Double orthodontia formulas and Lascoux positivity

Linus Setiabrata (joint with Avery St. Dizier)

University of Chicago

October 22, 2024

arXiv:2410.08038

Outline

- Schubert polynomials and flagged Weyl modules
- Orthodontia formula for flagged Weyl modules
 - and key positivity of their dual characters
- Orthodontia formula for double Grothendieck polynomials
 - and a curious Lascoux positivity result

Goal: Analogue of flagged Weyl module for Grothendieck polynomials.

Schubert polynomials

Schubert polynomials \mathfrak{S}_w are certain lifts of Schubert cycles $[X_w] \in H^*(\mathcal{F}\ell_n)$.

Linus Setiabrata Double orthodontia October 22, 2024 3/31

Schubert polynomials

Schubert polynomials \mathfrak{S}_w are certain lifts of Schubert cycles $[X_w] \in H^*(\mathcal{F}\ell_n)$.

Definition

The *i-th divided difference operator* is

$$\partial_i(f) := \frac{f - s_i \cdot f}{x_i - x_{i+1}},$$

for $i \in [n-1]$. $(s_i \cdot f := f(x_1, \dots, x_{i+1}, x_i, \dots, x_n))$

Definition

For $w \in S_n$, recursively define *Schubert polynomials*:

$$\mathfrak{S}_w(\mathbf{x}) = \begin{cases} x_1^{n-1} x_2^{n-2} \dots x_{n-1} & \text{if } w = w_0 \\ \partial_i(\mathfrak{S}_{ws_i}(\mathbf{x})) & \text{if } \ell(w) < \ell(ws_i). \end{cases}$$

3/31

Linus Setiabrata Double orthodontia October 22, 2024

Schur polynomials

Example

Schur polynomials $s_{\lambda} := \operatorname{ch}(V_{\lambda})$ are \mathfrak{S}_w for "Grassmannian w".

(The GL_n -irreps V_λ are "representation-theoretic avatars" of Grassmannian \mathfrak{S}_w .)

4/31

Linus Setiabrata Double orthodontia October 22, 2024

Schur polynomials

Example

Schur polynomials $s_{\lambda} := \operatorname{ch}(V_{\lambda})$ are \mathfrak{S}_w for "Grassmannian w".

(The GL_n -irreps V_λ are "representation-theoretic avatars" of Grassmannian \mathfrak{S}_w .)

$$[X_u]\cdot [X_v] = \sum_w c_{uv}^w [X_w] \quad \Longleftrightarrow \quad V_\lambda \otimes V_\mu = \bigoplus_
u V_
u^{\oplus c_{\lambda\mu}^
u}$$

intersection nos. \iff multiplicities of irreps

 c_{uv}^{w} : "Littlewood–Richardson coefficients"

Central problem: Combinatorial formula for c_{uv}^w ?

Rothe diagrams

(Towards representation-theoretic avatars of general $\mathfrak{S}_w)$

$$w \rightsquigarrow D(w)$$
 "Rothe diagram"

Linus Setiabrata Double orthodontia October 22, 2024 5/31

Rothe diagrams

(Towards representation-theoretic avatars of general \mathfrak{S}_w)

$$w \rightsquigarrow D(w)$$
 "Rothe diagram"

Definition

- Draw $n \times n$ grid with dots in *i*-th row and w(i)-th column
- Draw "death rays" emanating east and south of each dot
- Remaining squares are D(w).

Running Example

D(31542):

4日 → 4団 → 4 三 → 4 三 → 9 Q P

Flagged Weyl modules

$$D\leadsto \mathcal{M}_D \qquad \text{``flagged Weyl module''}$$
 (representation of $B:=\{\text{upper triangular matrices}\}\subseteq \mathrm{GL}_n)$

6/31

Linus Setiabrata Double orthodontia October 22, 2024

Flagged Weyl modules

$$D\rightsquigarrow \mathcal{M}_D \qquad \text{``flagged Weyl module''}$$
 (representation of $B:=\{\text{upper triangular matrices}\}\subseteq \mathrm{GL}_n)$

Theorem (Kraśkiewicz-Pragacz '87)

The dual character $\operatorname{ch}^*(\mathcal{M}_{D(w)})$ is the Schubert polynomial \mathfrak{S}_w .

(Dual character of
$$V$$
 is $\operatorname{ch}^*(V)(x_1,\ldots,x_n)=\operatorname{tr}(\operatorname{diag}(x_1^{-1},\ldots,x_n^{-1})\colon V\to V)$.)

Linus Setiabrata Double orthodontia October 22, 2024 6 / 31

(What does \mathcal{M}_D buy us?)

Question

Assume that $\mathbf{x}^{\alpha-\beta}$ and $\mathbf{x}^{\alpha+\beta}$ appear in \mathfrak{S}_w . Does \mathbf{x}^{α} appear?

Linus Setiabrata Double orthodontia October 22, 2024 7 / 31

(What does \mathcal{M}_D buy us?)

Question

Assume that $\mathbf{x}^{\alpha-\beta}$ and $\mathbf{x}^{\alpha+\beta}$ appear in \mathfrak{S}_w . Does \mathbf{x}^{α} appear?

Conjecture (Monical-Tokcan-Yong '19)

 $\mathcal{N}(w) := \{ \operatorname{wt}(C) \colon \mathbf{x}^{\operatorname{wt}(C)} \text{ appears in } \mathfrak{S}_w \}$ is saturated.

(Saturated: $S = \operatorname{conv}(S) \cap \mathbb{Z}^n$.)

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Theorem (Fink-Mészáros-St. Dizier '18)

 $\mathcal{N}(D) := \{ \operatorname{wt}(C) \colon \mathbf{x}^{\operatorname{wt}(C)} \text{ appears in } \operatorname{ch}^*(\mathcal{M}_D) \} \text{ is saturated.}$

Idea: use rep theory description of monomials in $\mathrm{ch}^*(\mathcal{M}_D)$.

Linus Setiabrata Double orthodontia October 22, 2024 8 / 31

Theorem (Fink-Mészáros-St. Dizier '18)

$$\mathcal{N}(D) := \{ \operatorname{wt}(C) \colon \mathbf{x}^{\operatorname{wt}(C)} \text{ appears in } \operatorname{ch}^*(\mathcal{M}_D) \} \text{ is saturated.}$$

Idea: use rep theory description of monomials in $\mathrm{ch}^*(\mathcal{M}_D)$.

• $S(D) := \{\text{"diagrams obtained by bubbling boxes of } D \text{ upwards"}\}$

Theorem (Fink-Mészáros-St. Dizier '18)

$$\mathcal{N}(D) := \{ \operatorname{wt}(C) \colon \mathbf{x}^{\operatorname{wt}(C)} \text{ appears in } \operatorname{ch}^*(\mathcal{M}_D) \} \text{ is saturated.}$$

Idea: use rep theory description of monomials in $\mathrm{ch}^*(\mathcal{M}_D)$.

- $S(D) := \{\text{"diagrams obtained by bubbling boxes of } D \text{ upwards"}\}$
- Rep theory: monomials appearing in $\mathrm{ch}^*(\mathcal{M}_D)$ is $\{\mathbf{x}^{\mathrm{wt}(C)}\colon C\in\mathcal{S}(D)\}$ (\leadsto can check "in one go" if \mathbf{x}^{α} appears.)

Theorem (Fink-Mészáros-St. Dizier '18)

$$\mathcal{N}(D) := \{ \operatorname{wt}(C) \colon \mathbf{x}^{\operatorname{wt}(C)} \text{ appears in } \operatorname{ch}^*(\mathcal{M}_D) \} \text{ is saturated.}$$

Idea: use rep theory description of monomials in $\mathrm{ch}^*(\mathcal{M}_D)$.

- $S(D) := \{\text{"diagrams obtained by bubbling boxes of } D \text{ upwards"}\}$
- Rep theory: monomials appearing in $\mathrm{ch}^*(\mathcal{M}_D)$ is $\{\mathbf{x}^{\mathrm{wt}(C)}\colon C\in\mathcal{S}(D)\}$ (\leadsto can check "in one go" if \mathbf{x}^{α} appears.)

Also in Fink–Mészáros–St. Dizier: $conv(\mathcal{N}(D))$ is a generalized permutahedron.

Linus Setiabrata Double orthodontia October 22, 2024 8 / 31

%-avoiding diagrams

(Towards the orthodontia formula computing $\mathrm{ch}^*(\mathcal{M}_D)$)

Definition (Reiner-Shimozono '98)

D is *%-avoiding* if it does not have any instance of:

9/31

%-avoiding diagrams

(Towards the *orthodontia formula* computing $ch^*(\mathcal{M}_D)$)

Definition (Reiner-Shimozono '98)

D is *%-avoiding* if it does not have any instance of:

Proposition

The Rothe diagram D(w) is %-avoiding for all $w \in S_n$.

Running Example

Orthodontic sequence

 $D_j := j$ -th column of a diagram D

Proposition (Reiner-Shimozono '98)

If D is %-avoiding, it can be reduced to the empty diagram via:

- Remove columns: $D \mapsto D \setminus D_j$ when $D_j = [i]$
- Swap rows i and i+1: $D \mapsto s_i D$ when $i \in D_k \Longrightarrow i+1 \in D_k$ for all k.

Linus Setiabrata Double orthodontia October 22, 2024 10 / 31

Orthodontic sequence

 $D_j := j$ -th column of a diagram D

Proposition (Reiner-Shimozono '98)

If D is %-avoiding, it can be reduced to the empty diagram via:

- Remove columns: $D \mapsto D \setminus D_j$ when $D_j = [i]$
- Swap rows i and i+1: $D \mapsto s_i D$ when $i \in D_k \Longrightarrow i+1 \in D_k$ for all k.

Orthodontia for flagged Weyl modules

$$\pi_i(f) := \partial_i(x_i f).$$

Theorem (Magyar '98, "orthodontia formula")

Let D be a %-avoiding diagram. Then:

- $\operatorname{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \operatorname{ch}^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i]$.
- $\operatorname{ch}^*(\mathcal{M}_D) = \pi_i(\operatorname{ch}^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Linus Setiabrata Double orthodontia October 22, 2024 11/31

Orthodontia for flagged Weyl modules

$$\pi_i(f) := \partial_i(x_i f).$$

Theorem (Magyar '98, "orthodontia formula")

Let D be a %-avoiding diagram. Then:

- $\operatorname{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \operatorname{ch}^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i]$.
- $\operatorname{ch}^*(\mathcal{M}_D) = \pi_i(\operatorname{ch}^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Proof involves: $\mathcal{M}_D \cong \{\text{sections of a line bundle on a variety}\}.$

Uses comb. of chamber sets (Leclerc–Zelevinsky), geom. of Frobenius splitting (Van der Kallen).

Linus Setiabrata Double orthodontia October 22, 2024 11 / 31

Orthodontia for flagged Weyl modules, II

Theorem (Magyar '98, "orthodontia formula")

Let D be a %-avoiding diagram. Then:

- $\operatorname{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \operatorname{ch}^*(\mathcal{M}_{D \setminus D_i})$ if $D_i = [i]$.
- $\operatorname{ch}^*(\mathcal{M}_D) = \pi_i(\operatorname{ch}^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Corollary (Magyar '98)

For any %-avoiding diagram D, the dual character $ch^*(\mathcal{M}_D)$ can be obtained from $1 \in \mathbb{C}[\mathbf{x}]$ by applying various $x_1 \dots x_i$ and π_i .

October 22, 2024

12/31

Linus Setiabrata

Key polynomials

Key polynomials κ_{α} were first defined as characters of *Demazure modules*.

Linus Setiabrata Double orthodontia

13 / 31

Key polynomials

Key polynomials κ_{α} were first defined as characters of *Demazure modules*.

Definition

For $\alpha \in \mathbb{Z}_{>0}^n$, recursively define *key polynomials*:

$$\kappa_{\alpha}(\mathbf{x}) = \begin{cases} x_1^{\alpha_1} \dots x_n^{\alpha_n} & \text{if } \alpha_1 \ge \dots \ge \alpha_n \\ \pi_i(\kappa_{s_i\alpha}(\mathbf{x})) & \text{if } \alpha_i < \alpha_{i+1}. \end{cases}$$

Linus Setiabrata Double orthodontia October 22, 2024 13 / 31

Key polynomials

Key polynomials κ_{α} were first defined as characters of *Demazure modules*.

Definition

For $\alpha \in \mathbb{Z}_{\geq 0}^n$, recursively define *key polynomials*:

$$\kappa_{\alpha}(\mathbf{x}) = \begin{cases} x_1^{\alpha_1} \dots x_n^{\alpha_n} & \text{if } \alpha_1 \ge \dots \ge \alpha_n \\ \pi_i(\kappa_{\mathbf{s}_i\alpha}(\mathbf{x})) & \text{if } \alpha_i < \alpha_{i+1}. \end{cases}$$

Lemma (Reiner-Shimozono '98)

For any k and α , the polynomial $x_1 \dots x_k \cdot \kappa_{\alpha}$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Linus Setiabrata Double orthodontia October 22, 2024 13 / 31

Proposition

For %-avoiding D, the dual character $\mathrm{ch}^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

Linus Setiabrata Double orthodontia October 22, 2024 14 / 31

Proposition

For %-avoiding D, the dual character $\mathrm{ch}^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

Proof.

Orthodontia: $\operatorname{ch}^*(\mathcal{M}_D)$ can be obtained from $1 \in \mathbb{C}[\mathbf{x}]$ by applying various π_i and $x_1 \dots x_i$.

Linus Setiabrata Double orthodontia October 22, 2024 14 / 31

Proposition

For %-avoiding D, the dual character $\mathrm{ch}^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

Proof.

Orthodontia: $\operatorname{ch}^*(\mathcal{M}_D)$ can be obtained from $1 \in \mathbb{C}[\mathbf{x}]$ by applying various π_i and $x_1 \dots x_i$.

Since $\pi_i(\kappa_\alpha) = \kappa_{\alpha'}$ for some α' , the operator π_i preserves key positivity.

Linus Setiabrata Double orthodontia October 22, 2024 14 / 31

Proposition

For %-avoiding D, the dual character $\operatorname{ch}^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{>0}$ -linear combination of key polynomials.

Proof.

Orthodontia: $\operatorname{ch}^*(\mathcal{M}_D)$ can be obtained from $1 \in \mathbb{C}[x]$ by applying various π_i and $\cdot x_1 \dots x_i$.

Since $\pi_i(\kappa_\alpha) = \kappa_{\alpha'}$ for some α' , the operator π_i preserves key positivity.

Since $x_1 \dots x_i \cdot \kappa_{\alpha}$ is key positive, the operator $x_1 \dots x_i$ preserves key positivity.

14/31

Double Grothendieck polynomials

Double Grothendieck polynomials $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$ are lifts of structure sheaves of Schubert varieties $[\mathcal{O}_{X_w}] \in K_T^*(\mathcal{F}\ell_n)$.

Linus Setiabrata Double orthodontia October 22, 2024 15 / 31

Double Grothendieck polynomials

Double Grothendieck polynomials $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$ are lifts of structure sheaves of Schubert varieties $[\mathcal{O}_{X_w}] \in K_T^*(\mathcal{F}\ell_n)$.

Definition

For $w \in S_n$, recursively define double Grothendieck polynomials:

$$\mathfrak{G}_{w}(\mathbf{x};\mathbf{y}) = \begin{cases} \prod_{i+j \leq n} (x_{i} + y_{j} - x_{i}y_{j}) & \text{if } w = w_{0} \\ \overline{\partial}_{i}(\mathfrak{G}_{ws_{i}}(\mathbf{x};\mathbf{y})) & \text{if } \ell(w) < \ell(ws_{i}), \end{cases}$$

where $\overline{\partial}_i(f) := \partial_i((1-x_{i+1})f)$.

Lowest degree part of $\mathfrak{G}_w(\mathbf{x}; \mathbf{0})$ is \mathfrak{S}_w .

4□▶ 4□▶ 4□▶ 4□▶ □ 900

15 / 31

Linus Setiabrata Double orthodontia October 22, 2024

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Linus Setiabrata Double orthodontia October 22, 2024 16 / 31

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of \mathcal{M}_D for \mathfrak{G}_w ?

Linus Setiabrata Double orthodontia

16/31

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of \mathcal{M}_D for \mathfrak{G}_w ?

• Want {monomials in \mathfrak{G}_w }:

Pechenik-Speyer-Weigandt '24:

- $\deg(\mathfrak{G}_w) = \operatorname{raj}(w)$
- $\bullet \ \mathfrak{G}_w^{\mathrm{top}}(\mathbf{x};\mathbf{y}) = f(\mathbf{x})g(\mathbf{y})$

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of \mathcal{M}_D for \mathfrak{G}_w ?

Want {monomials in \$\mathcal{G}_{W}\$}:
 \$\mathcal{G}_{w}^{\text{top}}\$: Pechenik-Speyer-Weigandt '24

16/31

Hafner–Mészáros–S.–St. Dizier '24: {monomials in vexillary $\mathfrak{G}_w(\mathbf{x}; \mathbf{0})$ }.

	0	
1	1	

(What is the rep-theoretic meaning of this?)

Flagged Weyl modules in K-theory

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of \mathcal{M}_D for \mathfrak{G}_w ?

• Want {monomials in \mathfrak{G}_W }: $\mathfrak{G}_w^{\text{top}}$: Pechenik–Speyer–Weigandt '24 Vexillary $\mathfrak{G}_w(\mathbf{x}; \mathbf{0})$: HMSS '24

- Want to "access" \mathfrak{G}_D for %-avoiding D:
 - ► To use for induction purposes

Flagged Weyl modules in K-theory

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of \mathcal{M}_D for \mathfrak{G}_w ?

• Want {monomials in \mathfrak{G}_{w} }: $\mathfrak{G}_{w}^{\text{top}}$: Pechenik–Speyer–Weigandt '24 Vexillary $\mathfrak{G}_{w}(\mathbf{x}; \mathbf{0})$: HMSS '24

- Want to "access" \mathfrak{G}_D for %-avoiding D:
 - ► To use for induction purposes
 - ▶ To collect certain \mathfrak{G}_D together into generating functions

$$\sum_{\mathbf{m}} \mathfrak{G}_{D(\mathbf{m})} \cdot \mathbf{t}^{\mathbf{m}}$$

cf. generating function $\sum_{\lambda} s_{\lambda}(\mathbf{x}) \mathbf{t}^{\lambda} = \mathrm{ch}(\mathbb{C}[\mathsf{G}/\mathsf{U}])$

Orthodontia for double Grothendieck polynomials

Schubert story:

Theorem (Magyar '98, "orthodontia formula")

Let D be a %-avoiding diagram. Then:

- $\operatorname{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \operatorname{ch}^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i]$.
- $\operatorname{ch}^*(\mathcal{M}_D) = \pi_i(\operatorname{ch}^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Theorem (Kraśkiewicz–Pragacz '87)

The dual character $\operatorname{ch}^*(\mathcal{M}_{D(w)})$ is the Schubert polynomial \mathfrak{S}_w .

17 / 31

Linus Setiabrata Double orthodontia October 22, 2024

Orthodontia for double Grothendieck polynomials

Schubert story:

Theorem (Magyar '98, "orthodontia formula")

Let D be a %-avoiding diagram. Then:

- $\operatorname{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \operatorname{ch}^*(\mathcal{M}_{D \setminus D_i})$ if $D_j = [i]$.
- $\operatorname{ch}^*(\mathcal{M}_D) = \pi_i(\operatorname{ch}^*(\mathcal{M}_{s:D}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Theorem (Kraśkiewicz–Pragacz '87)

The dual character $\operatorname{ch}^*(\mathcal{M}_{D(w)})$ is the Schubert polynomial \mathfrak{S}_w .

Goal

For %-avoiding D, define $\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ so that $\mathscr{G}_{D(w)} = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Easier goal: Define $\mathcal{G}_D \in \mathbb{C}[\mathbf{x}]$ so that $\mathcal{G}_{D(w)} = \mathfrak{G}_w(\mathbf{x}; \mathbf{0})$.

17 / 31

Linus Setiabrata

Orthodontia algorithm

Definition

Let C be the leftmost nonempty, non-up-aligned column of D. The *first missing tooth* is the minimal i so that $i \notin C$ and $i + 1 \in C$.

Example

Orthodontia algorithm

Definition

Let C be the leftmost nonempty, non-up-aligned column of D. The first missing tooth is the minimal i so that $i \notin C$ and $i + 1 \in C$.

Example

Algorithm (Magyar '98, "orthodontia algorithm")

- Remove any columns $D_i = [i]$
- 2 Swap rows i and i + 1, for i := first missing tooth
- 3 Repeat steps 1 & 2 until empty

4 D F 4 P F F F F F F

Orthodontia for ordinary Grothendieck polynomials

Algorithm (Magyar '98, "orthodontia algorithm")

- Remove any columns $D_j = [i]$
- **2** Swap rows i and i + 1, for i := first missing tooth
- Repeat steps 1 & 2 until empty

Linus Setiabrata Double orthodontia October 22, 2024 19 / 31

Orthodontia for ordinary Grothendieck polynomials

Algorithm (Magyar '98, "orthodontia algorithm")

- Remove any columns $D_j = [i]$
- **2** Swap rows i and i + 1, for i := first missing tooth
- Repeat steps 1 & 2 until empty

$$\overline{\pi}_i := \pi_i((1-x_{i+1})f)$$

Definition (Mészáros–S.–St. Dizier '22)

For %-avoiding D, define $\mathcal{G}_D \in \mathbb{C}[\mathbf{x}]$ recursively:

- $\mathcal{G}_D = x_1 \dots x_i \cdot \mathcal{G}_{D \setminus D_j}$ if some $D_j = [i]$,
- $\mathcal{G}_D = \overline{\pi}_i(\mathcal{G}_{s_iD})$ otherwise, where i = first missing tooth.

Theorem (Mészáros-S.-St. Dizier '22)

When D = D(w) is a Rothe diagram, $\mathcal{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{0})$.

◆ロト ◆御 ト ◆ 注 ト ◆ 注 ・ り へ ()

Orthodontia for ordinary Grothendieck polynomials

Theorem (Mészáros-S.-St. Dizier '22)

When D = D(w) is a Rothe diagram, $\mathcal{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{0})$.

$$\overline{\pi}_i := \pi_i((1-x_{i+1})f)$$

Orthodontia algorithm, II

Definition

Let D_k be the leftmost nonempty column of D. Let i be the first missing tooth and $j := k - \#\{a \le i : a \notin D_k\}$. The first missing double-tooth is (i,j).

Example

Double orthodontic polynomials

Goal

For %-avoiding D, define $\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ so that $\mathscr{G}_{D(w)} = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

$$\overline{\omega}_i^{\{j\}} := \prod_{k=1}^i (x_k + y_j - x_k y_j)$$

 $\overline{\pi}_{i,j} := \overline{\partial}_i ((x_i + y_j - x_i y_j) f)$

22 / 31

Linus Setiabrata Double orthodontia October 22, 2024

Double orthodontic polynomials

Goal

For %-avoiding D, define $\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ so that $\mathscr{G}_{D(w)} = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

$$\overline{\omega}_i^{\{j\}} := \prod_{k=1}^i (x_k + y_j - x_k y_j)$$
$$\overline{\pi}_{i,j} := \overline{\partial}_i ((x_i + y_j - x_i y_j) f)$$

Definition (S.–St. Dizier)

For %-avoiding D, define $\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ recursively:

- $\mathscr{G}_D = \overline{\omega}_i^{\{j\}} \cdot \mathscr{G}_{D \setminus D_j}$ if some $D_j = [i]$,
- ullet $\mathscr{G}_D=\overline{\pi}_{i,j}(\mathscr{G}_{s_iD})$ otherwise, where (i,j)= first missing double-tooth

Theorem (S.–St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 9 Q €

22 / 31

Orthodontia for double Grothendieck polynomials

Theorem (S.–St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

$$\left(\overline{\omega}_3^{\{2\}} := (x_1 + y_2 - x_1 y_2)(x_2 + y_2 - x_2 y_2)(x_3 + y_2 - x_3 y_2)\right)$$

Orthodontia for double Grothendieck polynomials, II

Theorem (S.–St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

 $\operatorname{ch}^*(\mathcal{M}_D)$ is invariant under reordering columns, but \mathscr{G}_D is not.

Linus Setiabrata Double orthodontia October 22, 2024 24 / 31

Orthodontia for double Grothendieck polynomials, II

Theorem (S.-St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

 $\mathrm{ch}^*(\mathcal{M}_D)$ is invariant under reordering columns, but \mathscr{G}_D is not.

Example

$$\mathfrak{S}_{2413}(\mathbf{x}) = x_1 x_2 \mathfrak{S}_{132}(\mathbf{x})$$

$$\mathfrak{G}_{2413}(\mathbf{x};\mathbf{0}) = x_1 x_2 \mathfrak{G}_{132}(\mathbf{x};\mathbf{0})$$

$$\mathfrak{G}_{2413}(\mathbf{x};\mathbf{y}) \neq g(\mathbf{x},\mathbf{y}) \cdot \mathfrak{G}_{132}(\mathbf{x};\mathbf{y})$$
 for any g

24 / 31

Linus Setiabrata Double orthodontia October 22, 2024

Orthodontia for double Grothendieck polynomials, III

Theorem (S.-St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Proof idea: "Find almost-Rothe-diagrams in reduction sequence for D(w)"

Orthodontia for double Grothendieck polynomials, III

Theorem (S.-St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Proof idea: "Find almost-Rothe-diagrams in reduction sequence for D(w)"

"orthodontic sort":

(what's the geometric meaning of this?)

Lascoux polynomials

Lascoux polynomials are "K-theoretic analogues" of key polynomials:

Definition

For $\alpha \in \mathbb{Z}_{>0}^n$, recursively define *Lascoux polynomials*:

$$\mathfrak{L}_{\alpha}(\mathbf{x}) = \begin{cases} x_1^{\alpha_1} \dots x_n^{\alpha_n} & \text{if } \alpha_1 \ge \dots \ge \alpha_n \\ \overline{\pi}_i(\mathfrak{L}_{\mathbf{s}_i\alpha}(\mathbf{x})) & \text{if } \alpha_i < \alpha_{i+1}, \end{cases}$$

where $\overline{\pi}_{i}(f) := \pi_{i}((1 - x_{i+1})f)$.

Double Lascoux polynomials...?

$$\alpha \rightsquigarrow D(\alpha)$$
 "skyline diagram"

Example

$$\alpha = (3, 1, 2, 0, 1) \quad \rightsquigarrow \quad D(\alpha) =$$

Observation (Mészáros–S.–St. Dizier, '22)

When $D = D(\alpha)$ is a skyline diagram, $\mathcal{G}_D = \mathfrak{L}_{\alpha}(\mathbf{x})$.

Who is $\mathscr{G}_{D(\alpha)}(\mathbf{x};\mathbf{y})$? And what about reordered-column $D(\alpha)$'s?

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 めぬぐ

 $\mathscr{G}_D^{\mathrm{bot}} := \mathsf{lowest} \ \mathsf{degree} \ \mathsf{part} \ \mathsf{of} \ \mathscr{G}_D.$

 $(\mathscr{G}^{\mathrm{bot}}_{D(w)}(\mathbf{x}; -\mathbf{y})$ is the double Schubert polynomial.)

Linus Setiabrata Double orthodontia October 22, 2024 28 / 31

 $\mathscr{G}_D^{\mathrm{bot}} := \mathsf{lowest} \ \mathsf{degree} \ \mathsf{part} \ \mathsf{of} \ \mathscr{G}_D.$

 $(\mathscr{G}^{\mathrm{bot}}_{D(w)}(x;-y)$ is the double Schubert polynomial.)

Conjecture (S.-St. Dizier)

If D is %-avoiding, $x_1^n \dots x_n^n \mathcal{G}_D^{\mathrm{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Example

The polynomial
$$x_1^4 x_2^4 x_3^4 x_4^4 \mathscr{G}_{D(2143)}^{\mathrm{bot}}(x_4^{-1}, x_3^{-1}, x_2^{-2}, x_1^{-1}; -1, -1, -1, -1)$$
 is

$$x_{1}^{4}x_{2}^{3}x_{3}^{4}x_{4}^{3} + x_{1}^{4}x_{2}^{4}x_{3}^{4}x_{4}^{2} + x_{1}^{4}x_{2}^{4}x_{3}^{3}x_{4}^{3} - x_{1}^{4}x_{2}^{3}x_{3}^{4}x_{4}^{4} - x_{1}^{4}x_{2}^{4}x_{3}^{3}x_{4}^{4} - 4x_{1}^{4}x_{2}^{4}x_{3}^{4}x_{4}^{3} + 3x_{1}^{4}x_{2}^{4}x_{3}^{4}x_{4}^{4} + x_{1}^{4}x_{2}^{4}x_{3}^{4}x_{4}^{4} - x_{1}^{4}x_{2}^{4}x_{3}^{3}x_{4}^{4} - 4x_{1}^{4}x_{2}^{4}x_{3}^{4}x_{4}^{3} + 3x_{1}^{4}x_{2}^{4}x_{3}^{4}x_{4}^{4} + x_{1}^{4}x_{2}^{4}x_{3}^{3}x_{4}^{4} - x_{1}^{4}x_{2}^{4}x_{3}^{3}x_{4}^{4} - 4x_{1}^{4}x_{2}^{4}x_{3}^{4}x_{4}^{3} + 3x_{1}^{4}x_{2}^{4}x_{3}^{4}x_{4}^{4} + x_{1}^{4}x_{2}^{4}x_{3}^{4}x_{4}^{4} + x_{1}^{4}x_{2}^{4}x_{3}^{4} + x_{1}^{4}x_{2}^{4}x_{3}^{4}x_{4}^{4} + x_{1}^{4}x_{2}^{4}x$$

which is

$$(\mathfrak{L}_{(4,3,4,3)} + \mathfrak{L}_{(4,4,4,2)}) - (\mathfrak{L}_{(4,3,4,4)} + 2\mathfrak{L}_{(4,4,4,3)}) + \mathfrak{L}_{(4,4,4,4)}$$

Conjecture (S.–St. Dizier)

If D is %-avoiding, $x_1^n \dots x_n^n \mathscr{G}_D^{\mathrm{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Linus Setiabrata Double orthodontia October 22, 2024 29 / 31

Conjecture (S.–St. Dizier)

If D is %-avoiding, $x_1^n \dots x_n^n \mathcal{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Orthodontia: $x_1^n \dots x_n^n \mathcal{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is obtained from the polynomial 1 by applying

- $f \mapsto \overline{\pi}_i(f)$,
- $f \mapsto x_1 \dots x_i (1 x_{i+1}) \dots (1 x_n) f$.

4日 (日本) (日本) (日本) (日本)

Conjecture (S.–St. Dizier)

If D is %-avoiding, $x_1^n \dots x_n^n \mathcal{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Orthodontia: $x_1^n \dots x_n^n \mathcal{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is obtained from the polynomial 1 by applying

- $f \mapsto \overline{\pi}_i(f)$,
- $f \mapsto x_1 \dots x_i (1 x_{i+1}) \dots (1 x_n) f$.

Since $\overline{\pi}_i(\mathfrak{L}_{\alpha}) = \mathfrak{L}_{\alpha'}$, $\overline{\pi}_i$ preserves graded Lascoux positivity.

4 D > 4 B > 4 E > 4 E > 9 Q P

Linus Setiabrata

29 / 31

Conjecture (S.–St. Dizier)

If D is %-avoiding, $x_1^n \dots x_n^n \mathcal{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Orthodontia: $x_1^n \dots x_n^n \mathcal{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is obtained from the polynomial 1 by applying

- $f \mapsto \overline{\pi}_i(f)$,
- $f \mapsto x_1 \dots x_i (1 x_{i+1}) \dots (1 x_n) f$.

Since $\overline{\pi}_i(\mathfrak{L}_{\alpha}) = \mathfrak{L}_{\alpha'}$, $\overline{\pi}_i$ preserves graded Lascoux positivity.

Conjecture: The product $\mathfrak{L}_{\alpha} \cdot x_1 \dots x_i (1 - x_{i+1}) \dots (1 - x_n)$ is graded Lascoux positive. (cf. key positivity of $\kappa_{\alpha} \cdot x_1 \dots x_i$.)

4 日 × 4 周 × 4 3 × 4 3 × 3 3

29 / 31

Linus Setiabrata

Corollary (S.-St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n \dots x_n^n \mathscr{G}_D^{\mathrm{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

(D(w) ordered by inclusion \iff w vexillary.)

Linus Setiabrata Double orthodontia October 22, 2024 30 / 31

Corollary (S.-St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n \dots x_n^n \mathscr{G}_D^{\mathrm{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

 $(D(w) \text{ ordered by inclusion } \iff w \text{ vexillary.})$

Sketch.

In this case, $x_1^n \dots x_n^n \mathcal{G}_D^{\mathrm{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ can be obtained from $f \mapsto x_1 \dots x_i (1 - x_{i+1}) \dots (1 - x_n) f$, followed by $f \mapsto \overline{\pi}_i(f)$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

Corollary (S.-St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n \dots x_n^n \mathscr{G}_D^{\mathrm{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

 $(D(w) \text{ ordered by inclusion } \iff w \text{ vexillary.})$

Sketch.

In this case, $x_1^n ldots x_n^n \mathcal{G}_D^{\text{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ can be obtained from $f \mapsto x_1 \dots x_i (1 - x_{i+1}) \dots (1 - x_n) f$, followed by $f \mapsto \overline{\pi}_i(f)$.

 \rightsquigarrow Suffices to show products of $x_1 \dots x_i (1 - x_{i+1}) \dots (1 - x_n)$ are graded Lascoux positive.

Corollary (S.-St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n \dots x_n^n \mathcal{G}_D^{\mathrm{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

 $(D(w) \text{ ordered by inclusion } \iff w \text{ vexillary.})$

Sketch.

In this case, $x_1^n \dots x_n^n \mathcal{G}_D^{\mathrm{bot}}(x_n^{-1}, \dots, x_1^{-1}; -1, \dots, -1)$ can be obtained from $f \mapsto x_1 \dots x_i (1 - x_{i+1}) \dots (1 - x_n) f$, followed by $f \mapsto \overline{\pi}_i(f)$.

 \leadsto Suffices to show products of $x_1 \dots x_i (1 - x_{i+1}) \dots (1 - x_n)$ are graded Lascoux positive.

Follows from Orelowitz–Yu '23: $G_w \cdot \mathfrak{L}_\alpha$ is graded Lascoux positive.

 $(G_w := stable Grothendieck)$

Linus Setiabrata Double orthodontia October 22, 2024 30 / 31

Thank you!

Goal

Find analogue of \mathcal{M}_D for Grothendieck polynomials.

Theorem (S.–St. Dizier)

When D = D(w) is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

$$\overline{\pi}_{1,3}$$

$$\overline{\omega}_1^{\{4\}}$$

