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Overview

• Motivation:
• Stanley-Stembridge conjecture in symmetric function theory.
• Shareshian-Wachs generalization for quasisymmetric functions.

• Tools:
• Chromatic (quasi-)symmetric functions.
• Cohomology rings of Hessenberg varieties.
• Tableaux and Sn representation theory.

• Results:
• New approaches and proof methods for a specific case.
• Bijections between certain tableaux and basis elements of the

cohomology ring.
• Drawing new connections between the combinatorics and

geometry of the problem.
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Symmetric Function Bases

• The algebra of symmetric functions over Q is denoted ΛQ(x).

• Elementary basis:
• ek (x) =

∑
i1<i2<...<ik

xi1xi2 · · · xik .

• For a partition λ = (λ1, . . . , λℓ) of n, we have eλ = eλ1eλ2 · · · eλℓ
.

• Schur basis:
• sλ(x) =

∑
T∈SSYT (λ)

xT =
∑

T∈SSYT (λ)

xa1
1 xa2

2 · · · xak
k

where SSYT (λ) is the set of semistandard Young tableaux of
shape λ, and ai is the number of times i was used in T .

4 5
2 3 4
1 2 2 2 3

⇔ x1 x4
2 x2

3 x2
4 x5
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Chromatic Symmetric Functions [Sta95, SW16]

• Let G = (V ,E) be a finite simple graph with V = [n] = {1, . . . ,n}.
A proper coloring of G is a function κ : V → N such that if
vw ∈ E , then κ(v) ̸= κ(w).

• An ascent in a coloring of G is a pair of vertices v < w with
κ(v) < κ(w).

• The chromatic quasisymmetric function of G is:

XG(x;q) =
∑

κ:V→N

qasc(κ)xκ(1)xκ(2) · · · xκ(n)
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Chromatic Symmetric Functions

• Let P be a poset on [n], and inc(P) be its incomparability graph.

Conjecture ([SS93, SW16])
If P is a (3 + 1)-free poset, then Xinc(P)(x;q) is e-positive.
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A Formula Using P-Tableaux

Proposition ([Gas96, SW16])

Xinc(P)(x;q) =
∑
λ⊢n

 ∑
T∈PT(λ)

qinvP(T )

 sλ

• A P-tableau of shape λ satisfies:
• Each element of P is used at most once.
• Rows are P-increasing.
• Adjacent entries in columns are P-nondecreasing.

2
1 4
3 5

• A P-inversion is a pair of entries (i , j) with i < j which are
incomparable in P, and i is in a higher row than j in T .
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Representations of Sn

• Irreducible representations of the symmetric group Sn are indexed
by partitions λ of n.

• Irreducible Sn-modules are isomorphic to the Specht modules:

Vλ = ⟨FT |T ∈ SYT (λ)⟩ ⊆ Q[x1, . . . , xn]

5
2 6
1 3 4

⇔ FT = (x5 − x2)(x5 − x1)(x2 − x1)(x6 − x3)
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Frobenius Map [Sag10]

• Given an Sn-module V , with character χ : Sn → Z, define the
Frobenius character map by

Frob(V ) =
1
n!

∑
π∈Sn

χ(π)pc(π)

where c(π) is the cycle type of π.

• Fact: If V decomposes as V =
m⊕

i=1

Vλ(i) , then

Frob(V ) =
m∑

i=1

sλ(i)
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Hessenberg Varieties [MPS92]

• [n] = {1,2, . . . ,n}.
• A Hessenberg function h : [n] → [n] is a function such that:

• i ≤ h(i) ≤ h(i + 1) for all i

• Example: h = (3,4,4,5,5)

• Given a Hessenberg function h on [n] and a matrix X : Cn → Cn,
the Hessenberg variety is the subvariety of Fl(Cn) defined by

Hess(X ,h) =
{

F• := F1 ⊂ F2 ⊂ · · · ⊂ Fn | X (Fi) ⊂ Fh(i)
}
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Hessenberg Varieties [MPS92, Tym06, Tym08]

Hess(X ,h) =
{

F• := F1 ⊂ F2 ⊂ · · · ⊂ Fn | X (Fi) ⊂ Fh(i)
}

Facts about Hessenberg Varieties (over C):

• If h = (n,n, . . . ,n) or X = Id, then Hess(X ,h) is the full flag variety.
• If X = S is regular semisimple, then Hess(S,h) is smooth, and is

simply connected if and only if h(i) > i for all 1 ≤ i < n.
• If X and X are similar matrices, then Hess(X ,h) ∼= Hess(X ,h).
• The cohomology ring H∗(Hess(X ,h)) vanishes in the odd degree:

Poin(Hess(X ,h),q) =
d∑

i=0

dim(H2i(Hess(X ,h);Q))qi

• H∗(Hess(S,h)) is an Sn-module, under the dot action defined by
Tymoczko.
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Hessenberg Varieties

• If h is a Hessenberg function, define the poset Ph by
i <Ph j if and only if h(i) < j .

• h = (3,4,4,5,5). • The poset Ph.

• Define Gh = inc(Ph).
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Hessenberg Connections

Proposition ([BC18, GP16])
Let h be a Hessenberg function, Gh = inc(Ph), and S be a regular
semisimple matrix. Then

ωXGh(x;q) =
|E |∑
i=1

Frob(H2i(Hess(S,h)))qi

• Together with the Ph-tableaux expansion, we get:

ωXGh(x;q) =
∑
λ⊢n

 ∑
T∈PT (λ)

qinvh(T )

 sλ′
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Hessenberg Connections
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Cohomology of Regular Semisimple Hessenberg Varieties

Proposition ([AHM17])
If h = (h(1),n, . . . ,n), and S is regular semisimple, then the following
types of monomials generate
H∗(Hess(S,h)) ∼= C[x1, . . . , xn, y1, . . . , yn]/I:

x i1
1 x i2

2 · · · x in
n with no factor

h(1)∏
ℓ=1

xℓ

xℓ1
n xℓ2

n−1 · · · x
ℓn−1
2 yk with no factor

n∏
ℓ=h(1)+1

xℓ

where 0 ≤ ij ≤ n − j and 0 ≤ ℓj ≤ n − j − 1 and 1 ≤ k ≤ n − 1.

• Sn acts by fixing the xi and permuting the yi .

Kyle Salois Feb 21, 2024 14 / 26



Higher Specht Basis

• A higher Specht basis of a polynomial ring is a basis acted on by
Sn in the same way as the Specht modules Vλ.

• Higher Specht bases have been found for coinvariant rings Rn
[ATY97] and generalized coinvariant rings Rn,k [GR21].

• We want to find a higher Specht basis for H∗(Hess(S,h)) so that
the basis respects the decomposition into irreducible Sn-modules.

Kyle Salois Feb 21, 2024 15 / 26



Higher Specht Basis

Proposition (S.)
If h = (h(1),n, . . . ,n), and S is regular semisimple, then the following
types of monomials generate
H∗(Hess(S,h)) ∼= C[x1, . . . , xn, y1, . . . , yn]/I:

x i1
1 x i2

2 · · · x in
n with no factor

h(1)∏
ℓ=1

xℓ

xℓ1
n xℓ2

n−1 · · · x
ℓn−1
2 (yk − y1) with no factor

n∏
ℓ=h(1)+1

xℓ

where 0 ≤ ij ≤ n − j and 0 ≤ ℓj ≤ n − j − 1 and 2 ≤ k ≤ n.

• Sn acts by fixing the xi and permuting the yi .
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Cohomology of Regular Semisimple Hessenberg Varieties

Corollary (S.)
We have a new proof of the following fact:
When h = (h(1),n, . . . ,n), the action of Sn on H∗(Hess(S,h))
decomposes into h(1)(n − 1)! copies of the trivial representation V(n)
and (n − h(1))(n − 2)! copies of the standard representation V(n−1,1).

1 2 3 4 5

• V(n), the trivial
representation.

3
1 2 4 5

• V(n−1,1), the standard
representation.
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Regular Nilpotent Hessenberg Varieties

Theorem ([HHM+21])
If h is any Hessenberg function, and N is regular nilpotent, then the
following type of monomials generate H∗(Hess(N,h)):

x i1
1 x i2

2 · · · x in
n 0 ≤ ij ≤ h(j)− j .

• For h = (3,4,4,5,5), the highest degree element is x2
1 x2

2 x1
3 x1

4 .
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Regular Nilpotent Hessenberg Varieties

Theorem ([HHM+21])
If h is any Hessenberg function, and N is regular nilpotent, then the
following type of monomials generate H∗(Hess(N,h)):

x i1
1 x i2

2 · · · x in
n 0 ≤ ij ≤ h(j)− j .

Theorem ([AHHM16])
There exists an isomorphism of graded Q-algebras

A : H∗(Hess(N,h)) → H∗(Hess(S,h))Sn

Kyle Salois Feb 21, 2024 18 / 26



Regular Nilpotent Hessenberg Varieties

• Let Nh be the set of monomials:

x i1
1 x i2

2 · · · x in
n 0 ≤ ij ≤ h(j)− j .

• Let PT (h, λ) be the set of Ph-tableaux of shape λ.

Theorem (S.)
There exists a weight preserving bijection between the set Nh of
monomials and the set PT (h, λ) for λ = (1n).

Example: Let h = (3,4,4,5,5). Consider x1 x3 x4 ∈ Nh.

5
4
5

3
4
5

3
4
5
2

3
4
5
1
2

• Begin with 5. Insert 4 with one Ph-inversion.
Insert 3 with one Ph-inversion. Insert 2 with no Ph-inversions.
Insert 1 with one Ph-inversions.

Kyle Salois Feb 21, 2024 19 / 26
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Bijections for Fixed Monomials

• Let B1 be the set of monomials:

x i1
1 x i2

2 · · · x in
n with no factor

h(1)∏
ℓ=1

xℓ such that 0 ≤ ij ≤ n − j

• Note that Sn acts trivially on B1.
• Let PN be the poset for h = (n, . . . ,n) - all elements incomparable.
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Bijections for Fixed Monomials

Theorem (S.)
There exists a bijection between B1 and the set PT (h, λ) for λ = (1n).

Example: Let h = (3,5,5,5,5). Consider x2
1 x3 x4 ∈ B1.

5
4
5

4
3
5

4
3
5
2

4
3
1
5
2

4
3
1
2
5

• Begin with 5. Insert 4 with one PN -inversion.
Insert 3 with one PN -inversion. Insert 2 with no inversions.
Insert 1 with two PN -inversions. Then shift entry 2 to below the 1.
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Bijections for Permuted Monomials

• Let B3 be the set of monomials:

xℓ1
n xℓ2

n−1 · · · x
ℓn−1
2 (yk − y1) with no

n∏
i=h(1)+1

xi and 0 ≤ ℓj ≤ n − j − 1

• Let PSPT (h, λ) be the set of pairs (S,T ) where S is a standard
tableau and T is a Ph-tableau, both of shape λ.

Kyle Salois Feb 21, 2024 21 / 26
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tableau and T is a Ph-tableau, both of shape λ.

Theorem (S.)
There exists a bijection between B3 and the set PSPT (h, µ) for
µ = (2,1n−2).
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Bijections for Permuted Monomials

Theorem (S.)
There exists a bijection between B3 and the set PSPT (h, µ) for
µ = (2,1n−2).

Example: Let h = (3,5,5,5,5). Consider M = x2
5 x3 (y2 − y1) ∈ B3.

S = 5
4
3
1 2

T =

1 4
2
1 4

3
2
1 4

3
5
2
1 4

• M has (y2 − y1), so construct S with 1, 2 in the bottom row.
• Largest x-index not present in M is 4.
• Insert 2, then 3, then 5 with inversions determined by powers in M.
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Poincaré Polynomials for Hessenberg Varieties

• Recall that we have the following expression:

|E|∑
j=0

Frob(H2j(Hess(S,h)))q j = ωXG(x;q) =
∑
λ⊢n

 ∑
T∈PT (h,λ)

qinvh(T )

 sλ′

• So, the Poincaré polynomials of Hess(S,h) is:

Poin(Hess(S,h),q) =
∑
λ⊢n

 ∑
T∈PT(h,λ)

qinvh(T )

#SYT(λ′)
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Poincaré Polynomials for Hessenberg Varieties

Poin(Hess(S,h),q) =
∑
λ⊢n

 ∑
T∈PT(h,λ)

qinvh(T )

#SYT(λ′)

Proposition ([AHM17])
If h = (h(1),n, . . . ,n), then the Poincaré polynomial of Hess(S,h) is
given by:

1 − qh(1)

1 − q

n−1∏
j=1

1 − qj

1 − q
+ (n − 1)qh(1)−1 1 − qn−h(1)

1 − q

n−2∏
j=1

1 − qj

1 − q
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Poincaré Polynomials for Hessenberg Varieties

Poin(Hess(S,h),q) =
∑
λ⊢n

 ∑
T∈PT(h,λ)

qinvh(T )

#SYT(λ′)

Proposition ([AHM17])
If h = (h(1),n, . . . ,n), then the Poincaré polynomial of Hess(S,h) is
given by:

1 − qh(1)

1 − q

n−1∏
j=1

1 − qj

1 − q
+ (n − 1)qh(1)−1 1 − qn−h(1)

1 − q

n−2∏
j=1

1 − qj

1 − q

• Alternative proof using Ph-tableaux:
• Each term in q is the generating function for number of

Ph-inversions in Ph-tableaux of shape λ = (1n) and µ = (2,1n−2).
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Future Directions

• Poincaré Polynomials:
• We can find more Poincaré polynomials for Hessenberg varieties by

counting the number of inversions in Ph-tableaux for different
functions h and partitions λ.

• Cohomology Rings:
• We can extrapolate these bijections to come up with conjectured

bases for the cohomology ring in other cases, together with GKM
theory.

Kyle Salois Feb 21, 2024 24 / 26



References I

Hiraku Abe, Megumi Harada, Tatsuya Horiguchi, and Mikiya Masuda, The cohomology rings of regular nilpotent
hessenberg varieties in lie type a, 2016.

Hiraku Abe, Tatsuya Horiguchi, and Mikiya Masuda, The cohomology rings of regular semisimple hessenberg varieties for
h = (h(1), n, . . . , n).

Susumu Ariki, Tomohide Terasoma, and Hiro-Fumi Yamada, Higher specht polynomials, Hiroshima Mathematical Journal
27 (1997).

Patrick Brosnan and Timothy Y. Chow, Unit interval orders and the dot action on the cohomology of regular semisimple
hessenberg varieties, Advances in Mathematics 329 (2018), 955–1001.

Vesselin Gasharov, Incomparability graphs of (3 + 1)-free posets are s-positive, Discrete Mathematics 157 (1996), no. 1,
193–197.

Mathieu Guay-Paquet, A second proof of the shareshian–wachs conjecture, by way of a new hopf algebra, 2016.

Maria Gillespie and Brendon Rhoades, Higher specht bases for generalizations of the coinvariant ring, Annals of
Combinatorics 25 (2021), 1–27.

Megumi Harada, Tatsuya Horiguchi, Satoshi Murai, Martha Precup, and Julianna Tymoczko, A filtration on the cohomology
rings of regular nilpotent Hessenberg varieties, Mathematische Zeitschrift 298 (2021), no. 3, 1345–1382.

F. De Mari, C. Procesi, and M. A. Shayman, Hessenberg varieties, Transactions of the American Mathematical Society
332 (1992), no. 2, 529–534.

Bruce E. Sagan, The symmetric group, Springer, NY, 2010.

Kyle Salois Feb 21, 2024 25 / 26



References II

Richard P Stanley and John R Stembridge, On immanants of jacobi-trudi matrices and permutations with restricted
position, Journal of Combinatorial Theory, Series A 62 (1993), no. 2, 261–279.

Richard Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Mathematics
111 (1995), no. 1, 166–194.

John Shareshian and Michelle L. Wachs, Chromatic quasisymmetric functions, Advances in Mathematics 295 (2016),
497–551.

Julianna S. Tymoczko, Linear conditions imposed on flag varieties, American Journal of Mathematics 128 (2006), no. 6,
1587–1604.

Julianna S. Tymoczko, Permutation actions on equivariant cohomology of flag varieties, Toric topology, Contemp. Math.,
vol. 460, Amer. Math. Soc., Providence, RI, 2008, pp. 365–384.

Kyle Salois Feb 21, 2024 26 / 26


	Definitions & Background
	Chromatic Symmetric Functions
	Representations and Specht Bases
	Hessenberg Varieties

	Higher Specht Basis for Cohomology Ring
	Bijections with Tableaux and Monomials
	Regular Nilpotent Hessenberg Varieties
	Regular Semisimple Hessenberg Varieties

	The Poincaré Polynomial
	Future Directions

