Double orthodontia formulas and Lascoux positivity

Linus Setiabrata (joint with Avery St. Dizier)

University of Chicago

October 22, 2024

arXiv:2410.08038

4 D F

 QQ

Outline

- Schubert polynomials and flagged Weyl modules
- Orthodontia formula for flagged Weyl modules
	- ▶ and key positivity of their dual characters
- Orthodontia formula for double Grothendieck polynomials
	- ▶ and a curious Lascoux positivity result

Goal: Analogue of flagged Weyl module for Grothendieck polynomials.

 200

Schubert polynomials

Schubert polynomials \mathfrak{S}_w are certain lifts of Schubert cycles $[X_w] \in H^*(\mathcal{F}\ell_n).$

Schubert polynomials

Schubert polynomials \mathfrak{S}_{w} are certain lifts of Schubert cycles $[X_w] \in H^*(\mathcal{F}\ell_n).$

Definition

The *i-th divided difference operator* is

$$
\partial_i(f):=\frac{f-s_i\cdot f}{x_i-x_{i+1}},
$$

for
$$
i \in [n-1]
$$
. $(s_i \cdot f) := f(x_1, \ldots, x_{i+1}, x_i, \ldots, x_n)$

Definition

For $w \in S_n$, recursively define Schubert polynomials:

$$
\mathfrak{S}_w(\mathbf{x}) = \begin{cases} x_1^{n-1} x_2^{n-2} \dots x_{n-1} & \text{if } w = w_0 \\ \partial_i(\mathfrak{S}_{ws_i}(\mathbf{x})) & \text{if } \ell(w) < \ell(ws_i). \end{cases}
$$

 Ω

イロト イ押ト イヨト イヨト

Schur polynomials

Example

Schur polynomials $s_\lambda := \text{ch}(V_\lambda)$ are \mathfrak{S}_w for "Grassmannian w".

(The GL_n -irreps V_λ are "representation-theoretic avatars" of Grassmannian \mathfrak{S}_w .)

目

 QQ

 $\mathcal{A} \left(\bigoplus_{i=1}^n \mathbb{I}_{\mathcal{A}} \left(\mathcal{A} \right) \oplus \mathcal{A} \right) \subset \mathcal{A} \left(\bigoplus_{i=1}^n \mathcal{A} \right)$

4 **ED**

Schur polynomials

Example

Schur polynomials $s_\lambda := \text{ch}(V_\lambda)$ are \mathfrak{S}_w for "Grassmannian w".

(The GL_n -irreps V_λ are "representation-theoretic avatars" of Grassmannian \mathfrak{S}_w .)

$$
[X_u] \cdot [X_v] = \sum_{w} c_{uv}^{w} [X_w] \quad \text{and} \quad V_{\lambda} \otimes V_{\mu} = \bigoplus_{\nu} V_{\nu}^{\oplus c_{\lambda \mu}^{\nu}}
$$
\nintersection nos.

\nwith the values of W and W is the same.

 c_{uv}^w : "Littlewood–Richardson coefficients"

Central problem: Combinatorial formula for c_{uv}^w ?

イ押 トイヨ トイヨ トー

4 **ED**

目

Rothe diagrams

(Towards representation-theoretic avatars of general \mathfrak{S}_w)

 $w \rightsquigarrow D(w)$ "Rothe diagram"

Rothe diagrams

(Towards representation-theoretic avatars of general \mathfrak{S}_w)

 $w \rightsquigarrow D(w)$ "Rothe diagram"

Definition

- Draw $n \times n$ grid with dots in *i*-th row and $w(i)$ -th column
- Draw "death rays" emanating east and south of each dot
- Remaining squares are $D(w)$.

Flagged Weyl modules

$D \rightsquigarrow M_D$ "flagged Weyl module"

(representation of $B := \{$ upper triangular matrices $\} \subseteq GL_n$)

Flagged Weyl modules

$D \rightsquigarrow M_D$ "flagged Weyl module"

(representation of $B := \{$ upper triangular matrices $\} \subseteq GL_n$)

Theorem (Kraśkiewicz–Pragacz '87)

The dual character $\mathrm{ch}^*(\mathcal{M}_{D(w)})$ is the Schubert polynomial \mathfrak{S}_w .

 $(Dual character of V is ch[*](V)(x₁,...,x_n) = tr(diag(x₁⁻¹,...,x_n⁻¹): V \rightarrow V).)$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

(What does M_D buy us?)

Question

 A ssume that $\mathbf{x}^{\alpha-\beta}$ and $\mathbf{x}^{\alpha+\beta}$ appear in \mathfrak{S}_{w} . Does \mathbf{x}^{α} appear?

 $\mathcal{A} \oplus \mathcal{B}$ \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B} \mathcal{B}

€ □ E

D.

(What does M_D buy us?)

Question

 A ssume that $\mathbf{x}^{\alpha-\beta}$ and $\mathbf{x}^{\alpha+\beta}$ appear in \mathfrak{S}_{w} . Does \mathbf{x}^{α} appear?

Conjecture (Monical–Tokcan–Yong '19) $\mathcal{N}(w):=\{\operatorname{wt}(\mathcal{C})\colon \mathbf{x}^{\operatorname{wt}(\mathcal{C})}$ appears in $\mathfrak{S}_w\}$ *is saturated.*

 $(Saturated: S = conv(S) \cap \mathbb{Z}^n)$

 Ω

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

Theorem (Fink–Mészáros–St. Dizier '18) $\mathcal{N}(D) \vcentcolon= \{ \text{wt}(\mathcal{C}) \colon \mathbf{x}^{\text{wt}(\mathcal{C})}$ appears in $\ch^*(\mathcal{M}_D) \}$ *is saturated.*

Idea: use rep theory description of monomials in $\mathrm{ch}^*(\mathcal{M}_D).$

Theorem (Fink–Mészáros–St. Dizier '18) $\mathcal{N}(D) \vcentcolon= \{ \text{wt}(\mathcal{C}) \colon \mathbf{x}^{\text{wt}(\mathcal{C})}$ appears in $\ch^*(\mathcal{M}_D) \}$ *is saturated.*

Idea: use rep theory description of monomials in $\mathrm{ch}^*(\mathcal{M}_D).$ \bullet $S(D) := \{$ "diagrams obtained by bubbling boxes of D upwards"}

 $\left\{ \begin{array}{ccc} \square & \times & \overline{c} & \overline{c} & \rightarrow & \overline{c}$

Theorem (Fink–Mészáros–St. Dizier '18) $\mathcal{N}(D) \vcentcolon= \{ \text{wt}(\mathcal{C}) \colon \mathbf{x}^{\text{wt}(\mathcal{C})}$ appears in $\ch^*(\mathcal{M}_D) \}$ *is saturated.*

Idea: use rep theory description of monomials in $\mathrm{ch}^*(\mathcal{M}_D).$

- \bullet $S(D) := \{$ "diagrams obtained by bubbling boxes of D upwards"}
- Rep theory: monomials appearing in $\mathrm{ch}^*(\mathcal{M}_D)$ is $\{\mathbf{x}^\mathrm{wt}(\mathcal{C})\colon \mathcal{C}\in \mathcal{S}(D)\}$ (⇝ can check "in one go" if **x** *α* appears.)

Theorem (Fink–Mészáros–St. Dizier '18)

$$
\mathcal{N}(D) := \{ \text{wt}(C) : \mathbf{x}^{\text{wt}(C)} \text{ appears in ch}^*(\mathcal{M}_D) \} \text{ is saturated.}
$$

Idea: use rep theory description of monomials in $\mathrm{ch}^*(\mathcal{M}_D).$

- \bullet $S(D) := \{$ "diagrams obtained by bubbling boxes of D upwards"}
- Rep theory: monomials appearing in $\mathrm{ch}^*(\mathcal{M}_D)$ is $\{\mathbf{x}^\mathrm{wt}(\mathcal{C})\colon \mathcal{C}\in \mathcal{S}(D)\}$ (⇝ can check "in one go" if **x** *α* appears.)

Also in Fink–Mészáros–St. Dizier: conv $(\mathcal{N}(D))$ is a generalized permutahedron.

イロト イ押 トイヨ トイヨ トー

%-avoiding diagrams

(Towards the *orthodontia formula* computing $\mathrm{ch}^*(\mathcal{M}_D))$

%-avoiding diagrams

(Towards the *orthodontia formula* computing $\mathrm{ch}^*(\mathcal{M}_D))$

Proposition

The Rothe diagram $D(w)$ is %-avoiding for all $w \in S_n$.

Orthodontic sequence

$$
D_j := j\text{-th column of a diagram } D
$$

Proposition (Reiner–Shimozono '98)

If D is $\%$ -avoiding, it can be reduced to the empty diagram via:

• Remove columns: $D \mapsto D \setminus D_i$ when $D_i = [i]$

 \bullet Swap rows i and $i + 1$: $D \mapsto s_iD$ when $i \in D_k \Longrightarrow i + 1 \in D_k$ for all k.

 QQ

Orthodontic sequence

$$
D_j := j\text{-th column of a diagram } D
$$

Proposition (Reiner–Shimozono '98)

If D is $\%$ -avoiding, it can be reduced to the empty diagram via:

- Remove columns: $D \mapsto D \setminus D_i$ when $D_i = [i]$
- Swap rows i and $i + 1$: $D \mapsto s_iD$ when $i \in D_k \Longrightarrow i + 1 \in D_k$ for all k.

э

 QQ

イロト イ押ト イヨト イヨト

Orthodontia for flagged Weyl modules $\pi_i(f) := \partial_i(x_i f)$.

Theorem (Magyar '98, "orthodontia formula")

Let D be a $\%$ -avoiding diagram. Then:

- $\mathrm{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \mathrm{ch}^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i].$
- $\ch^*(\mathcal{M}_D) = \pi_i(\ch^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

→ 何 ▶

 QQ

Orthodontia for flagged Weyl modules $\pi_i(f) := \partial_i(x_i f)$.

Theorem (Magyar '98, "orthodontia formula")

Let D be a $\%$ -avoiding diagram. Then:

- $\mathrm{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \mathrm{ch}^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i].$
- $\ch^*(\mathcal{M}_D) = \pi_i(\ch^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Proof involves: $M_D \cong \{$ sections of a line bundle on a variety }.

Uses comb. of chamber sets (Leclerc–Zelevinsky), geom. of Fr[obe](#page-20-0)[niu](#page-22-0)[s](#page-19-0) [s](#page-20-0)[pl](#page-21-0)[it](#page-22-0)[tin](#page-0-0)[g \(](#page-0-1)[Van](#page-0-0) [de](#page-0-1)[r K](#page-0-0)[alle](#page-0-1)n).

Linus Setiabrata [Double orthodontia](#page-0-0) October 22, 2024 11 / 31

 Ω

◆ ロ ▶ → 何

Orthodontia for flagged Weyl modules, II

Corollary (Magyar '98)

For any %-avoiding diagram D, the dual character $\mathrm{ch}^*(\mathcal{M}_D)$ can be obtained from $1 \in \mathbb{C}[\mathbf{x}]$ by applying various $\cdot x_1 \dots x_i$ and π_i .

 Ω

イロト イ押 トイヨ トイヨ トーヨ

Key polynomials

Key polynomials *κ^α* were first defined as characters of Demazure modules.

Key polynomials

Key polynomials *κ^α* were first defined as characters of Demazure modules.

Definition

For $\alpha \in \mathbb{Z}_{\geq 0}^n$, recursively define *key polynomials*:

$$
\kappa_{\alpha}(\mathbf{x}) = \begin{cases} x_1^{\alpha_1} \dots x_n^{\alpha_n} & \text{if } \alpha_1 \geq \dots \geq \alpha_n \\ \pi_i(\kappa_{\mathbf{s}_i \alpha}(\mathbf{x})) & \text{if } \alpha_i < \alpha_{i+1}. \end{cases}
$$

K ロ X x 4D X X 3 X X 3 X 3 X 2 3 X

Key polynomials

Key polynomials *κ^α* were first defined as characters of Demazure modules.

Definition

For $\alpha \in \mathbb{Z}_{\geq 0}^n$, recursively define *key polynomials*:

$$
\kappa_{\alpha}(\mathbf{x}) = \begin{cases} x_1^{\alpha_1} \dots x_n^{\alpha_n} & \text{if } \alpha_1 \geq \dots \geq \alpha_n \\ \pi_i(\kappa_{\mathbf{s}_i \alpha}(\mathbf{x})) & \text{if } \alpha_i < \alpha_{i+1}. \end{cases}
$$

Lemma (Reiner–Shimozono '98)

For any k and α , the polynomial $x_1 \ldots x_k \cdot \kappa_\alpha$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

Proposition

For %-avoiding D, the dual character $\mathrm{ch}^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

4 D F

э

 QQ

Proposition

For %-avoiding D, the dual character $\mathrm{ch}^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

Proof.

 $\mathsf{Orthodontia}\colon\mathrm{ch}^*(\mathcal{M}_D)$ can be obtained from $1\in\mathbb{C}[\mathsf{x}]$ by applying various π_i and $\cdot x_1 \dots x_i$.

Proposition

For %-avoiding D, the dual character $\mathrm{ch}^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

Proof.

 $\mathsf{Orthodontia}\colon\mathrm{ch}^*(\mathcal{M}_D)$ can be obtained from $1\in\mathbb{C}[\mathsf{x}]$ by applying various π_i and $\cdot x_1 \dots x_i$.

Since $\pi_i(\kappa_\alpha)=\kappa_{\alpha'}$ for some α' , the operator π_i preserves key positivity.

Proposition

For %-avoiding D, the dual character $\mathrm{ch}^*(\mathcal{M}_D)$ is a $\mathbb{Z}_{\geq 0}$ -linear combination of key polynomials.

Proof.

 $\mathsf{Orthodontia}\colon\mathrm{ch}^*(\mathcal{M}_D)$ can be obtained from $1\in\mathbb{C}[\mathsf{x}]$ by applying various π_i and $\cdot x_1 \dots x_i$.

Since $\pi_i(\kappa_\alpha)=\kappa_{\alpha'}$ for some α' , the operator π_i preserves key positivity.

Since $x_1 \ldots x_i \cdot \kappa_\alpha$ is key positive, the operator $\cdot x_1 \ldots x_i$ preserves key positivity.

 Ω

Double Grothendieck polynomials

Double Grothendieck polynomials $\mathfrak{G}_{w}(\mathbf{x}; \mathbf{y})$ are lifts of structure sheaves of Schubert varieties $[O_{X_w}] \in K^*_{\mathcal{T}}(\mathcal{F}\ell_n)$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 ①

Double Grothendieck polynomials

Double Grothendieck polynomials $\mathfrak{G}_{w}(\mathbf{x}; \mathbf{y})$ are lifts of structure sheaves of Schubert varieties $[O_{X_w}] \in K^*_{\mathcal{T}}(\mathcal{F}\ell_n)$.

Definition

For $w \in S_n$, recursively define *double Grothendieck polynomials*:

$$
\mathfrak{G}_{w}(\mathbf{x}; \mathbf{y}) = \begin{cases} \prod_{i+j \leq n} (x_i + y_j - x_i y_j) & \text{if } w = w_0 \\ \overline{\partial}_i (\mathfrak{G}_{ws_i}(\mathbf{x}; \mathbf{y})) & \text{if } \ell(w) < \ell(ws_i), \end{cases}
$$

where $\overline{\partial}_i(f) := \partial_i((1 - x_{i+1})f)$.

Lowest degree part of $\mathfrak{G}_{w}(\mathbf{x};\mathbf{0})$ is \mathfrak{S}_{w} .

 Ω

メタトメミトメミト ミ

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Combinatorics of \mathfrak{S}_w often extends to $\mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of M_D for \mathfrak{G}_w ?

 Ω

Combinatorics of \mathfrak{S}_{w} often extends to $\mathfrak{G}_{w}(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of M_D for \mathfrak{G}_{w} ?

• Want {monomials in \mathfrak{G}_w }:

4 D F

∢母→

Pechenik–Speyer–Weigandt '24:

- deg(\mathfrak{G}_w) = raj(w)
- $\mathfrak{G}_{w}^{\text{top}}(\mathsf{x}; \mathsf{y}) = f(\mathsf{x})g(\mathsf{y})$

医单头 人 目 200

Combinatorics of \mathfrak{S}_{w} often extends to $\mathfrak{G}_{w}(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of M_D for \mathfrak{G}_{w} ?

• Want {monomials in \mathfrak{G}_{w} }: $\mathfrak{G}^{\mathrm{top}}_{\scriptscriptstyle{W}}$: Pechenik–Speyer–Weigandt '24

Hafner–Mészáros–S.–St. Dizier '24: {monomials in vexillary $\mathfrak{G}_{w}(\mathbf{x}; \mathbf{0})$ }.

(What is the rep-theoretic meaning of this?)

◂**◻▸ ◂◚▸**

目

 Ω

Combinatorics of \mathfrak{S}_{w} often extends to $\mathfrak{G}_{w}(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of M_D for \mathfrak{G}_{w} ?

• Want {monomials in \mathfrak{G}_w }: $\mathfrak{G}^{\mathrm{top}}_{\scriptscriptstyle{W}}$: Pechenik–Speyer–Weigandt '24 Vexillary G^w (**x**; **0**): HMSS '24

- Want to "access" \mathfrak{G}_D for %-avoiding D:
	- \blacktriangleright To use for induction purposes

 QQ

Combinatorics of \mathfrak{S}_{w} often extends to $\mathfrak{G}_{w}(\mathbf{x}; \mathbf{y})$.

Goal

What is the analogue of M_D for \mathfrak{G}_{w} ?

• Want {monomials in \mathfrak{G}_w }: $\mathfrak{G}^{\mathrm{top}}_{\scriptscriptstyle{W}}$: Pechenik–Speyer–Weigandt '24 Vexillary G^w (**x**; **0**): HMSS '24

2 1

 Ω

- Want to "access" \mathfrak{G}_D for %-avoiding D:
	- \blacktriangleright To use for induction purposes
	- \triangleright To collect certain \mathfrak{G}_D together into generating functions

$$
\sum_m \mathfrak{G}_{\textit{D}(m)} \cdot t^m
$$

cf. generating function $\sum_{\lambda} s_{\lambda}(\mathbf{x}) \mathbf{t}^{\lambda} = \text{ch}(\mathbb{C}[G/U])$

イロト イ押 トイヨ トイヨ トー

Orthodontia for double Grothendieck polynomials

Schubert story:

Theorem (Magyar '98, "orthodontia formula")

Let D be a $\%$ -avoiding diagram. Then:

- $\mathrm{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \mathrm{ch}^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i].$
- $\ch^*(\mathcal{M}_D) = \pi_i(\ch^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Theorem (Kraśkiewicz–Pragacz '87)

The dual character $\mathrm{ch}^*(\mathcal{M}_{D(w)})$ is the Schubert polynomial \mathfrak{S}_w .

 Ω

Orthodontia for double Grothendieck polynomials

Schubert story:

Theorem (Magyar '98, "orthodontia formula")

Let D be a $\%$ -avoiding diagram. Then:

- $\mathrm{ch}^*(\mathcal{M}_D) = x_1 \dots x_i \cdot \mathrm{ch}^*(\mathcal{M}_{D \setminus D_j})$ if $D_j = [i].$
- $\ch^*(\mathcal{M}_D) = \pi_i(\ch^*(\mathcal{M}_{s_iD}))$ when $i \in D_k$ implies $i + 1 \in D_k$ for all k.

Theorem (Kraśkiewicz–Pragacz '87)

The dual character $\mathrm{ch}^*(\mathcal{M}_{D(w)})$ is the Schubert polynomial \mathfrak{S}_w .

Goal

For %-avoiding D, define
$$
\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]
$$
 so that $\mathscr{G}_{D(w)} = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Easier goal: Define $\mathcal{G}_D \in \mathbb{C}[\mathbf{x}]$ so that $\mathcal{G}_{D(w)} = \mathfrak{G}_{w}(\mathbf{x}; \mathbf{0})$.

 QQ

イロト イ母 トイヨト イヨト 一君

Orthodontia algorithm

Definition

Let C be the leftmost nonempty, non-up-aligned column of D . The first missing tooth is the minimal *i* so that $i \notin C$ and $i + 1 \in C$.

Example

G.

 QQ

イロト イ押 トイヨ トイヨ トー

Orthodontia algorithm

Definition

Let C be the leftmost nonempty, non-up-aligned column of D . The first missing tooth is the minimal *i* so that $i \notin C$ and $i + 1 \in C$.

Example

Algorithm (Magyar '98, "orthodontia algorithm")

- **1** Remove any columns $D_i = [i]$
- **2** Swap rows i and $i + 1$, for $i =$ first missing tooth
- **3** Repeat steps 1 & 2 until empty

 QQQ

э

イロト イ部 トイヨ トイヨト

Orthodontia for ordinary Grothendieck polynomials

Algorithm (Magyar '98, "orthodontia algorithm")

- **1** Remove any columns $D_i = [i]$
- **2** Swap rows i and $i + 1$, for $i :=$ first missing tooth
- **3** Repeat steps 1 & 2 until empty

 QQ

Orthodontia for ordinary Grothendieck polynomials

Algorithm (Magyar '98, "orthodontia algorithm")

• Remove any columns
$$
D_j = [i]
$$

2 Swap rows i and $i + 1$, for $i :=$ first missing tooth

3 Repeat steps 1 & 2 until empty

 $\overline{\pi}_i := \pi_i((1-x_{i+1})f)$

Definition (Mészáros–S.–St. Dizier '22)

For %-avoiding D, define $\mathcal{G}_D \in \mathbb{C}[\mathbf{x}]$ recursively:

- $\mathcal{G}_D = \mathsf{x}_1 \ldots \mathsf{x}_i \cdot \mathcal{G}_{D \setminus D_j}$ if some $D_j = [i]$,
- $G_{\text{D}} = \overline{\pi}_i(\mathcal{G}_{s,D})$ otherwise, where $i =$ first missing tooth.

Theorem (Mészáros–S.–St. Dizier '22) When $D = D(w)$ is a Rothe diagram, $G_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{0})$. イロト イ部 トイヨ トイヨト G. QQ

Orthodontia for ordinary Grothendieck polynomials

Theorem (Mészáros–S.–St. Dizier '22) When $D = D(w)$ is a Rothe diagram, $G_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{0})$.

$$
\overline{\pi}_i := \pi_i((1-x_{i+1})f)
$$

目

 QQ

 \sim

4 **ED** → 何 ▶

Orthodontia algorithm, II

Definition

Let D_k be the leftmost nonempty column of D. Let *i* be the first missing tooth and $j := k - \#\{a \leq i : a \notin D_k\}$. The first missing double-tooth is (i, j) .

Example

イロト イ押 トイヨ トイヨ トー

G.

Double orthodontic polynomials

Goal

For %-avoiding D, define $\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ so that $\mathscr{G}_{D(w)} = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

$$
\overline{\omega}_i^{\{j\}} := \prod_{k=1}^i (x_k + y_j - x_k y_j)
$$

$$
\overline{\pi}_{i,j} := \overline{\partial}_i ((x_i + y_j - x_i y_j) f)
$$

(□) (_□) (

 QQ

Double orthodontic polynomials

Goal

For %-avoiding D, define $\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ so that $\mathscr{G}_{D(w)} = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

$$
\overline{\omega}_i^{\{j\}} := \prod_{k=1}^i (x_k + y_j - x_k y_j)
$$

$$
\overline{\pi}_{i,j} := \overline{\partial}_i ((x_i + y_j - x_i y_j) f)
$$

Definition (S.–St. Dizier)

For %-avoiding D, define $\mathscr{G}_D \in \mathbb{C}[\mathbf{x}, \mathbf{y}]$ recursively:

$$
\bullet \,\mathscr{G}_D=\overline{\omega}_{i}^{\{j\}}\cdot\mathscr{G}_{D\setminus D_j}\,\,\text{if some}\,\,D_j=[i],
$$

 Θ $\mathscr{G}_D = \overline{\pi}_{i,i}(\mathscr{G}_{s,D})$ otherwise, where (i,j) = first missing double-tooth

Theorem (S.–St. Dizier)

When $D = D(w)$ is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_{w}(\mathbf{x}; \mathbf{y})$.

イロメ イ部 メイミメ イミメー

÷.

Orthodontia for double Grothendieck polynomials

Orthodontia for double Grothendieck polynomials, II

Theorem (S.–St. Dizier)

When $D = D(w)$ is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

 $\mathrm{ch}^*({\mathcal M}_D)$ is invariant under reordering columns, but \mathscr{G}_D is not.

 QQ

Orthodontia for double Grothendieck polynomials, II

Theorem (S.–St. Dizier)

When $D = D(w)$ is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

 $\mathrm{ch}^*({\mathcal M}_D)$ is invariant under reordering columns, but \mathscr{G}_D is not.

Example

$$
\mathfrak{S}_{2413}(\mathbf{x}) = x_1x_2\mathfrak{S}_{132}(\mathbf{x})
$$

\n
$$
\mathfrak{G}_{2413}(\mathbf{x}; \mathbf{0}) = x_1x_2\mathfrak{G}_{132}(\mathbf{x}; \mathbf{0})
$$

\n
$$
\mathfrak{G}_{2413}(\mathbf{x}; \mathbf{y}) \neq g(\mathbf{x}, \mathbf{y}) \cdot \mathfrak{G}_{132}(\mathbf{x}; \mathbf{y}) \text{ for any } g
$$

4 D F

- ← 冊 →

 Ω

Orthodontia for double Grothendieck polynomials, III

Theorem (S.–St. Dizier)

When $D = D(w)$ is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Proof idea: "Find almost-Rothe-diagrams in reduction sequence for $D(w)$ "

 200

Orthodontia for double Grothendieck polynomials, III

Theorem (S.–St. Dizier)

When $D = D(w)$ is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

Proof idea: "Find almost-Rothe-diagrams in reduction sequence for $D(w)$ "

(what's the geometric meaning of this?)

イロト イ押 トイヨ トイヨ トー

Lascoux polynomials

Lascoux polynomials are "K-theoretic analogues" of key polynomials:

Definition

For $\alpha \in \mathbb{Z}_{\geq 0}^n$, recursively define *Lascoux polynomials*:

$$
\mathfrak{L}_{\alpha}(\mathbf{x}) = \begin{cases} x_1^{\alpha_1} \dots x_n^{\alpha_n} & \text{if } \alpha_1 \geq \dots \geq \alpha_n \\ \overline{\pi}_i(\mathfrak{L}_{s_i \alpha}(\mathbf{x})) & \text{if } \alpha_i < \alpha_{i+1}, \end{cases}
$$

where $\overline{\pi}_i(f) := \pi_i((1 - x_{i+1})f)$.

÷.

 QQ

Double Lascoux polynomials...?

$$
\alpha \rightsquigarrow D(\alpha) \qquad \text{``skyline diagram''}
$$

Observation (Mészáros–S.–St. Dizier, '22)

When $D = D(\alpha)$ is a skyline diagram, $\mathcal{G}_D = \mathcal{L}_\alpha(\mathbf{x})$.

 Who is $\mathscr{G}_{D(\alpha)}(\mathsf{x};\mathsf{y})$? And what about reordered-column $D(\alpha)$'s?

 $\mathscr{G}_D^{\mathrm{bot}} :=$ lowest degree part of $\mathscr{G}_D.$

 $(\mathscr{G}_{D(w)}^{\mathrm{bot}}(\mathsf{x};-\mathsf{y})$ is the *double Schubert polynomial*.)

 $\mathscr{G}_D^{\mathrm{bot}} :=$ lowest degree part of $\mathscr{G}_D.$

 $(\mathscr{G}_{D(w)}^{\mathrm{bot}}(\mathsf{x};-\mathsf{y})$ is the *double Schubert polynomial*.)

Conjecture (S.–St. Dizier)

If D is %-avoiding, $x_1^n \ldots x_n^n$ and $(x_n^{-1}, \ldots, x_1^{-1}; -1, \ldots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Example

The polynomial $x_1^4x_2^4x_3^4x_4^4\mathscr{G}_{D(2143)}^{\text{bot}}(x_4^{-1},x_3^{-1},x_2^{-2},x_1^{-1};-1,-1,-1,-1)$ is

 $x_1^4x_2^3x_3^4x_4^3+x_1^4x_2^4x_3^2x_4^2+x_1^4x_2^4x_3^3x_4^3-x_1^4x_2^3x_3^4x_4^4-x_1^4x_2^4x_3^3x_4^4-4x_1^4x_2^4x_3^3x_4^4+3x_1^4x_2^4x_3^4x_4^4x_4^4$

which is

$$
(\mathfrak{L}_{(4,3,4,3)}+\mathfrak{L}_{(4,4,4,2)})-(\mathfrak{L}_{(4,3,4,4)}+2\mathfrak{L}_{(4,4,4,3)})+\mathfrak{L}_{(4,4,4,4)}
$$

KOD KARD KED KED A BA YOUR

Conjecture (S.–St. Dizier)

If D is %-avoiding, $x_1^n \ldots x_n^n$ and $(x_n^{-1}, \ldots, x_1^{-1}; -1, \ldots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Conjecture (S.–St. Dizier)

If D is %-avoiding, $x_1^n \ldots x_n^n$ and $(x_n^{-1}, \ldots, x_1^{-1}; -1, \ldots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Orthodontia: $x_1^n \ldots x_n^n$ $\!\mathscr{G}_D^{\rm bot}(x_n^{-1}, \ldots, x_1^{-1}; -1, \ldots, -1)$ is obtained from the polynomial 1 by applying

\n- $$
\bullet
$$
 $f \mapsto \overline{\pi}_i(f)$
\n- \bullet $f \mapsto x_1 \dots x_i(1-x_{i+1}) \dots (1-x_n)f$
\n

 QQQ

イロト イ何 トイヨト イヨト ニヨー

Conjecture (S.–St. Dizier)

If D is %-avoiding, $x_1^n \ldots x_n^n$ and $(x_n^{-1}, \ldots, x_1^{-1}; -1, \ldots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Orthodontia: $x_1^n \ldots x_n^n$ $\!\mathscr{G}_D^{\rm bot}(x_n^{-1}, \ldots, x_1^{-1}; -1, \ldots, -1)$ is obtained from the polynomial 1 by applying

\n- $$
\bullet
$$
 $f \mapsto \overline{\pi}_i(f)$
\n- \bullet $f \mapsto x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)f$
\n

Since $\overline{\pi}_i(\mathfrak{L}_\alpha) = \mathfrak{L}_{\alpha'}$, $\overline{\pi}_i$ preserves graded Lascoux positivity.

KOD KOD KED KED DAR

Conjecture (S.–St. Dizier)

If D is %-avoiding, $x_1^n \ldots x_n^n$ and $(x_n^{-1}, \ldots, x_1^{-1}; -1, \ldots, -1)$ is a graded nonnegative sum of Lascoux polynomials.

Proof??

Orthodontia: $x_1^n \ldots x_n^n$ $\!\mathscr{G}_D^{\rm bot}(x_n^{-1}, \ldots, x_1^{-1}; -1, \ldots, -1)$ is obtained from the polynomial 1 by applying

\n- $$
\bullet
$$
 $f \mapsto \overline{\pi}_i(f)$
\n- \bullet $f \mapsto x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)f$
\n

Since $\overline{\pi}_i(\mathfrak{L}_\alpha) = \mathfrak{L}_{\alpha'}$, $\overline{\pi}_i$ preserves graded Lascoux positivity.

Conjecture: The product $\mathfrak{L}_{\alpha} \cdot x_1 \ldots x_i(1 - x_{i+1}) \ldots (1 - x_n)$ is graded Lascoux positive. (cf. key positivity of $\kappa_{\alpha} \cdot x_1 \dots x_i$.)

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

Corollary (S.–St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n\ldots x_n^n$ $\mathscr{G}_D^{\rm bot}(x_n^{-1},\ldots,x_1^{-1};-1,\ldots,-1)$ is a graded nonnegative sum of Lascoux polynomials.

 $(D(w))$ ordered by inclusion $\iff w$ vexillary.)

Corollary (S.–St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n\ldots x_n^n$ $\mathscr{G}_D^{\rm bot}(x_n^{-1},\ldots,x_1^{-1};-1,\ldots,-1)$ is a graded nonnegative sum of Lascoux polynomials.

 $(D(w))$ ordered by inclusion $\iff w$ vexillary.)

Sketch.

In this case, $x_1^n \ldots x_n^n$ $g_D^{\rm bot}(x_n^{-1}, \ldots, x_1^{-1}; -1, \ldots, -1)$ can be obtained from $f \mapsto x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)f$, followed by $f \mapsto \overline{\pi}_i(f)$.

 QQ

イロト イ押 トイヨ トイヨ トーヨー

Corollary (S.–St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n\ldots x_n^n$ $\mathscr{G}_D^{\rm bot}(x_n^{-1},\ldots,x_1^{-1};-1,\ldots,-1)$ is a graded nonnegative sum of Lascoux polynomials.

 $(D(w)$ ordered by inclusion \iff w vexillary.)

Sketch.

In this case, $x_1^n \ldots x_n^n$ $g_D^{\rm bot}(x_n^{-1}, \ldots, x_1^{-1}; -1, \ldots, -1)$ can be obtained from $f \mapsto x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)f$, followed by $f \mapsto \overline{\pi}_i(f)$.

 \rightarrow Suffices to show products of $x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)$ are graded Lascoux positive.

Corollary (S.–St. Dizier)

When the columns of D can be ordered by inclusion, the polynomial $x_1^n\ldots x_n^n$ $\mathscr{G}_D^{\rm bot}(x_n^{-1},\ldots,x_1^{-1};-1,\ldots,-1)$ is a graded nonnegative sum of Lascoux polynomials.

 $(D(w)$ ordered by inclusion \iff w vexillary.)

Sketch.

In this case, $x_1^n \ldots x_n^n$ $g_D^{\rm bot}(x_n^{-1}, \ldots, x_1^{-1}; -1, \ldots, -1)$ can be obtained from $f \mapsto x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)f$, followed by $f \mapsto \overline{\pi}_i(f)$.

 \rightsquigarrow Suffices to show products of $x_1 \dots x_i(1 - x_{i+1}) \dots (1 - x_n)$ are graded Lascoux positive.

Follows from Orelowitz–Yu '23: $G_w \cdot \mathcal{L}_\alpha$ is graded Lascoux positive. $(G_w := \text{stable Grothendieck})$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

Thank you!

Goal

Find analogue of M_D for Grothendieck polynomials.

Theorem (S.–St. Dizier)

When $D = D(w)$ is a Rothe diagram, $\mathscr{G}_D = \mathfrak{G}_w(\mathbf{x}; \mathbf{y})$.

э