Schur generating functions and the asymptotics of some
structural constants from combinatorial representation theory.

Mercedes Rosas, Universidad de Sevilla
Join work with Emmanuel Briand




|— Objects of study: Some structural constants appearing

In the representation theory of the general linear group.

A representation of the general lineal group GL(n,C)
is a group homomorphism

Polynomial GL(n,C) - GL(m,C)

A linear action of GL(n,C) on the vector space C™

GL(2,C) — GL(3,0).
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Il— Background on polynomial representations

of the general linear group

p:GL(n,C)— GL(m,C)

Irreducible representations of GL(n,C)

are indexed by conjugacy classes of GL(m, C)

Class representatives: Jordan Canonical Forms

Diagonalizable matrices are dense.

The trace of p(A) is a symmetric polynomial in the eigenvalues of A

In the example the trace is o2 + aas + o3



|— Irreducible representations of the general linear group

Irreducible representations W* of GL(n, C)

GL(n,C) — GL(W?)

are indexed by partitions of length < n.

N . (5,2,1) a partition of weight 8 of length 3

The traces of the irreducible representations are Schur polynomials.

In the example, the Schur polynomial s:9) = ot + ajos + o



i— Structural constants for the general lineal group.

The tensor product

The Littlewood-Richardson coefficients are the structure
constants for the decomposition into irreducible of the
tensor product of two irreducible representations

of the general linear group

The Littlewood-Richardson coefficients

wrteW =Pe,, W
A
with |u| + |v| = || three partitions of length < dim V.




lii— Structural constants for the general lineal group.

The Kronecker product

The Kronecker coefficients are the structure constants
for the restriction of irreducible representations
of the general linear group

GL(nm)
into irreducibles for the subgroup
GL(n)XGL(m)

via the tensor product of matrices.



lIl— Motivation

Stability results for the Kronecker coefficients

. Murhagham'’s stability

Il. A recurrent question

lii. Stembridge Conjecture (proved by Sam-Snowden)




. Murhagham’s stabllity

Sequences of Kronecker coefficients

(3,3,2,1)+(2) g v e o
9(3,3,2,1)+(1),(3,3,2,1)+(3)

| L |

[(s[3+i,3,2,1].itensor(s[3+i,3,2,1])).scalar(s[3+i,3,2,1]) for i in range(0,10) ]
[11, 117, 312, 429, 449, 449, 449, 449, 449, 449]

Compare with gg;,(i) = a constant



Reduced Kronecker coefficients

The value of the stable Kronecker coefficients

: (3,3,2,1)+(3)
R0 9(3,3,2,1)+(3),(3,3,2,1)+(3)
p+(2) v+(3)

(with ¢ >> 0) only depends on the partitions &, 7, A

A result of Littlewood

If |7l + 7] = |A

then the stable Kronecker coefficients are

the Littlewood-Richardson coefficients c%,y

Il. The recurrent question




lii. Stembridge’s conjecture (proved by Sam-Snowden)

The sequence
g(a® + ka, B2 + kB8,7° + k)

Stabilizes if and only if

g(ka,kB,ky) =1 Foral E>1.

the rate of growth of both sequences .
are equal, up to a constant. (4),(2)

There are further results on this topic due to Briand-R-Orellana, Pak-Panova, Manivel, Vallgjo, ...



IV— Our question

Fix a triple of partitions w0 = (a0, 8°,~0)

What can we say about the rate of grow of sequences

of the form

mF(wO + kw) 2

where M E'  is a structural constant for a general lineal group.

(Think of the Kronecker or the Littlewood-Richardson coefficients,
Indexed by partitions of bounded length.)



I— What is the nature of multiplicity functions

0 o (8,3,2,1)+(k)
mp(w” + kw) Qk) = 9(3,3,2,1)+(k),(3,3,2,1)+ (k)

mr (w) if w0 is zero,
A result of Meinrenken and Sjamaar
implies that the multiplicity function

Is a piecewise quasi-polynomial.




Il—Multiplicity functions look like

vector partition functions

gt 01l b ™ Piecewise quasipolynomial
0O 1 1 2 m
Fan/Chamber complex : o B
Region ps(n,m)
I m<n m_2_|_m_|_§_|_(—é)m
11 2n <'m no 3y
M n<m<2n npm-% - m pobm g 74 CU"

Rational polyhedral cone (Taken from Mishna-R-Sundaram)



il— An example:

The Littlewood-Richardson cone

Cone generated by all nonzero Littlewood-Richardson coefficients.

Rassart : EEICN N2,

IS a piecewise polynomial

Knutson and Tao : There are no
holes on the
Littlewood-Richardson Cone.

Chamber

Generators

Formula for C

K1
K2
K3
Kyq
K5
Ke
K7
Kg
K9
K10
K11
K12
K13
K14
K15
K16
K17
Ki1s

lengths bounded by 2,2,3

b, C, dl, €a, dz, €1
b,c,dy, g1,ds, g2
b,c,e2, g1, €1,92
b, f,di,ez,dy, €1
b, f,d1,g1,dz, g2
b, f,e2,91,€1, 92
b, C, dl, g1, dz, €1
b, C, dl, €a, d2,gz
b,c,dyi,es, €1,
b, C,€e2,01, dz, €1
b,c,dy, g1,€1,92
b, c, €2, g1,dz, g2
b, f,di,91,dz, €1
b, f, dl, €9, d2, g2
badidingiCii go
b, f,e2, g1,dz, 92
b, f, dl, €2,€1, g2
b7 f7 €2, 91, d27 €1

1—)\2—,U2+V1
14+vy, —vs
1+ +m—un
14+v, —1vy
L+ Ao+ pe —v3
1—-A3—p3+us
1+ X3 +p —vs
14+ A +ps—vs3
1+ A1 — X
1+ p1 — p2
1=y —puz+1vp
1L ou )
I1—A—pu3+un
10 T
1+ po — s
14+ X — A3

1+ M +p—1n
T+ X +p — 1,



Iv— The Kronecker cone

There are interesting results on the Kronecker cone and the Kronecker
function due to

Baldoni-Vergnes-\Walter,
Briand-R-Orellana,
Christandl-Doran-\Walter,
Mishna-R-Sundaram,
Pak-Panova,
Trandafir...

It is a more complicated object.

The Kronecker cone contains the Littlewood-Richardson cone on one of its walls.
The Kronecker function is described by a piecewise quasi polynomial.

There are holes on the Kronecker cones



On the other hand,

Is NOT a piecewise quasi
polynomial.

As we start increasing k on mp(wy + kw) we hit
a translate of the original cone.

[(s[3+i,3,2,1].itensor(s[3+i,3,2,1])).scalar(s[3+i,3,2,1]) for i in range(0,10) ]
[11, 117, 312, 429, 449, 449, 449, 449, 449, 449]



V. Schur polynomials & Schur generating functions.

The generating series for the complete homogeneous

o[X] = H —— = ) hp[X]

a:EX -4 n>0

R-S-K correspondence

Ax¥l= [ 1 = YsilXInlY]
A

zi,y; ~ — LilYj




Our main tool.

We will study series of the form
Positive integers

o[F(X,Y,Z2)] = > ms(a,B,7)sal[X]sp[Y]sy[Z]
a, B,y

Where the lengths of  @,8,7 are bounded.



Some Schur generating series

The Littlewood-Richardson coefficients

oIXZ+YZ]=0[XZolYZ] = Y. ¢} ,sulX]su[Y]s)[Z]
A, L,V

The Kronecker coefficients

o[XYZ) = ] 1

7 = > guursulXIsu[Y]sy[Z]



Other examples

F(X,Y) = XsulY] plethysm

F(X,Y,Z)=XYZ+XZ+ XY +YZ reduced Kronecker

FX,)Y,2)=XYZ+XZ+YZ Heisenberg



VI— GRAND generating series

. Extension of our family of coefficients

Define coefficients ™F (@ 5,7) indexed by integer vectors

mp(a, 8,7) = (o[F (X, Y, Z)][sa[X]sp[Y]sy[Z])

Schur functions are defined using the Jacobi-Trudi determinant.

Compare with the original identity

o[F(X,Y,Z2)] = > my(a,B,7)salX]s5[Y]sy[Z]
a, B,y



VI— Grand generating series

Il. Definition of the series

Fix w® = (a9, 8°2,79), dx,dy,dz > 0, v = (v ;)i ;-

The grand Generating series . .
\IJ%O — > m}'i(wo + w)ov®

wEZAdx x 7% x 7,4z

The grand generating series is always a Laurent series.

All partitions appear in this sum
Regardless of ,0




VI— Grand generating series

. The factorization lemma

For each fixed 0 = (a0, 80,~0) we have a factorization:

Laurent polynomial

Depends on wO A piecewise quasipolynomial
that only depends on
our fixed lengths



How to compute the Laurent series?

Use vertex operators!

When Y is a triple of empty partitions

WV =vV(X)V(Y)V(Z) o[F(X,Y, 2)]

Vertex operators

V(X) = ] - zp/a))
a shifted Vandermonde. Ik



VIl— Main Theorem

Fix w0 = (a0,89,79). and let w = (a, 8,7). There exist
integers ko and A(w®) such that (%)

mF(wO + kw) = A(wO) g (kw) lts degree in k

For all k > ko + a quasipolynomial in k of degree < than d

A(wo) A particular coefficient in a Schur generating series.

mp(kw) A piecewise quasipolynomial on k.



For all & > kg
mp(w® + kw) = A(W?) - mp(kw)

+ a quasipolynomial in k& of degree < than d

Corollary

When the multiplicities are always one

mp(w® + kw) = A(wO) For all £ > kg
where

AW®) = (o[F'], salX]s5[X]s5[X])

FF=FX+1Y4+1,2Z4+10)-FQ,1,1))-X-Y —Z



VIl— The Littlewood-Richardson coefficients.

Increasing first rows.

oXZ+YZl= Y e, sulX]Isu[Y]s,[Z]
A, L,V

*

WO = glzz + yz] = o a:z)l(l )

Let C be the 2-dim cone generated by (1,0,1) and (0,1,1)
The coefficients inside of C are one
Qutside of C are zero

(atb) _
la),(0) = 1

= O
= = O




Stability cone (a+Db) 1

“(a),(b) —

[lrcalc.lrcoef([10+3%i,10,5,5], [5+2%i,5,5], [10+i,5]) for i in range(0,15) ]
[1, 3, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]

[lrcalc.lrcoef([10+2%i,10,5,5], [5+i,5,5], [10+i,5]) for i in range(@,15) ]
(1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]

[lrcalc.lrcoef([10+4%i,10,5,5], [5+3%i,5,5], [10+i,5]) for i in range(@,15) ]
[1, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]

[lrcalc.lrcoef([10+5%i,10,5,5], [5+2%i,5,5], [10+3%i,5]) for i in range(0,15) ]
[1, 3, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]

A formula for the stable value? Flz,y,z] = zy + =z

olF( X+1,Y+1,241)-F(1,1,1)—z—y — 2]

1
=olry +yz+2] = f(x+1,y+1,2+1)=F(1,1,1) -x-y-z

(1 = xy)(l - yz)(l - Z) XkZ + Yy*Z + Z




VIlIl— The stable Littlewood-Richardson coefficients.

Stable value the coefficient of sz[x]szly]s5[2] IS

1
(1 —-zy)(1—y2z)(1 - 2)

“olzy +yz+2] =

What happens if | iterate this construction?



The stable stable-Littlewood-Richardson coefficients.

Its degree

mp(w’ +kw) = A(W?) - mp(kw)

+ a quasipolynomial in k£ of degree < than d

Stable value the stable LR coefficient of salX]szlY]s312] in

EEEERSES * ' 1 0O
TG G XZ+YZ+ Z] 0 10
+114 + 1 1 1
(‘igl. f
| “.i ] | Let C be the 3 dim cone generated
T by (1,0,1), (0,1,1), (0,0,1)

The coefficients inside C are one
Outside C are zero.

They stabilize.



The Littlewood-Richardson coefficients

Increasing the second row.

lts degree

mp(w® + kw) = A(w®) - mp(kw) — T

+ a quasipolynomial in k£ of degree < than d

Increase the first row of the stable Littlewood-Richardson
coefficients the resulting Schur generating series is :

e - o[ XZ+YZ+27]

O
I
4

09 | 1 0 0O dim of the nullspace 1
. 0100

T 0
EERY mp(w” + kw
mara 1 111 1 F( )
18a tr s a linear quasipolynomial




The Littlewood-Richardson coefficients

Keep iterating this construction

In the (k+1)-step the Schur series for the
asymptotic coefficients is

- = ¢ Same chamber

o[ XZ+YZ+ kZ] mesT complex
A
1 = T
1 0 0O O 0
01000 dim of the nullspace k-1
S 1 The LR lik | ial of d Kk
Kk times e LR grow like a polynomial of degree

when the first k+1 rows are really long.



XIX— The Kronecker coefficients

Increasing first rows.

o[ XYZ1= ) guursulX]su[Y]sy[Z]
A

1
WO = olzyz] = (1—§cyz) / (1)
1

The cone C is generated by

o[ XYZ+ XY +XZ+YZ] (1,1,1). In C the coefficients are

one, and zero outside.

olF(X+1,Y+1,z+1)—F(1,1,1) —z —y — 2]

In this case we recover stability Murnaghan result, and a symmetric version
of Michel Brion’s formula for the reduced Kronecker coefficients.



The Kronecker coefficients

First iteration
Increasing the first rows of the

reduced Kronecker coefficients.

oXYZ+ XY +XZ+YZ]

WO — oleyz + 2y + 2z + yz] = (1—zyz)(1—=2y

1
)(1—z2z)(1-yz)
. _ Briand-Rattan-R
R 1,0,4)
| il The vector partition associated to vectors
O 1,1,1), (1,1,0), (1,0,1), (0,1,1).
bV 0

i1 | L - — piecewise quasipolynomial 1 1 0 1

e L of degree 1 1 011




The Kronecker coefficients

Increasing the 2nd rows of the partitions

The leading term is a linear polynomial

A # + a periodic function.

Schur generating series for the constant A is given by

ol XYZ+2( XY+ XZ+YZ+X+Y + 2)]

(The first two parts of the partitions should be removed)



Kronecker coefficients
Increasing the kth row of the partitions

The n-reduced Kronecker coefficients
o XYZ+n(XY +XZ+YZ)+n(n—1)(X+Y + 2)]

Asymptotically behaves like a quasi-polynomial of degree 3n2 — 2

Kronecker coefficients ( ! ) corank 0

1

olzryz]

Reduced Kronecker coefficients (} | (1’) corank 1
101 |

olryz + xy + 2z + yz]

2-Reduced Kronecker coefficients (

olzyz + 2(xy + 2z +yz) + 2(x + y + 2)] corank 10

—_ = =
O~
_— O
= O
e
— O =
— = O
S O =
o= o
_ o O
S O =
o = O
— o O
N——



The some plethysm coefficients

Increasing first rows.

Fix 0 Manivel
o[YsulX]] = Xny ay salX]sy[Y]
We increase the sizes of the first rows. A 1—d(irr2’<1:;)ne C
WO = olyr™] = (myem /
We get a formula the stable value. C

Y 221:1 sn|X] 21:2 sn[X]

o[F( X+1,Y+1,2+1)—-F(1,1,1) —z —y — 2



THANKS




