Schur generating functions and the asymptotics of some structural constants from combinatorial representation theory.

Mercedes Rosas, Universidad de Sevilla Join work with Emmanuel Briand I— Objects of study: Some structural constants appearing in the representation theory of the general linear group.

A representation of the general lineal group $GL(n,\mathbb{C})$ is a group homomorphism

Polynomial

 $GL(n,\mathbb{C}) \to GL(m,\mathbb{C})$

A linear action of $GL(n, \mathbb{C})$ on the vector space \mathbb{C}^m

$$GL(2,\mathbb{C}) \to GL(3,\mathbb{C})$$

$$x^2 \mapsto (a_{11}x + a_{21}y)^2 = a_{11}^2 x^2 + 2a_{11}a_{21}xy + a_{21}^2 y^2$$

$$\begin{pmatrix} a_{11}^2 & \cdot & \cdot \\ 2a_{11}a_{21} & \cdot & \cdot \\ a_{21}^2 & \cdot & \cdot \end{pmatrix}$$

II — Background on polynomial representations of the general linear group

$$\rho: GL(n, \mathbb{C}) \to GL(m, \mathbb{C})$$

Irreducible representations of $GL(n, \mathbb{C})$

are indexed by conjugacy classes of $GL(m, \mathbb{C})$

Class representatives: Jordan Canonical Forms

Diagonalizable matrices are dense.

The trace of $\rho(A)$ is a symmetric polynomial in the eigenvalues of A

In the example the trace is $\alpha_1^2 + \alpha_1 \alpha_2 + \alpha_2^2$

i — Irreducible representations of the general linear group

Irreducible representations W^{λ} of $GL(n, \mathbb{C})$

 $GL(n,\mathbb{C}) \to GL(W^{\lambda})$

are indexed by partitions of length $\leq n$.

The traces of the irreducible representations are Schur polynomials.

In the example, the Schur polynomial $s_{(2)} = \alpha_1^2 + \alpha_1 \alpha_2 + \alpha_2^2$

ii— Structural constants for the general lineal group. The tensor product

The Littlewood-Richardson coefficients are the structure constants for the decomposition into irreducible of the tensor product of two irreducible representations of the general linear group

The Littlewood-Richardson coefficients $W^{\mu} \otimes W^{\nu} = \bigoplus_{\lambda} c_{\mu,\nu}^{\lambda} W^{\lambda}$ with $|\mu| + |\nu| = |\lambda|$ three partitions of length $\leq \dim V$.

iii — Structural constants for the general lineal group. The Kronecker product

The **Kronecker coefficients** are the structure constants for the **restriction** of irreducible representations of the general linear group

GL(nm)

into irreducibles for the subgroup

 $GL(n) \times GL(m)$

via the tensor product of matrices.

III — Motivation Stability results for the Kronecker coefficients

i. Murhagham's stability

ii. A recurrent question

iii. Stembridge Conjecture (proved by Sam-Snowden)

i. Murhagham's stability

Sequences of Kronecker coefficients

[(s[3+i,3,2,1].itensor(s[3+i,3,2,1])).scalar(s[3+i,3,2,1]) for i in range(0,10)]
[11, 117, 312, 429, 449, 449, 449, 449, 449, 449]

Compare with
$$g_{(i),(i)}^{(i)} = 1$$
 a constant

Reduced Kronecker coefficients

The value of the stable Kronecker coefficients

$$c^{\lambda+(i)}_{\mu+(i),
u+(i)}$$

 $\begin{array}{c} & & \\ & & \\ & \\ g^{(3,3,2,1)+(i)}_{(3,3,2,1)+(i),(3,3,2,1)+(i)} \end{array}$

(with i >> 0) only depends on the partitions $\overline{\mu}, \overline{\nu}, \overline{\lambda}$

A result of Littlewood

If $|\overline{\mu}| + |\overline{\nu}| = |\overline{\lambda}|$

then the stable Kronecker coefficients are

the Littlewood-Richardson coefficients $c_{\overline{\mu},\overline{\nu}}^{\overline{\lambda}}$

ii. The recurrent question

iii. Stembridge's conjecture (proved by Sam-Snowden)

The sequence $g(\alpha^0 + k\alpha, \beta^0 + k\beta, \gamma^0 + k\gamma)$ Stabilizes if and only if $g(k\alpha, k\beta, k\gamma) = 1$ For all $k \ge 1$.

the rate of growth of both sequences are equal, up to a constant.

 $g_{(i),(i)}^{(i)} = 1$

There are further results on this topic due to Briand-R-Orellana, Pak-Panova, Manivel, Vallejo, ...

IV— Our question

Fix a triple of partitions
$$\omega^0 = (\alpha^0, \beta^0, \gamma^0)$$

What can we say about the rate of grow of sequences of the form

$$m_F(\omega^0 + k\omega)$$
 ?

where m_F is a structural constant for a general lineal group.

(Think of the Kronecker or the Littlewood-Richardson coefficients, Indexed by partitions of bounded length.)

i — What is the nature of multiplicity functions

$$m_F(\omega^0 + k\omega)$$

$$Q(k) = g_{(3,3,2,1)+(k),(3,3,2,1)+(k)}^{(3,3,2,1)+(k)}$$

$$m_F(\omega)$$

If ω^0 is zero, A result of Meinrenken and Sjamaar implies that the multiplicity function Is a piecewise quasi-polynomial.

Rational polyhedral cone

(Taken from Mishna-R-Sundaram)

iii — An example: The Littlewood-Richardson cone

Cone generated by all nonzero Littlewood-Richardson coefficients.

Rassart : $m_F(\lambda, \mu, \nu)$ is a piecewise polynomial

Knutson and Tao : There are no holes on the Littlewood-Richardson Cone.

Chamber	Generators	Formula for C
κ_1	b,c,d_1,e_2,d_2,e_1	$1 - \lambda_2 - \mu_2 + \nu_1$
κ_2	b,c,d_1,g_1,d_2,g_2	$1 + \nu_2 - \nu_3$
κ_3	b,c,e_2,g_1,e_1,g_2	$1 + \lambda_1 + \mu_1 - \nu_1$
κ_4	b,f,d_1,e_2,d_2,e_1	$1 + \nu_1 - \nu_2$
κ_5	b,f,d_1,g_1,d_2,g_2	$1 + \lambda_2 + \mu_2 - \nu_3$
κ_6	b,f,e_2,g_1,e_1,g_2	$1 - \lambda_3 - \mu_3 + \nu_3$
κ_7	b,c,d_1,g_1,d_2,e_1	$1 + \lambda_3 + \mu_1 - \nu_3$
κ_8	b,c,d_1,e_2,d_2,g_2	$1 + \lambda_1 + \mu_3 - \nu_3$
κ_9	b,c,d_1,e_2,e_1,g_2	$1 + \lambda_1 - \lambda_2$
κ_{10}	b,c,e_2,g_1,d_2,e_1	$1+\mu_1-\mu_2$
κ_{11}	b,c,d_1,g_1,e_1,g_2	$1-\lambda_2-\mu_3+ u_2$
κ_{12}	b,c,e_2,g_1,d_2,g_2	$1 - \lambda_3 - \mu_2 + \nu_2$
κ_{13}	b,f,d_1,g_1,d_2,e_1	$1-\lambda_1-\mu_3+ u_1$
κ_{14}	b,f,d_1,e_2,d_2,g_2	$1-\lambda_3-\mu_1+ u_1$
κ_{15}	b,f,d_1,g_1,e_1,g_2	$1+\mu_2-\mu_3$
κ_{16}	b,f,e_2,g_1,d_2,g_2	$1+\lambda_2-\lambda_3$
κ_{17}	b,f,d_1,e_2,e_1,g_2	$1 + \lambda_1 + \mu_2 - \nu_2$
κ_{18}	b, f, e_2, g_1, d_2, e_1	$1 + \lambda_2 + \mu_1 - \nu_2$

lengths bounded by 2,2,3

iv— The Kronecker cone

There are interesting results on the **Kronecker cone and the Kronecker** function due to

Baldoni-Vergnes-Walter, Briand-R-Orellana, Christandl-Doran-Walter, Mishna-R-Sundaram, Pak-Panova, Trandafir...

It is a more complicated object.

The Kronecker cone contains the Littlewood-Richardson cone on one of its walls.

The Kronecker function is described by a piecewise quasi polynomial.

There are **holes** on the Kronecker cones

As we start increasing k on $m_F(\omega_0 + k\omega)$ we hit a translate of the original cone.

[(s[3+i,3,2,1].itensor(s[3+i,3,2,1])).scalar(s[3+i,3,2,1]) for i in range(0,10)]
[11, 117, 312, 429, 449, 449, 449, 449, 449, 449]

V. Schur polynomials & Schur generating functions.

The generating series for the complete homogeneous

$$\sigma[X] = \prod_{x \in X} \frac{1}{1-x} = \sum_{n \ge 0} h_n[X]$$

R-S-K correspondence

$$\sigma[XY] = \prod_{x_i, y_j} \frac{1}{1 - x_i y_j} = \sum_{\lambda} s_{\lambda}[X] s_{\lambda}[Y]$$

Our main tool.

We will study series of the form

 $\sigma[F(X, Y, Z)] = \sum_{\alpha, \beta, \gamma} m_f(\alpha, \beta, \gamma) s_{\alpha}[X] s_{\beta}[Y] s_{\gamma}[Z]$

Where the lengths of α,β,γ are bounded.

Some Schur generating series

The Littlewood-Richardson coefficients

$$\sigma[XZ + YZ] = \sigma[XZ]\sigma[YZ] = \sum_{\lambda,\mu,\nu} c^{\lambda}_{\mu,\nu} s_{\mu}[X] s_{\nu}[Y] s_{\lambda}[Z]$$

The Kronecker coefficients

$$\sigma[XYZ] = \prod_{x_i, y_j, z_k} \frac{1}{1 - x_i y_j z_k} = \sum_{\lambda} g_{\mu, \nu, \lambda} s_{\mu}[X] s_{\nu}[Y] s_{\lambda}[Z]$$

$$F(X,Y) = Xs_{\mu}[Y]$$
 plethysm

F(X, Y, Z) = XYZ + XZ + XY + YZ reduced Kronecker

$$F(X, Y, Z) = XYZ + XZ + YZ$$
 Heisenberg

VI— GRAND generating seriesi. Extension of our family of coefficients

Define coefficients $m_F^*(\alpha, \beta, \gamma)$ indexed by integer vectors

 $m_F^*(\alpha,\beta,\gamma) = \langle \sigma[F(X,Y,Z)] | s_{\alpha}[X] s_{\beta}[Y] s_{\gamma}[Z] \rangle$

Schur functions are defined using the Jacobi-Trudi determinant.

Compare with the original identity

$$\sigma[F(X,Y,Z)] = \sum_{\alpha,\beta,\gamma} m_f(\alpha,\beta,\gamma) s_\alpha[X] s_\beta[Y] s_\gamma[Z]$$

 α, p, γ

VI— Grand generating seriesii. Definition of the series

Fix
$$\omega^{0} = (\alpha^{0}, \beta^{0}, \gamma^{0}), d_{X}, d_{Y}, d_{Z} \geq 0, v = (v_{i,j})_{i,j}.$$

The grand generating series is always a Laurent series.

All partitions appear in this sum Regardless of ω^0

VI— Grand generating series iii. The factorization lemma

For each fixed $\omega^0 = (\alpha^0, \beta^0, \gamma^0)$ we have a **factorization**:

How to compute the Laurent series? Use vertex operators!

When ω^0 is a triple of empty partitions

$$\Psi_F^0 = V(X)V(Y)V(Z) \ \sigma[F(X, Y, Z)]$$

Vertex operators

$$V(X) = \prod_{j < k} (1 - x_k / x_j)$$

a shifted Vandermonde.

VII – Main Theorem

Fix $\omega^0 = (\alpha^0, \beta^0, \gamma^0)$. and let $\omega = (\alpha, \beta, \gamma)$. There exist integers k_o and $A(\omega^0)$ such that (*)

 $A(\omega^0)$ A particular coefficient in a Schur generating series. $m_F(k\omega)$ A piecewise quasipolynomial on k.

$$m_F(\omega^0 + k\omega) = A(\omega^0) \cdot m_F(k\omega)$$

+ a quasipolynomial in k of degree < than d

Corollary

When the multiplicities are **always one**

$$m_F(\omega^0 + k\omega) = A(\omega^0)$$
 For all $k > k_0$

where

 $A(\omega^{0}) = \langle \sigma[F'], s_{\bar{\alpha}}[X] s_{\bar{\beta}}[X] s_{\bar{\gamma}}[X] \rangle$

F' = F(X + 1, Y + 1, Z + 1) - F(1, 1, 1) - X - Y - Z

VII— The Littlewood-Richardson coefficients. Increasing first rows.

$$\sigma[XZ + YZ] = \sum_{\lambda,\mu,\nu} c^{\lambda}_{\mu,\nu} s_{\mu}[X] s_{\nu}[Y] s_{\lambda}[Z]$$

$$\Psi^{0} = \sigma[xz + yz] = \frac{1}{(1 - xz)(1 - yz)}$$

Let **C** be the 2-dim cone generated by (1,0,1) and (0,1,1) The coefficients inside of **C** are one Outside of **C** are zero

A formula for the stable value?

F[x, y, z] = xy + xz

 $\sigma[F(X+1,Y+1,z+1) - F(1,1,1) - x - y - z]$

$$= \sigma[xy + yz + z] = \frac{1}{(1 - xy)(1 - yz)(1 - z)}$$

f(x+1,y+1,z+1)-f(1,1,1)-x-y-z x*z + y*z + z

VIII — The stable Littlewood-Richardson coefficients.

Stable value the coefficient of $s_{\bar{\alpha}}[X]s_{\bar{\beta}}[Y]s_{\bar{\gamma}}[Z]$ is

$$\bar{c}_{\overline{\alpha},\overline{\beta}}^{\overline{\gamma}} = [s_{\overline{\alpha}}[X]s_{\overline{\beta}}[Y]s_{\overline{\gamma}}[Z]]\sigma[XZ + YZ + Z] = \sum_{\lambda} c_{\overline{\alpha},\overline{\beta}}^{\lambda}$$

$$\sigma[xy + yz + z] = rac{1}{(1 - xy)(1 - yz)(1 - z)}$$

What happens if I iterate this construction?

The stable stable-Littlewood-Richardson coefficients.

$$m_F(\omega^0 + k\omega) = A(\omega^0) \cdot m_F(k\omega)$$
 Its degree

+ a quasipolynomial in k of degree < than d

Stable value the stable LR coefficient of $s_{\bar{\alpha}}[X]s_{\bar{\beta}}[Y]s_{\bar{\gamma}}[Z]$ in

They stabilize.

$$\sigma[XZ + YZ + Z]$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Let **C** be the 3 dim cone generated by (1,0,1), (0,1,1), (0,0,1)

The coefficients inside **C** are one Outside **C** are zero.

The Littlewood-Richardson coefficients Increasing the second row.

$$m_F(\omega^0 + k\omega) = A(\omega^0) \cdot m_F(k\omega)$$
 Its degree

+ a quasipolynomial in k of degree < than d

Increase the first row of the stable Littlewood-Richardson coefficients the resulting Schur generating series is :

$$\sigma[XZ + YZ + 2Z]$$

 $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$

dim of the nullspace 1

$$m_F(\omega^0 + k\omega)$$

Is a linear quasipolynomial

The Littlewood-Richardson coefficients

Keep iterating this construction

In the (k+1)-step the Schur series for the asymptotic coefficients is

$$\sigma[XZ + YZ + kZ]$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 1 & 1 & 1 & 1 & \cdots & 1 \\ & & & k \text{ times} \\ \end{pmatrix}$$

Same chamber complex

dim of the nullspace k-1

The LR grow like a polynomial of degree k when the first k+1 rows are really long.

XIX—The Kronecker coefficients Increasing first rows.

$$\sigma[XYZ] = \sum_{\lambda} g_{\mu,\nu,\lambda} s_{\mu}[X] s_{\nu}[Y] s_{\lambda}[Z]$$

$$\Psi^0 = \sigma[xyz] = \frac{1}{(1-xyz)}$$

$$\mathbf{C} \qquad \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

The cone **C** is generated by (1,1,1). In **C** the coefficients are one, and zero outside.

$$\sigma[XYZ + XY + XZ + YZ]$$

$$\sigma[F(X+1,Y+1,z+1) - F(1,1,1) - x - y - z]$$

In this case we recover stability Murnaghan result, and a symmetric version of Michel Brion's formula for the reduced Kronecker coefficients.

The Kronecker coefficients

First iteration

Increasing the first rows of the reduced Kronecker coefficients. $\sigma[XYZ + XY + XZ + YZ]$

$$\Psi^{0} = \sigma[xyz + xy + xz + yz] = \frac{1}{(1 - xyz)(1 - xz)(1 - xz)(1 - yz)}$$

Briand-Rattan-R

The vector partition associated to vectors (1,1,1), (1,1,0), (1,0,1), (0,1,1).

 $m_F(\omega^0 + k\omega)$

 $= \begin{array}{c} 1 & 1 & 1 & 0 \\ piecewise quasipolynomial \\ of degree 1 \end{array} \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$

The Kronecker coefficients Increasing the 2nd rows of the partitions

The leading term is a linear polynomial

 $A \frac{j+k-i}{2} + a$ periodic function.

Schur generating series for the constant A is given by

$\sigma[XYZ + 2(XY + XZ + YZ + X + Y + Z)]$

(The first two parts of the partitions should be removed)

Kronecker coefficients Increasing the kth row of the partitions

The n-reduced Kronecker coefficients

 $\sigma[XYZ + n(XY + XZ + YZ) + n(n-1)(X + Y + Z)]$

Asymptotically behaves like a quasi-polynomial of degree $3n^2-2$

The some plethysm coefficients Increasing first rows.

Fix μ

Manivel

$$\sigma[Ys_{\mu}[X]] = \sum_{\lambda,\gamma} a_{\lambda,\mu}^{\gamma} s_{\lambda}[X] s_{\gamma}[Y]$$

We increase the sizes of the first rows.

$$\Psi^0 = \sigma[yx^m] = \frac{1}{(1 - yx^m)}$$

We get a formula the stable value.

$$Y \sum_{n=1}^{m} s_n[X] + \sum_{n=2}^{m} s_n[X]$$

 $\sigma[F(X+1,Y+1,z+1) - F(1,1,1) - x - y - z]$

A 1-dim cone C

(m, 1)

С

