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Origins: anti-Ramsey theory
Let K, be the complete graph on n vertices.

The Ramsey number R(t,...,t) = R(Ky; k) is the minimal n such
that any coloring of the edges of K, using k colors contains a
monochromatic K;.

Equivalently, 14 the maximal n such that there exists a coloring of
the edges of K,, using k colors with no monochromatic K.

The anti-Ramsey Problem: (Erd8s-Simonovits-Sés, '75)

What is the maximal number k = AR(n, t) such that there exists a
coloring of the edges of K, using k colors with no rainbow K;?
(rainbow = all edges have distinct colors)

Proposition: (ESS '75) The maximal number of edge-colors of K,
with no rainbow triangle is AR(n, K3) = n — 1.

Hundreds of follow-ups.
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Definitions for matroids and oriented matroids

Definition: Let M be a matroid on a set E. A Gallai k-coloring of
M is a function f : E — [k] such that, for any circuit X in M,

[F(XO < 1X].

Definition: Let M be an oriented matroid on a set E. A transitive
k-coloring of M is a function f : E — [k] such that, for any signed
circuit X = (X*,X7) in M,

FIXT)NFA(XT) # 2.
Examples: (i) Graphs / directed graphs. (i) Root systems.
Remark: Gallai / transitive colorings of the root system of type A,

O (Ap1) ={ei—¢g: 1<i<j<n}

are equivalent to Gallai / transitive colorings of K, / Kp,
respectively.
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Maximal number of colors

Observation:
A matroid has a Gallai coloring iff it is loopless.
An oriented matroid has a transitive coloring iff it is acyclic.

Theorem: For any loopless matroid M, the maximal number of
colors in a Gallai coloring of M is g(M) = rank(M).

Theorem: For any acyclic oriented matroid M, the maximal number
of colors in a transitive coloring of M is t(M) = rank(M).

Corollary: For any loopless graph G with n vertices and ¢ connected
components, and every acyclic orientation G of G,

g(G)=t(C)=n—c.

Remark: This generalizes the Erdés-Sinonovits-Sés result (G = Kj,).
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the edges colored ¢ form a complete bipartite subgraph on n
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Maximal Gallai colorings of K,

Theorem: Every maximal Gallai coloring of Kj, (n > 1) contains a
rainbow hamiltonian path. In fact, it contains exactly 2"~! directed
rainbow hamiltonian paths.

Definition: Given an edge coloring of Kj,, an edge is called a
singleton edge if there is no other edge with the same color.

Theorem: Every maximal Gallai coloring of K, (n > 2) has at least
one singleton edge.

Theorem: Every maximal Gallai coloring of K,_1 (n > 2) can be
extended to a maximal Gallai coloring of K|, in exactly 2n — 3 ways.
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partition of E into k non-empty disjoint blocks, such that each
circuit of M has at least two elements in one of the blocks.

Proposition: The number py(k) of Gallai k-colorings of a matroid
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Polynomiality

Definition: A Gallai k-partition of a matroid M on a set E is a
partition of E into k non-empty disjoint blocks, such that each
circuit of M has at least two elements in one of the blocks.

Proposition: The number pp(k) of Gallai k-colorings of a matroid
M is a polynomial in k. In fact,

pm(k) =" gmy - (k);,

Jj=0

where gy ; is the number of Gallai j-partitions of M and
(k)j = k(k—1)---(k—j+1).
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A similar result holds in the transitive case.

Definition: A transitive k-partition of an oriented matroid M on a
set E is a partition of E into k non-empty disjoint blocks, such that
each signed circuit of M has at least two elements, of opposite
orientations, in one of the blocks.
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A similar result holds in the transitive case.

Definition: A transitive k-partition of an oriented matroid M on a
set E is a partition of E into k non-empty disjoint blocks, such that
each signed circuit of M has at least two elements, of opposite
orientations, in one of the blocks.

Proposition: The number py (k) of transitive k-colorings of an
oriented matroid M is a polynomial in k. In fact,

pm(k) =t - (k)
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Enumeration of Gallai and transitive colorings

Theorem: (Balogh-Li '19, Bastos et al '20)
For k fixed and n sufficiently large, almost all Gallai colorings of K,
with colors from [k] := {1,..., k} use only two colors.

Problem:

Find the exact number of Gallai (transitive) k-colorings of a
matroid (oriented matroid) M, for any 1 < k < rank(M).
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transitive 2-colorings of G is equal to (—1)"fg(—1), where
fc(x) is the chromatic polynomial of the underlying graph G.
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Number of 2-colorings

Observation: For any simple matroid M (no 1- or 2-circuits) on a
finite set £, the number of Gallai 2-colorings of M is equal to 2/F!,

Theorem: For any set of nonzero vectors in RY the number of
transitive 2-colorings of corresponding oriented matroid is equal to
the number of chambers in the dual hyperplane arrangement.

Corollary:
1. For any acyclic directed graph 8 on n vertices, the number of
transitive 2-colorings of G is equal to (—1)"fg(—1), where
fc(x) is the chromatic polynomial of the underlying graph G.

2. For any finite Coxeter group W, the number of transitive
2-colorings of the set (W) of positive roots is equal to |V/|.
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Number of maximal partitions of K,

Definition: A Gallai / transitive partition of K, / Kj is maximal if it
has the maximal possible number of parts, namely n — 1.

Theorem: The number of maximal Gallai partitions of K, is equal
to(2n—-3)1=1-3---(2n—3).

Theorem: The number of maximal transitive partitions of K, is

equal to the Catalan number C, ; = %(2::12)_
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Number of maximal partitions of root systems

Corollary: The number of maximal transitive partitions of the set
dT(A,) ={ei—¢: 1<i<j<n+1} of positive roots of type
A, is equal to the n-th Catalan number C,.

Proofs
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Corollary: The number of maximal transitive partitions of the set
dT(A,) ={ei—¢: 1<i<j<n+1} of positive roots of type
A, is equal to the n-th Catalan number C,.

Conjecture: The number of maximal transitive partitions of the set
O (By)={e : 1<i<n}U{e*e :1<i<j<n}of positive
roots of type B, is equal to

" 3k+1 [2n—k
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Number of maximal partitions of root systems

Corollary: The number of maximal transitive partitions of the set
dT(A,) ={ei—¢: 1<i<j<n+1} of positive roots of type
A, is equal to the n-th Catalan number C,.

Conjecture: The number of maximal transitive partitions of the set
O (By)={e : 1<i<n}U{e*e :1<i<j<n}of positive
roots of type B, is equal to
n
3k+1 [2n—k
cBi=3 = (2 H),
n+k+1\n—2k
k=0
Remark:

C, is equal to the number of pairs (a, 3) of compositions of n,
with the same number of parts, s.t. >.7_; a; > > 7, Bi (Vr).

CB | is equal to the number of pairs («, 3) of compositions of n,
with the same number of parts, s.t. >.7_; a; # > .74 Bi (Vr).
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Symmetric functions

A formal power series f(xi, x2,...) € Q[[x1, X2, .. .]] is symmetric if
it is invariant under permuting variables.

Example

f = x2x3x3 + x2xox3 + x1X5 x5 + x2x3x4 + . ..
is symmetric.

The set of homogeneous symmetric functions of degree k forms a
vector space over Q, denoted by A.
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Schur functions

For A\ F k let the Schur function sy be

Z H leumber of i-s in T_

TESSYT(N) i

Example

ssyT(2,1) = | L[1] [1]2] [1]1] [1]3][212] [2]3] [1]2] [1

20 712 73] T[3] 3] 73] 3] |2
52,1:X12X2—|-X1X22—|—X12X3+X1X§—|-X22X3 —|—X2x32—|—2xlx2X3+...

Theorem {s) : A k} forms a basis for Ay.
A symmetric function is Schur-positive if all coefficients in its expansion in the Schur basis are

nonnegative.
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Quasisymmetric functions

For a subset J C [n—1]:={1,2,...,n—1} let

Fni(x) = Z Xiy Xiy * ** Xi -

1<iy <ip<...<in
j<ij i e

Example.

F3021(x15, %2, X3) = x1x1x2 + X1X1X3 + X1X2X3 + X2X2X3 + . . . -

For a set of combinatorial objects A, equipped with a set map
Des : A s 21 |et

Q(A) = Z‘Fn,Des(a)‘

acA

Proofs

Question: For which such sets is Q(A) symmetric 7 Schur-positive?
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Schur-positivity

Denote the set of Gallai k-partitions of K, by G, .

Denote the set of transitive k-partitions of K, by T, .

Theorem
For every n, k € N, the quasisymmetric functions

Q(Gn,k) = Z ]:Des(p)

pEGn,k

and

Q(Tn,k) = Z fDes(p)

pE Tn,k

are Schur-positive.



Schur-positivity

Theorem
For every n > 1

Q( 7—n,nfl) =ch (X(n—l,n—l) \LG,,) )
where X(”_L”_l) is the irreducible &5,,_»-character indexed by
(n—1,n—1) and ch is the Frobenius characteristic map from class
functions to symmetric functions.



Schur-positivity

Theorem
For every n >'1

n—1
Q(Gn,n 1 —Ch ( Zaan b=l r) iGn)

r=0

where a, is the number of perfect matchings on 2r points on a line
with no short chords.
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Indecomposable 321-avoiding permutations

Recall the descent set of a permutation 7 in the symmetric grop &,

Des(m) := {i: n(i) > (i +1)}.
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Schur-positivity

Indecomposable 321-avoiding permutations

Recall the descent set of a permutation 7 in the symmetric grop &,

Des(m) := {i: n(i) > (i +1)}.

A permutation ™ € &, is indecomposable if there isno 1 < r < n,
s.t. (i) < w(j) forall i <r <.

Example Consider the permutations [31254],[43152] € G5

0100060 00100
00100 00001
10000, [0O1O0O00O0
00001 1 00 00O
00010 00010

decomposable indecomposable
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Indecomposable 321-avoiding permutations

Denote the set of indecomposable permutations in &,, with no
decreasing subsequence of length 3 by &7(321).

Theorem
For every n >1

Q( Tn,n—l) = Q(6:(321))

Equivalently,

Z xDes(p) _ Z XDes(ﬂ)’

PeTn,nfl 71'66;;(321)

J ._ i
where x? = H X
jeJ
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Transitive and Gallai algebras

The transitive algebra Tj, x is the commutative algebra over C

generated by {x; : 1 < i < j < n} subject to the relations
(xik — xij)(xik — xj) =0 (Vi <j<k),
xp=1  (Vi<})).

The Gallai algebra G,  is the commutative algebra over C
generated by {x; : 1 < i < j < n} subject to the relations

(xi = X ) (xij — X)) (X — xiu) =0 (Vi <j < k),
xp=1  (Vi<})).
Theorem: For all n > 1 and k> 1,
dim(7, «) = #{transitive k-colorings of ?,,)}

and
dim(G, k) = #{Gallai k-colorings of K,}.
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Transitive and Gallai algebras

The Hilbert series of a finitely generated filtered algebra B is
Hilb(B, ) == 3 (dim(B<;) — dim(B<j_1))d’ .
j=0
where B<; is the degree j filtered component of B.
Theorem: For every n > 2

1
Hilb(7h2) = s(n,n — k) qk,
0

S
|

»
Il

where s(n, k) are the Stirling numbers of the first kind.
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where C,_1 is the Catalan number.
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n—1
HIlb(To k. @) = . Pa(a) - [K];
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Transitive and Gallai algebras
Conjecture: For all n>1and k > 1,

(a)
n—1

Hl|b(77, ks q ) = Z Pn,j(q) : [k]j’
j=1

-1,
where [k]; := [] i

i=0

Land Po1(q), ..., Pnn1(q) € Z>o[q].

The leading coefficient satisfies P, ,_1(q) = Cn_lq(ngl),
where C,_1 is the Catalan number.
(b) Foralln>1and k>1

Hilb gn k> 9 ZQn,J [k]j’

where Qn.1(q), ..., Qnn-1(q) € Z>0[q].

Remark: Q, (1) is equal to the number of Gallai j-partitions of the
edge set of K,.
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Transitive and Gallai algebras

A Stirling permutation of order n is a permutation of the multiset
{1,1,2,2,...,n,n} s.t., for all m, all the numbers between two
copies of m are larger than m.

The second-order Eulerian number E(n,j) counts the number of
Stirling permutations of order n with j descents.
Conjecture: In the above notation

n—1

Qn,n—l(q) = q(g)_l Z E(n - l,j)q_j.

Jj=0



Proofs
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Schur-positivity - Proofs

Theorem For every n > 1,
Q(Gpn-1) = ch((X7g arx™ 17" L, ).

Proof For even n let M,, be the set of perfect matchings on n
points.

For a perfect matching m € M,, associate the short chord set

Short(m):={ie[n—1]: (i,i+1) € m}.
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Schur-positivity - Proofs

Theorem For every n > 1,
Q(Gn n— 1) = Ch((z,— 0 aan 1+r,nflfr) \I’Gn)'

Proof For even n let M,, be the set of perfect matchings on n
points.
For a perfect matching m € M,, associate the short chord set

Short(m):={ie[n—1]: (i,i+1) € m}.

Theorem (Marmor)

For every even n

Z ]:nShort(m)_Zar (n—14r,n—1—r)>

mGMn

where a, is the number of perfect matchings on 2r points on a line
with no short chords.
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Schur-positivity - Proofs

We present a bijection f : Gp n—1 — Mz,_5, under which

Des(p) = Short(f(p)) N [n— 1] (Vp € Gpp-1)-



Proofs

Schur-positivity - Proofs

We present a bijection f : G, ,—1 — Mz,_2, under which

Des(p) = Short(f(p)) N [n— 1] (Vp € Gpp-1)-

Recall
Gallai Theorem. For every p € G, ,—1 there exists a unique block
whose edges span a complete bipartite graph of order n.



Definitions Properties Enumeration Schur-positivity Algebras

The bijection

Example

3e

Proofs



Definitions Properties Enumeration Schur-positivity Algebras

The bijection

Example
4 4 4
3.
1 2 1 2 o2

Draw the corresponding binary partition tree:

1234

Proofs



Definitions Properties Enumeration Schur-positivity Algebras

The bijection

Example
4 4 4
3.
1 2 1 2 o2

Draw the corresponding binary partition tree:

Proofs



Definitions Properties Enumeration Schur-positivity Algebras

The bijection

Example
4 4 4
3.
1 2 1 2 loe—2

Draw the corresponding binary partition tree:

1 2

Figure: The resulting (1,2)(4,6)(3,5) € Mg

Proofs
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Schur-positivity - Proofs

Theorem For every n > k > 1,
Q(Th k) and Q(G, k) are Schur-positive.
Proof

Definition A subset J C [n — 1] is sparse if it does not contain any
consecutive pair of elements.



Schur-positivity - Proofs

Theorem For every n > k > 1,
Q(Th k) and Q(G, k) are Schur-positive.

Proof
Definition A subset J C [n — 1] is sparse if it does not contain any
consecutive pair of elements.

Lemma (Marmor)

Let A be a set equipped with a descent set map and assume that
for every a € A, Des(a) is sparse.

If for every sparse J C [n — 1], the cardinality of the set

{c € A: J C Des(c)} depends on the size of J only,

then Q(A) is Schur-positive.

Proofs
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Schur-positivity - Proofs

Denote g(n, k) := |G(n, k)| and t(n, k) := |T(n, k)|.

Lemma
For every n > k > 1 and ) # J C [n — 1] with no consecutive
elements

I{p € G(n,k): JC Des(p)}| = g(n—[J],k—1[J])
and

{p € T(nk): JC Des(p)}| = t(n— |J], k— |J]).
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Schur-positivity - Proofs

Proof of Lemma

i 1

Assume that (i, i + 1) is the only blue edge. Then for every
Jj #i,i+ 1 the colors of (i,j) and (i 4+ 1,) are the same. Contract
the edge (i,7i + 1).

L]
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Schur-positivity - Proofs

Theorem For every n > 1, Q(T,,p-1) = ch(x(" 1771 |g,).
Proof Denote g(n, k) :=|G(n, k)| and t(n, k) := | T(n, k)|.
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Schur-positivity - Proofs
Theorem For every n > 1, Q(Tnn_1) = ch(x{"" 11 |s).
Proof Denote g(n, k) :=|G(n, k)| and t(n, k) := | T(n, k)|.
Lemma

For every n > k > 1 and () # J C [n — 1] with no consecutive
elements

{c € G(n,k): JC Des(c)} =g(n—1|J],k—|J])

and
{ce T(n,k): JC Des(c)} =t(n—|J|,k—1]J])
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Schur-positivity - Proofs
Theorem For every n > 1, Q(Tnn_1) = ch(x{"" 11 |s).
Proof Denote g(n, k) :=|G(n, k)| and t(n, k) := | T(n, k)|.

Lemma
For every n > k > 1 and () # J C [n — 1] with no consecutive
elements

{c € G(n,k): JC Des(c)} =g(n—1|J],k—|J])

and
{ce T(n,k): JC Des(c)} =t(n—|J|,k—1]J])

In particular,
{c € G(n,n—1): J CDes(c)}| =(2n—2[J] = 3)!

and
{ce T(n,n—1): JC Des(c)}| = Ch1_y-
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Schur-positivity - Proofs

Dyck paths and SYT(n, n)
Recall the natural bijection from SYT(n, n) to Dyck paths of length
2n sending the descent set to the peak set.
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Schur-positivity - Proofs

Dyck paths and SYT(n, n)
Recall the natural bijection from SYT(n, n) to Dyck paths of length
2n sending the descent set to the peak set.
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Schur-positivity - Proofs

Dyck paths and SYT(n, n)
Recall the natural bijection from SYT(n, n) to Dyck paths of length
2n sending the descent set to the peak set.

It follows that
for every n > 1 and J C [n — 1] with no consecutive entries

HT eSYT(n—1,n—1): JC Des(T)} = Cpr1_y-



Summary



Summary

Gallai colorings have directed analogues — transitive colorings.

Defined originally for complete graphs, these notions can be
extended considerably.

Their enumeration is related to surprisingly many other areas.
There is a lot left to be done!
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Summary

Gallai colorings have directed analogues — transitive colorings.

Defined originally for complete graphs, these notions can be
extended considerably.

Their enumeration is related to surprisingly many other areas.
There is a lot left to be done!

Thank youl



	Definitions
	Properties
	Enumeration
	Schur-positivity
	Algebras
	Proofs

