm

) ∈Mm.

Define

αβ = ( a1 ⋯ an c1 ⋯ cm
b1 ⋯ bn d1 ⋯ dm

) ,
Easy to check: αβ ∈Mn+m
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The monoid M

M ∶=M0 ∪M1 ∪M2 ∪⋯,
a monoid (semigroup with identity) under concatenation. The
identity element is ∅ ∈M0.

Definition. A subset G ⊂M freely generatesM if every α ∈M
can be written uniquely as a product of elements of G. (We then
callM a free monoid.)

Suppose G freely generatesM, and let
G(x) = ∑n≥1#(Mn ∩ G)xn. Then

∑
n

v2(n)xn = ∑
n

#Mn ⋅ xn
= 1 +G(x) +G(x)2 +⋯
= 1

1 −G(x) .



Free generators ofM

Theorem. M is freely generated by the following elements:

( 0
0
) ( 1

1
)

= ( 11 ∗ 1 ∗ 1 ∗ 1 ∗ ⋯ ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ ⋯ ∗ 0 1

)

= ( 00 ∗ 0 ∗ 0 ∗ 0 ∗ ⋯ ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ ⋯ ∗ 1 0

) ,
where each ∗ can be 0 or 1, but two ∗’s in the same column must
be equal.



Free generators ofM

Theorem. M is freely generated by the following elements:

( 0
0
) ( 1

1
)

= ( 11 ∗ 1 ∗ 1 ∗ 1 ∗ ⋯ ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ ⋯ ∗ 0 1

)

= ( 00 ∗ 0 ∗ 0 ∗ 0 ∗ ⋯ ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ ⋯ ∗ 1 0

) ,
where each ∗ can be 0 or 1, but two ∗’s in the same column must
be equal.

Example. ( 1 1 1 1 0
0 0 1 0 1

): 1 + 2 + 3 + 5 = 3 + 8



G(x)

( 0
0
) ( 1

1
)

( 11 ∗ 1 ∗ 1 ∗ 1 ∗ ⋯ ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ ⋯ ∗ 0 1

)

( 00 ∗ 0 ∗ 0 ∗ 0 ∗ ⋯ ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ ⋯ ∗ 1 0

)
Two elements of length one: G(x) = 2x +⋯



G(x)

( 0
0
) ( 1

1
)

( 11 ∗ 1 ∗ 1 ∗ 1 ∗ ⋯ ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ ⋯ ∗ 0 1

)

( 00 ∗ 0 ∗ 0 ∗ 0 ∗ ⋯ ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ ⋯ ∗ 1 0

)
Two elements of length one: G(x) = 2x +⋯
Let k be the number of columns of ∗’s. Length is 2k + 3. Thus

G(x) = 2x + 2∑
k≥0

2kx2k+3

= 2x + 2x3

1 − 2x2 .



Completion of proof

∑
n

v2(n)xn = 1

1 −G(x)
= 1

1 − (2x + 2x3

1−2x2
)

= 1 − 2x2
1 − 2x − 2x2 + 2x3 ◻
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Further vistas?

Let i , j ≥ 1. Define the diagram (poset) Pij by

Each point lies directly above i points.

The diagram is planar.

Every extends to a 2(j + 1)-gon (j + 1 edges on each side)

Example. P11: diagram for Pascal’s triangle
P21: diagram for Stern’s triangle
P12: diagram for the Fibonacci triangle

What can be said about Pij?



References

These slides:
www-math.mit.edu/∼rstan/transparencies/msu.pdf

The Stern triangle: Amer. Math. Monthly 127 (2020), 99–111;
arXiv:1901.04647

The Fibonacci triangle (and much more): arXiv:2101.02131

Fibonacci word: Wikipedia

Factorization in free monoids: EC1, second ed., §4.7.4



The final slide



The final slide


