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hyperplanes partition R
n into faces

chambers cut out by the hyperplanes

rays emanating from the origin

the origin



xy =

{

the face first encountered after a small
movement along a line from x toward y

xy
x

y

x2 = x xyx = xy



Left Regular Bands (LRBs)

A semigroup B is a left regular band (LRB) if, for all x, y ∈ B,

xx = x and xyx = xy.

◮ Every element of a LRB is idempotent: x2 = x.

◮ Informally: identities say ignore “repetitions”.

◮ Original motivation: unified framework for certain random

walks (riffle shuffle, random-to-top shuffle, . . . .)



Free LRB: repetition-free words;
concatenate and remove repeats

1 · 42716 = 1427✓✓❙❙16 = 14276

Step in the random walk: starting at an element c,
pick an element y at random, and move to y · c.

123456

251346

162534

316254

· · ·

25 162

3



Random Walks on LRBs

Introduced by Bidigare–Hanlon–Rockmore (1999):
◮ on monoid of faces of a hyperplane arrangement
◮ unified several known walks; eigenvalue formulas!

Further developed by Brown–Diaconis (1998):
◮ stationary distribution and diagonalizability

Brown (2000): extension to LRBs; and then bands

Steinberg (2006): extension to largest class of semigroups for

which these results hold (pseudovariety DA)

LRBs are everywhere: Aguiar, Athanasiadis, Ayyer, Bastidas,

Bidigare-Hanlon-Rockmore, Billera, Björner, Brauner, Brown,

Chung, Commins, Denton, Diaconis, Fulman, Graham, Hivert,

Hsiao, Lagr Lawvere, Mahajan, Margolis, Novelli, Petersen, Pike,

Reiner, Schilling, Schützenberger, Steinberg, Thibon, Thiery, . . .



From random walks to algebra

Algebraic approach: encode the random walk as an operator
acting on the semigroup algebra CB

random walk with
probabilities ρx

←→ left mult. by
∑

x∈B

ρx x



Left Regular Bands of Groups (LRBGs)

S is a LRB of groups if there is an N ∈ N s.t., for all x, y ∈ S ,

xxN = x and xyxN = xy

◮ xN is an idempotent: xNxN = xN

◮ E(S) = {e ∈ S : e2 = e} is a LRB

◮ if e2 = e, then Ge = {x ∈ S : xN = e} is a group and

S =
⊔

e∈E(S)

Ge

◮ if SeS = SfS , then Ge
∼= Gf

◮ S is strict if GeGf ⊆ Gef
(presheaf of groups)

(equivalently, (xy)N = xNyN )



Block-labelled ordered set partitions

composition of [n] : ordered set partition of [n]

[

{2,5}, {1,3,4,6}
] [

{1,3,4,6}, {2,5}
] [

{3,6}, {1,4,5}, {2}
]

G-composition of [n] : label blocks by elements of G

[(

{2,5}, -1
)

,
(

{1,3,4,6}, 1
)] [(

{3,6}, -1
)

,
(

{1,4,5}, 1
)

,
(

{2}, -1
)]

Σn[G] : set of G-compositions of [n]



[{1}, {2}, {3}]

[{2}, {1}, {3}]

[{2}, {3}, {1}]

[{3}, {2}, {1}]

[{3}, {1}, {2}]

[{1}, {3}, {2}]
[{
1}
, {
2,
3}
]

[{1, 2}, {3}]

[{2}, {1, 3}][{
2,
3}
, {
1}
]

[{3}, {1, 2}]

[{1, 3}, {2}]

[{1, 2, 3}]



[{1}, {2}, {3}]

[{2}, {1}, {3}]

[{2}, {3}, {1}]

[{3}, {2}, {1}]

[{3}, {1}, {2}]

[{1}, {3}, {2}]

G×G×G

G×G×G

G×G×G

G×G×G

G×G×G

G×G×G
[{
1}
, {
2,
3}
]

[{1, 2}, {3}]

[{2}, {1, 3}][{
2,
3}
, {
1}
]

[{3}, {1, 2}]

[{1, 3}, {2}]
G
×
G

G×G

G
×
G

G
×
G

G×G

G
×
G

[{1, 2, 3}]

G



Product of G-compositions

[

(B1,g1), (B2,g2), (B3,g3), (B4,g4)
][

(C1,h1), (C2,h2), (C3,h3)
]

=
[

(B1∩C1, h1g1), (B1∩C2, h2g1), (B1∩C3, h3g1)

(B2∩C1, h1g2), (B2∩C2, h2g2), (B2∩C3, h3g2)

(B3∩C1, h1g3), (B3∩C2, h2g3), (B3∩C3, h3g3)

(B4∩C1, h1g4), (B4∩C2, h2g4), (B4∩C3, h3g4)
]†

† – remove empty intersections



[

(

{2,5}, -1
)

,
(

{1,3,4,6}, 1
)

]

·
[

(

{3,6}, -1
)

,
(

{1,4,5}, 1
)

,
(

{2}, -1
)

]

=
[

(

{5}, -1
)

,
(

{2}, 1
)

,
(

{3,6}, -1
)

,
(

{1,4}, 1
)

]

[

(B1, g1), (B2, g2), . . . , (Bl, gl)
]2

=
[

. . . , (Bi ∩Bj , gjgi), . . .
]†

=
[

(B1, g
2
1), (B2, g

2
2), . . . , (Bl, g

2
l )
]

Theorem (S. Hsiao 2009)

Σn[G] is a strict LRBG:

xx|G| = x xyx|G| = xy (xy)|G| = x|G|y|G|



Sn-action on Σn[G]

For σ ∈ Sn and
[

(B1, g1), . . . , (Bl, gl)
]

∈ Σn[G],

σ ·
[

(B1, g1), . . . , (Bl, gl)
]

=
[

(σ(B1), g1), . . . , (σ(Bl), gl)
]

(1 3)(2 4 6 5) ·
[(

{2,5}, -1
)

,
(

{1,3,4,6}, 1
)]

=
[(

{4,2}, -1
)

,
(

{3,1,6,5}, 1
)]

=
[(

{2,4}, -1
)

,
(

{1,3,5,6}, 1
)]

In ZΣ3[G], the following element is invariant for the S3-action:

[

({1}, g), ({2, 3},h)
]

+
[

({2}, g), ({1, 3},h)
]

+
[

({3}, g), ({1, 2},h)
]



Theorem (J Tits 1976, TP Bidigare 1997, S Hsiao 2009)

Let G be a finite group and Σn[G] the LRBG of G-compositions of [n].

(

ZΣn[G]
)Sn

=
{

a ∈ ZΣn[G] : σ · a = a for all σ ∈ Sn

}

is anti-isomorphic to a subalgebra of ZSn[G], where Sn[G] is the wreath product.

◮ If G is trivial, [Tits 1976, Bidigare 1997]

(

ZΣn
)Sn

is Solomon’s descent algebra of Sn.

◮ For the cyclic group Cp, [Hsiao 2009]

(

ZΣn[Cp]
)Sn

is the Mantaci–Reutenauer algebra of Sn[Cp].

The descent algebra was introduced by Solomon (1976), and has connections with the representation theory of Sn ,
combinatorial Hopf algebras, probability; studied by Baumann, the Bergerons, Bishop, Blessenohl, Bonnafé, Douglass,
Foissy, Garsia, Hohlweg, Howlett, Malvenuto, Novelli, Patras, Pfeiffer, Reutenauer, Schocker, Taylor, Thibon, ...

The Mantaci–Reutenauer (descent) algebras are generalizations of the descent algebra introduced by
Mantaci–Reutenauer (1995) and studied by: Monica Vazirani; Aguiar–Bergeron–Nyman (2004);
Baumann–Hohlweg (2008); Hsiao (2009); Novelli–Thibon (2010); Margolis–Steinberg (2011).



Idempotents in algebras

Let e be an idempotent in an algebra A, and set f = 1A − e. Then:

f2 = f

(f is also idempotent)

ef = 0 = fe

(e, f are orthogonal)

e+ f = 1A
(e, f decompose 1A)

{e1, . . . , el} is a decomposition of 1A into orthogonal idempotents if

e2i = ei, eiej = 0 for i 6= j, e1 + · · ·+ el = 1A.

decompositions of 1A into

orthogonal idempotents

{e1, e2, . . . , el}
←→

direct sum decompositions

of A into left A-modules

A = Ae1 ⊕Ae2 ⊕ · · · ⊕Ael

A complete system of primitive orthogonal idempotents (CSPOI) is a

decomp. of 1A into orthogonal idempotents {e1, . . . , el} with l maximal.



Idempotents in group algebras CG

◮ isotypic projector: if ψ is an irreducible character of G, then

Eψ =
ψ(1G)

|G|

∑

g∈G

ψ(g−1) g

◮ {Eψ}ψ∈Irr(G) is a decomposition of 1G into orthogonal idempotents

EψEφ =

{

Eψ, if ψ = φ

0, if ψ 6= φ
and

∑

ψ

Eψ = 1G

◮ {Eψ}ψ∈Irr(G) is a CSPOI iff G is abelian.



Idempotents in LRB algebras CB

J-equivalence on B: x ∼J y iff BxB = ByB

For Σn: [B1,...,Bl] ∼J [C1,...,Cm] iff {B1,...,Bl} = {C1,...,Cm}

In a CSPOI for CB, there is one idempotent e◦X for each J-class X :

uX =
1

|X|

∑

x∈X

x and e◦X = uX −
∑

Y >JX

uXe
◦
Y



CSPOI for LRBG algebras CS

S =
⊔

f∈E(S)

Gf and Gf ∼= Gf ′ if f ∼J f ′

Therefore, for each J-class X in E(S), we have

◮ e◦X , a primitive idempotent from the CSPOI for CE(S)

◮ GX , a subgroup of the form Gf with f ∈ X (unique up to isomorphism)



Theorem (J Bastidas, S Brauner, FS, 2023)

Let S be a strict LRBG, and E(S) its LRB of idempotents. Let

◮ {e◦X}X be a CSPOI for CE(S) (one for each J-class X in E(S))

◮ {E
(i)
X }i∈IX be a CSPOI for CGX (one family for each J-class X)

Then the elements e(X,i) := e◦XE
(i)
X e◦X form a CSPOI for CS .

Furthermore:

◮ when a group W acts on S , we can construct a CSPOI for (CS)W

◮ (CΣn[ +
−1])Sn : we recover the CSPOI constructed by M Vazirani

under the anti-isomorphism with the Mantaci–Reutenauer algebra

◮ when S is a LRB of abelian groups, we get new bases of CS



Takeaways

◮ LRBs are to the representation theory of Sn as

LRBGs are to the representation theory of Sn[G]

◮ Aguiar–Mahajan (Topics in Hyperplane Arrangements) developed a

vast theory for LRBs associated with hyperplane arrangements;

the idempotent theory of LRB algebras play a central role.

◮ Our results merge the idempotent theories of LRBs and group

algebras, allowing us to initiate a study of LRBGs that parallels

the Aguiar–Mahajan theory.


