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Definitions Properties Enumeration Schur-positivity Algebras Proofs

Origins: anti-Ramsey theory

Let Kn be the complete graph on n vertices.

The Ramsey number R(t, . . . , t) = R(Kt ; k) is the minimal n such
that any coloring of the edges of Kn using k colors contains a
monochromatic Kt .
Equivalently, 1+ the maximal n such that there exists a coloring of
the edges of Kn using k colors with no monochromatic Kt .

The anti-Ramsey Problem: (Erdős-Simonovits-Sós, ’75)
What is the maximal number k = AR(n, t) such that there exists a
coloring of the edges of Kn using k colors with no rainbow Kt?
(rainbow = all edges have distinct colors)

Proposition: (ESS ’75) The maximal number of edge-colors of Kn
with no rainbow triangle is AR(n,K3) = n − 1.

Hundreds of follow-ups.
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Gallai coloring of the complete graph

Denote [k] := {1, . . . , k}.

Definition: (Gyárfás-Simonyi ’04, implicit in Gallai ’67)
A Gallai k-coloring of the complete graph Kn = (V ,E ) is an edge
coloring f : E → [k] with no rainbow triangle.

Examples:

V X V V
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Gallai coloring of a general graph

Observation: An edge-coloring of Kn has no rainbow triangle if and
only if it has no rainbow cycle, of any length.

Definition 1: (Gyárfás-Sárközy ’10)
A GS Gallai k-coloring of a graph G = (V ,E ) is an edge coloring
f : E → [k] with no rainbow triangle.

Definition 2: (Gouge et al. ’10, implicit in Haxell-Kohayakawa ’95)
A Gallai k-coloring of a graph G = (V ,E ) is an edge coloring
f : E → [k] with no rainbow cycle.

Examples:
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Origins: transitive coloring of a tournament

Let
−→
Kn be the tournament with vertex set {v1, . . . , vn}

and edge set E = {vi → vj : i < j}.

Definition: (Berenstein-Greenstein-Li, ’17)
An edge-coloring f of

−→
Kn is transitive if

f (vi → vk) ∈ {f (vi → vj), f (vj → vk)} (∀i < j < k).

Observation: A transitive coloring of
−→
Kn induces a Gallai coloring of

Kn, but not conversely.

Examples:

1 2 3
> >

>

1 2 3 1 2 3
> >

>

> >

>
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Transitive coloring of a general graph

Let
−→
G be a directed graph.

Definition: (ABGLMR, ’23)
An edge coloring of

−→
G is transitive if every cycle contains two edges

of the same color and opposite orientations.

Observation:
−→
G has (at least one) transitive edge coloring if and

only if it is acyclic (namely, does not contain a directed cycle).
Examples:

<

<
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<

<

<

>

<

<
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V X X
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Even more general?
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Matroids, vectors and root systems

Kn Graphs
Root

systems

Vectors in Fn

Matroids
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Oriented matroids, vectors and root systems

−→
Kn

Directed
graphs

Root
systems

Vectors in Rn

Oriented matroids
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Definitions for matroids and oriented matroids

Definition: Let M be a matroid on a set E . A Gallai k-coloring of
M is a function f : E → [k] such that, for any circuit X in M,

|f (X )| < |X |.

Definition: Let M be an oriented matroid on a set E . A transitive
k-coloring of M is a function f : E → [k] such that, for any signed
circuit X = (X+,X−) in M,

f (X+) ∩ f (X−) 6= ∅.

Examples: (i) Graphs / directed graphs. (ii) Root systems.

Remark: Gallai / transitive colorings of the root system of type A,

Φ+(An−1) = {ei − ej : 1 ≤ i < j ≤ n},

are equivalent to Gallai / transitive colorings of Kn /
−→
Kn,

respectively.
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Properties
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Maximal number of colors

Observation:
A matroid has a Gallai coloring iff it is loopless.
An oriented matroid has a transitive coloring iff it is acyclic.

Theorem: For any loopless matroid M, the maximal number of
colors in a Gallai coloring of M is g(M) = rank(M).

Theorem: For any acyclic oriented matroid M, the maximal number
of colors in a transitive coloring of M is t(M) = rank(M).

Corollary: For any loopless graph G with n vertices and c connected
components, and every acyclic orientation

−→
G of G ,

g(G ) = t(
−→
G ) = n − c .

Remark: This generalizes the Erdős-Sinonovits-Sós result (G = Kn).
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Maximal Gallai colorings of Kn

Definition: A Gallai / transitive coloring is called maximal if it uses
the maximal number of colors.

For the complete graph Kn (or
−→
Kn), this maximal number is n − 1.

Theorem: (implicit in Gallai ’67)
Every maximal Gallai coloring of Kn has a unique color c such that
the edges colored c form a complete bipartite subgraph on n
vertices.

Example:
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Maximal Gallai colorings of Kn

Theorem: Every maximal Gallai coloring of Kn (n ≥ 1) contains a
rainbow hamiltonian path. In fact, it contains exactly 2n−1 directed
rainbow hamiltonian paths.

Definition: Given an edge coloring of Kn, an edge is called a
singleton edge if there is no other edge with the same color.

Theorem: Every maximal Gallai coloring of Kn (n ≥ 2) has at least
one singleton edge.

Theorem: Every maximal Gallai coloring of Kn−1 (n ≥ 2) can be
extended to a maximal Gallai coloring of Kn in exactly 2n− 3 ways.
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Polynomiality

Definition: A Gallai k-partition of a matroid M on a set E is a
partition of E into k non-empty disjoint blocks, such that each
circuit of M has at least two elements in one of the blocks.

Proposition: The number pM(k) of Gallai k-colorings of a matroid
M is a polynomial in k . In fact,

pM(k) =
∑
j≥0

gM,j · (k)j ,

where gM,j is the number of Gallai j-partitions of M and
(k)j := k(k − 1) · · · (k − j + 1).
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Polynomiality

A similar result holds in the transitive case.

Definition: A transitive k-partition of an oriented matroid M on a
set E is a partition of E into k non-empty disjoint blocks, such that
each signed circuit of M has at least two elements, of opposite
orientations, in one of the blocks.

Proposition: The number pM(k) of transitive k-colorings of an
oriented matroid M is a polynomial in k . In fact,

pM(k) =
∑
j≥0

tM,j · (k)j ,

where tM,j is the number of transitive j-partitions of M and
(k)j := k(k − 1) · · · (k − j + 1).



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Polynomiality

A similar result holds in the transitive case.

Definition: A transitive k-partition of an oriented matroid M on a
set E is a partition of E into k non-empty disjoint blocks, such that
each signed circuit of M has at least two elements, of opposite
orientations, in one of the blocks.

Proposition: The number pM(k) of transitive k-colorings of an
oriented matroid M is a polynomial in k . In fact,

pM(k) =
∑
j≥0

tM,j · (k)j ,

where tM,j is the number of transitive j-partitions of M and
(k)j := k(k − 1) · · · (k − j + 1).



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Polynomiality

A similar result holds in the transitive case.

Definition: A transitive k-partition of an oriented matroid M on a
set E is a partition of E into k non-empty disjoint blocks, such that
each signed circuit of M has at least two elements, of opposite
orientations, in one of the blocks.

Proposition: The number pM(k) of transitive k-colorings of an
oriented matroid M is a polynomial in k . In fact,

pM(k) =
∑
j≥0

tM,j · (k)j ,

where tM,j is the number of transitive j-partitions of M and
(k)j := k(k − 1) · · · (k − j + 1).



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Polynomiality

A similar result holds in the transitive case.

Definition: A transitive k-partition of an oriented matroid M on a
set E is a partition of E into k non-empty disjoint blocks, such that
each signed circuit of M has at least two elements, of opposite
orientations, in one of the blocks.

Proposition: The number pM(k) of transitive k-colorings of an
oriented matroid M is a polynomial in k . In fact,

pM(k) =
∑
j≥0

tM,j · (k)j ,

where tM,j is the number of transitive j-partitions of M and
(k)j := k(k − 1) · · · (k − j + 1).



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Enumeration of Gallai and transitive colorings

Theorem: (Balogh-Li ’19, Bastos et al ’20)
For k fixed and n sufficiently large, almost all Gallai colorings of Kn
with colors from [k] := {1, . . . , k} use only two colors.

Problem:

Find the exact number of Gallai (transitive) k-colorings of a
matroid (oriented matroid) M, for any 1 ≤ k ≤ rank(M).
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Number of 2-colorings

Observation: For any simple matroid M (no 1- or 2-circuits) on a
finite set E , the number of Gallai 2-colorings of M is equal to 2|E |.

Theorem: For any set of nonzero vectors in Rd , the number of
transitive 2-colorings of corresponding oriented matroid is equal to
the number of chambers in the dual hyperplane arrangement.

Corollary:

1. For any acyclic directed graph
−→
G on n vertices, the number of

transitive 2-colorings of
−→
G is equal to (−1)nfG (−1), where

fG (x) is the chromatic polynomial of the underlying graph G .
2. For any finite Coxeter group W , the number of transitive

2-colorings of the set Φ+(W ) of positive roots is equal to |W |.
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Number of maximal partitions of Kn

Definition: A Gallai / transitive partition of Kn /
−→
Kn is maximal if it

has the maximal possible number of parts, namely n − 1.

Theorem: The number of maximal Gallai partitions of Kn is equal
to (2n − 3)!! = 1 · 3 · · · (2n − 3).

Theorem: The number of maximal transitive partitions of
−→
Kn is

equal to the Catalan number Cn−1 = 1
n

(2n−2
n−1

)
.
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Number of maximal partitions of root systems

Corollary: The number of maximal transitive partitions of the set
Φ+(An) = {ei − ej : 1 ≤ i < j ≤ n + 1} of positive roots of type
An is equal to the n-th Catalan number Cn.

Conjecture: The number of maximal transitive partitions of the set
Φ+(Bn) = {ei : 1 ≤ i ≤ n} ∪ {ei ± ej : 1 ≤ i < j ≤ n} of positive
roots of type Bn is equal to

CB
n :=

n∑
k=0

3k + 1
n + k + 1

(
2n − k
n − 2k

)
.

Remark:
Cn is equal to the number of pairs (α, β) of compositions of n,
with the same number of parts, s.t.

∑r
i=1 αi ≥

∑r
i=1 βi (∀r).

CB
n−1 is equal to the number of pairs (α, β) of compositions of n,

with the same number of parts, s.t.
∑r

i=1 αi 6=
∑r

i=1 βi (∀r).
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Schur-positivity
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Symmetric functions

A formal power series f (x1, x2, . . .) ∈ Q[[x1, x2, . . .]] is symmetric if
it is invariant under permuting variables.

Example

f = x2
1 x2

2 x3 + x2
1 x2x2

3 + x1x2
2 x2

3 + x2
1 x2

2 x4 + . . .

is symmetric.

The set of homogeneous symmetric functions of degree k forms a
vector space over Q, denoted by Λk .



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Symmetric functions

A formal power series f (x1, x2, . . .) ∈ Q[[x1, x2, . . .]] is symmetric if
it is invariant under permuting variables.

Example

f = x2
1 x2

2 x3 + x2
1 x2x2

3 + x1x2
2 x2

3 + x2
1 x2

2 x4 + . . .

is symmetric.

The set of homogeneous symmetric functions of degree k forms a
vector space over Q, denoted by Λk .



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Symmetric functions

A formal power series f (x1, x2, . . .) ∈ Q[[x1, x2, . . .]] is symmetric if
it is invariant under permuting variables.

Example

f = x2
1 x2

2 x3 + x2
1 x2x2

3 + x1x2
2 x2

3 + x2
1 x2

2 x4 + . . .

is symmetric.

The set of homogeneous symmetric functions of degree k forms a
vector space over Q, denoted by Λk .



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Schur functions
For λ ` k let the Schur function sλ be∑

T∈SSYT(λ)

∏
i

xnumber of i-s in T
i .

Example

SSYT(2, 1) = 1 1
2

, 1 2
2

, 1 1
3

, 1 3
3

, 2 2
3

, 2 3
3

, 1 2
3

, 1 3
2

, . . .

s2,1 = x2
1 x2 + x1x2

2 + x2
1 x3 + x1x2

3 + x2
2 x3 + x2x2

3 + 2x1x2x3 + . . .

Theorem {sλ : λ ` k} forms a basis for Λk .
A symmetric function is Schur-positive if all coefficients in its expansion in the Schur basis are

nonnegative.
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Quasisymmetric functions
For a subset J ⊆ [n − 1] := {1, 2, . . . , n − 1} let

Fn,J(x) :=
∑

1≤i1≤i2≤...≤in
ij<ij+1 if j∈J

xi1xi2 · · · xin .

Example.

F3,{2}(x1, x2, x3) = x1x1x2 + x1x1x3 + x1x2x3 + x2x2x3 + . . . .

For a set of combinatorial objects A, equipped with a set map
Des : A 7→ 2[n−1] let

Q(A) :=
∑
a∈A

Fn,Des(a).

Question: For which such sets is Q(A) symmetric ? Schur-positive?
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Schur-positivity

Definition The descent set of a transitive / Gallai k-partition
p of

−→
K n / Kn is

Des(p) := {i : (i , i + 1) is a singleton in p}.

Example

1 3

2
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1 3
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Des(p) = {1, 3} ∅
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Schur-positivity

Denote the set of Gallai k-partitions of Kn by Gn,k .

Denote the set of transitive k-partitions of
−→
K n by Tn,k .

Theorem
For every n, k ∈ N, the quasisymmetric functions

Q(Gn,k) :=
∑

p∈Gn,k

FDes(p)

and
Q(Tn,k) :=

∑
p∈Tn,k

FDes(p)

are Schur-positive.
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Theorem
For every n > 1

Q(Tn,n−1) = ch
(
χ(n−1,n−1) ↓Sn

)
,

where χ(n−1,n−1) is the irreducible S2n−2-character indexed by
(n − 1, n − 1) and ch is the Frobenius characteristic map from class
functions to symmetric functions.
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Theorem
For every n > 1

Q(Gn,n−1) = ch

(
(
n−1∑
r=0

arχ
n−1+r ,n−1−r ) ↓Sn

)
,

where ar is the number of perfect matchings on 2r points on a line
with no short chords.
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Indecomposable 321-avoiding permutations

Recall the descent set of a permutation π in the symmetric grop Sn

Des(π) := {i : π(i) > π(i + 1)}.

A permutation π ∈ Sn is indecomposable if there is no 1 ≤ r < n,
s.t. π(i) < π(j) for all i ≤ r < j .

Example Consider the permutations [31254], [43152] ∈ S5
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 ,


0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0


decomposable , indecomposable
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Indecomposable 321-avoiding permutations

Denote the set of indecomposable permutations in Sn with no
decreasing subsequence of length 3 by S∗n(321).

Theorem
For every n > 1

Q(Tn,n−1) = Q(S∗n(321)).

Equivalently, ∑
p∈Tn,n−1

xDes(p) =
∑

π∈S∗n(321)

xDes(π),

where xJ :=
∏
j∈J

xj .
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Transitive and Gallai algebras

The transitive algebra Tn,k is the commutative algebra over C
generated by {xij : 1 ≤ i < j ≤ n} subject to the relations

(xik − xij)(xik − xjk) = 0 (∀i < j < k),

xk
ij = 1 (∀i < j).

The Gallai algebra Gn,k is the commutative algebra over C
generated by {xij : 1 ≤ i < j ≤ n} subject to the relations

(xij − xik)(xij − xjk)(xik − xjk) = 0 (∀i < j < k),

xk
ij = 1 (∀i < j).

Theorem: For all n > 1 and k ≥ 1,

dim(Tn,k) = #{transitive k-colorings of
−→
Kn}

and
dim(Gn,k) = #{Gallai k-colorings of Kn}.
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Transitive and Gallai algebras

The Hilbert series of a finitely generated filtered algebra B is

Hilb(B, q) :=
∑
j≥0

(dim(B≤j)− dim(B≤j−1))qj ,

where B≤j is the degree j filtered component of B.

Theorem: For every n ≥ 2

Hilb(Tn,2) =
n−1∑
k=0

s(n, n − k) qk ,

where s(n, k) are the Stirling numbers of the first kind.



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Transitive and Gallai algebras

The Hilbert series of a finitely generated filtered algebra B is

Hilb(B, q) :=
∑
j≥0

(dim(B≤j)− dim(B≤j−1))qj ,

where B≤j is the degree j filtered component of B.

Theorem: For every n ≥ 2

Hilb(Tn,2) =
n−1∑
k=0

s(n, n − k) qk ,

where s(n, k) are the Stirling numbers of the first kind.



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Transitive and Gallai algebras

The Hilbert series of a finitely generated filtered algebra B is

Hilb(B, q) :=
∑
j≥0

(dim(B≤j)− dim(B≤j−1))qj ,

where B≤j is the degree j filtered component of B.

Theorem: For every n ≥ 2

Hilb(Tn,2) =
n−1∑
k=0

s(n, n − k) qk ,

where s(n, k) are the Stirling numbers of the first kind.



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Transitive and Gallai algebras

Conjecture: For all n > 1 and k ≥ 1,
(a)

Hilb(Tn,k , q) =
n−1∑
j=1

Pn,j(q) · [k]j ,

where [k]j :=
j−1∏
i=0

qk−i−1
q−1 and Pn,1(q), . . . ,Pn,n−1(q) ∈ Z≥0[q].

The leading coefficient satisfies Pn,n−1(q) = Cn−1q(n−1
2 ),

where Cn−1 is the Catalan number.
(b) For all n > 1 and k ≥ 1

Hilb(Gn,k , q) =
n−1∑
j=1

Qn,j(q) · [k]j ,

where Qn,1(q), . . . ,Qn,n−1(q) ∈ Z≥0[q].

Remark: Qn,j(1) is equal to the number of Gallai j-partitions of the
edge set of Kn.
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Transitive and Gallai algebras

A Stirling permutation of order n is a permutation of the multiset
{1, 1, 2, 2, ..., n, n} s.t., for all m, all the numbers between two
copies of m are larger than m.

The second-order Eulerian number E (n, j) counts the number of
Stirling permutations of order n with j descents.

Conjecture: In the above notation

Qn,n−1(q) = q(n
2)−1

n−1∑
j=0

E (n − 1, j)q−j .
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Schur-positivity - Proofs

Theorem For every n > 1,
Q(Gn,n−1) = ch((

∑n−1
r=0 arχ

n−1+r ,n−1−r ) ↓Sn).

Proof For even n let Mn be the set of perfect matchings on n
points.
For a perfect matching m ∈Mn associate the short chord set

Short(m) := {i ∈ [n − 1] : (i , i + 1) ∈ m}.

Theorem (Marmor)
For every even n

∑
m∈Mn

Fn,Short(m) =
n−1∑
r=0

ar s(n−1+r ,n−1−r),

where ar is the number of perfect matchings on 2r points on a line
with no short chords.
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Schur-positivity - Proofs

We present a bijection f : Gn,n−1 →M2n−2, under which

Des(p) = Short(f (p)) ∩ [n − 1] (∀p ∈ Gn,n−1).

Recall
Gallai Theorem. For every p ∈ Gn,n−1 there exists a unique block
whose edges span a complete bipartite graph of order n.
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Figure: The resulting (1, 2)(4, 6)(3, 5) ∈M6
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Schur-positivity - Proofs

Theorem For every n > k ≥ 1,
Q(Tn,k) and Q(Gn,k) are Schur-positive.

Proof
Definition A subset J ⊆ [n − 1] is sparse if it does not contain any
consecutive pair of elements.

Lemma (Marmor)
Let A be a set equipped with a descent set map and assume that
for every a ∈ A, Des(a) is sparse.
If for every sparse J ⊆ [n − 1], the cardinality of the set
{c ∈ A : J ⊆ Des(c)} depends on the size of J only,
then Q(A) is Schur-positive.
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Schur-positivity - Proofs

Denote g(n, k) := |G (n, k)| and t(n, k) := |T (n, k)|.

Lemma
For every n > k ≥ 1 and ∅ 6= J ⊆ [n − 1] with no consecutive
elements

|{p ∈ G (n, k) : J ⊆ Des(p)}| = g(n − |J|, k − |J|)

and

|{p ∈ T (n, k) : J ⊆ Des(p)}| = t(n − |J|, k − |J|).
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Schur-positivity - Proofs

Proof of Lemma

i i + 1

j

Assume that (i , i + 1) is the only blue edge. Then for every
j 6= i , i + 1 the colors of (i , j) and (i + 1, j) are the same. Contract
the edge (i , i + 1).



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Schur-positivity - Proofs

Proof of Lemma

i i + 1

j

Assume that (i , i + 1) is the only blue edge. Then for every
j 6= i , i + 1 the colors of (i , j) and (i + 1, j) are the same. Contract
the edge (i , i + 1).



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Schur-positivity - Proofs

Theorem For every n > 1, Q(Tn,n−1) = ch(χ(n−1,n−1) ↓Sn).

Proof Denote g(n, k) := |G (n, k)| and t(n, k) := |T (n, k)|.
Lemma
For every n > k ≥ 1 and ∅ 6= J ⊆ [n − 1] with no consecutive
elements

|{c ∈ G (n, k) : J ⊆ Des(c)}| = g(n − |J|, k − |J|)

and
|{c ∈ T (n, k) : J ⊆ Des(c)}| = t(n − |J|, k − |J|)

In particular,

|{c ∈ G (n, n − 1) : J ⊆ Des(c)}| = (2n − 2|J| − 3)!!

and
|{c ∈ T (n, n − 1) : J ⊆ Des(c)}| = Cn−1−|J|.



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Schur-positivity - Proofs
Theorem For every n > 1, Q(Tn,n−1) = ch(χ(n−1,n−1) ↓Sn).

Proof Denote g(n, k) := |G (n, k)| and t(n, k) := |T (n, k)|.
Lemma
For every n > k ≥ 1 and ∅ 6= J ⊆ [n − 1] with no consecutive
elements

|{c ∈ G (n, k) : J ⊆ Des(c)}| = g(n − |J|, k − |J|)

and
|{c ∈ T (n, k) : J ⊆ Des(c)}| = t(n − |J|, k − |J|)

In particular,

|{c ∈ G (n, n − 1) : J ⊆ Des(c)}| = (2n − 2|J| − 3)!!

and
|{c ∈ T (n, n − 1) : J ⊆ Des(c)}| = Cn−1−|J|.



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Schur-positivity - Proofs
Theorem For every n > 1, Q(Tn,n−1) = ch(χ(n−1,n−1) ↓Sn).

Proof Denote g(n, k) := |G (n, k)| and t(n, k) := |T (n, k)|.

Lemma
For every n > k ≥ 1 and ∅ 6= J ⊆ [n − 1] with no consecutive
elements

|{c ∈ G (n, k) : J ⊆ Des(c)}| = g(n − |J|, k − |J|)

and
|{c ∈ T (n, k) : J ⊆ Des(c)}| = t(n − |J|, k − |J|)

In particular,

|{c ∈ G (n, n − 1) : J ⊆ Des(c)}| = (2n − 2|J| − 3)!!

and
|{c ∈ T (n, n − 1) : J ⊆ Des(c)}| = Cn−1−|J|.



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Schur-positivity - Proofs
Theorem For every n > 1, Q(Tn,n−1) = ch(χ(n−1,n−1) ↓Sn).

Proof Denote g(n, k) := |G (n, k)| and t(n, k) := |T (n, k)|.
Lemma
For every n > k ≥ 1 and ∅ 6= J ⊆ [n − 1] with no consecutive
elements

|{c ∈ G (n, k) : J ⊆ Des(c)}| = g(n − |J|, k − |J|)

and
|{c ∈ T (n, k) : J ⊆ Des(c)}| = t(n − |J|, k − |J|)

In particular,

|{c ∈ G (n, n − 1) : J ⊆ Des(c)}| = (2n − 2|J| − 3)!!

and
|{c ∈ T (n, n − 1) : J ⊆ Des(c)}| = Cn−1−|J|.



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Schur-positivity - Proofs
Theorem For every n > 1, Q(Tn,n−1) = ch(χ(n−1,n−1) ↓Sn).

Proof Denote g(n, k) := |G (n, k)| and t(n, k) := |T (n, k)|.
Lemma
For every n > k ≥ 1 and ∅ 6= J ⊆ [n − 1] with no consecutive
elements

|{c ∈ G (n, k) : J ⊆ Des(c)}| = g(n − |J|, k − |J|)

and
|{c ∈ T (n, k) : J ⊆ Des(c)}| = t(n − |J|, k − |J|)

In particular,

|{c ∈ G (n, n − 1) : J ⊆ Des(c)}| = (2n − 2|J| − 3)!!

and
|{c ∈ T (n, n − 1) : J ⊆ Des(c)}| = Cn−1−|J|.



Definitions Properties Enumeration Schur-positivity Algebras Proofs

Schur-positivity - Proofs

Dyck paths and SYT(n, n)
Recall the natural bijection from SYT(n, n) to Dyck paths of length
2n sending the descent set to the peak set.

7→

It follows that
for every n ≥ 1 and J ⊆ [n − 1] with no consecutive entries

|{T ∈ SYT(n − 1, n − 1) : J ⊆ Des(T )} = Cn−1−|J|.
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Summary

• Gallai colorings have directed analogues — transitive colorings.
• Defined originally for complete graphs, these notions can be
extended considerably.

• Their enumeration is related to surprisingly many other areas.
• There is a lot left to be done!

Thank you!
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