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Abstract

Abstract: Dynamical algebraic combinatorics explores maps on sets of discrete combinatorial
objects with particular attention to their orbit structure. Interesting counting questions
immediately arise: How many orbits are there? What are their sizes? What is the period of the
map if it’s invertible? Are there any interesting statistics on the objects that are well-behaved
under the map?

One particular phenomenon of interest is “homomesy”, where a statistic on the set of objects has
the same average for each orbit of an action. Along with its intrinsic interest as a kind of hidden
“invariant”, homomesy can be used to help understand certain properties of the action. Proofs of
homomesy often lead one to develop tools that further our understanding of the underlying
dynamics, e.g., by finding an equivariant bijection. These notions can be lifted to higher
(piecewise-linear and birational) realms, of which the combinatorial situation is a discrete shadow,
and the resulting identities are somewhat surprising. Maps that can be decomposed as products
of “toggling” involutions are particularly amenable to this line of analysis.

This talk will be a introduction to these ideas, giving a number of examples.



Acknowledgments

This talks discusses joint work, mostly with Jim Propp, Darij Grinberg, and Mike Joseph.

I’m grateful to Mike Joseph and Darij Grinberg for sharing source code for slides from
their earlier talks, which I shamelessly cannibalized.

Thanks also to Drew Armstrong, Arkady Berenstein, Anders Björner, Barry Cipra, Karen
Edwards, Robert Edwards, David Einstein, Darij Grinberg, Shahrzad Haddadan, Sam
Hopkins, Mike La Croix, Svante Linusson, Gregg Musiker, Nathan Williams, Vic Reiner,
Jessica Striker, Richard Stanley, Ralf Schiffler, Hugh Thomas, and Ben Young.

Please feel free to put questions and comments in the chat, and the moderator will
convey them with appropriate timing and finese. Or someone else may answer them!



Some themes in dynamicala algebraic combinatorics

1 Periodicity/order;

2 Orbit structure;

3 Homomesy;

4 Equivariant bijections; and

5 Lifting from combinatorial to piecewise-linear and birational settings.



Cyclic rotation of binary strings
“Immer mit den einfachsten Beispielen anfangen.” — David Hilbert



Cyclic rotation of binary strings

Let Sn,k be the set of length n binary strings with k 1s.
Let CR : Sn,k → Sn,k be rightward cyclic rotation.

Example
Cyclic rotation for n = 6, k = 2:

101000 7−→ 010100
CR

Periodicity is clear here. The map has order n = 6.
Orbit structure is very nice; every orbit size must divide n.
Homomesy? Need a statistic, first.
Equivariant bijection? No need.
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Cyclic rotation of binary strings

An inversion of a binary string is a pair of positions (i , j) with i < j such that there is a
1 in position i and a 0 in position j .

Example
Orbits of cyclic rotation for n = 6, k = 2:

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2
100010 5 000011 0
010001 3 100001 4

Average 4 Average 4 Average 4
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Definition of Homomesy

Given

a set S ,
an invertible map τ : S → S such that every τ -orbit is finite,
a function (“statistic”) f : S → K where K is a field of characteristic 0.

We say that the triple (S , τ, f ) exhibits homomesy if there exists a constant c ∈ K such
that for every τ -orbit O ⊆ S ,

1
#O

∑
x∈O

f (x) = c .

In this case, we say that the function f is homomesic with average c (also called
c-mesic) under the action of τ on S .
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Homomesy

Theorem (Propp & R. [PrRo15, §2.3])

Let inv(s) denote the number of inversions of s ∈ Sn,k .

Then the function inv : Sn,k → Q is homomesic with average k(n−k)
2 with respect to

cyclic rotation on Sn,k .

Proof.
Consider superorbits of length n. Show that replacing “01” with “10” in a string s leaves
the total number of inversions in the superorbit generated by s unchanged (and thus the
average since our superorbits all have the same length).
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Cyclic rotation of binary strings

Example

Inversions
String String Change
101000 011000 -1
010100 001100 -1
001010 000110 -1
000101 000011 -1
100010 100001 -1
010001 110000 +5

There are other homomesic statistics as well:
Let 1j(s) := sj , the jth bit of the string s. Can you see why this is homomesic?



Bulgarian Solitaire



Homomesy: A more general definition

There are some cases where we find a similar phenomenon, but where the map no longer
has finite orbits. Here is a more general definition of homomesy that is useful for some
purposes.

Definition

Let τ be an self-map on a discrete set of objects S , and f be a statistic on S . We say f
is homomesic if the value of

lim
N→∞

1
N

N−1∑
i=0

f (τ i (x)) = c

is independent of the starting point x ∈ S . (Also, f is c-mesic.)

This clearly reduces to the earlier definition in the case where we have an invertible
action with finite orbits.



Example 2: Bulgarian solitaire

Given a way of dividing n identical chips into one or more heaps (represented as a
partition λ of n), define b(λ) as the partition of n that results from removing a chip from
each heap and putting all the removed chips into a new heap.

First surfaced as a puzzle in Russia around 1980, and a solution by Andrei Toom in
Kvant; later popularized in 1983 Martin Gardiner column; see survey of Brian
Hopkins [Hop12].
Initial puzzle: starting from any of 176 partitions of 15, one ends at (5, 4, 3, 2, 1).

Dynamical Algebraic Combinatorics and the Homomesy Phenomenon 7

and placing them together to form a new pile. We set (l ) to be the partition obtained in this way, whose parts are the
nonzero elements among `,l1�1,l2�1, . . . ,l`�1. Note that the newly created part of size ` can range in size from 1
to n, making it hard to write a concise formula for (l ) in terms of the parts of l .

Example 8. Bulgarian solitaire For n = 15, one trajectory of Bulgarian solitaire is:

115 15 14,1 13,2 12,2,1 11,3,1

10,3,29,3,2,18,4,2,17,4,3,17,4,3,16,4,3,25,4,3,2,1

This process first surfaced as a puzzle in Russia around 1980, and a solution by Andrei Toom was published in
Kvant [Too81]. A few years later it was popularized in one of Martin Gardner’s Mathematical Games columns [Gard83].
The puzzle was to show that no matter which of the 176 partitions of 15 one selects for the initial sizes of the piles,
one always eventually ends up at the “staircase” partition (5,4,3,2,1), which is a fixed point of the action (as in the
above example). It turns out that if n is a triangular number (so such a staircase partition exists), then any sequence
of moves eventually leads to this fixed point of the action; however, in general the action can exhibit more complex
dynamical behavior. (See Figure 2.) Some pointers to more recent literature and more information about the history of
this problem, including the fanciful, inaccurate (but easily googlable) name, are available in Brian Hopkins’s expository
survey [Hop12].
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3311

2222

Fig. 2: The action of Bulgarian solitaire on partitions of n = 8

Definition 2. Let S be a finite set with a (not necessarily invertible) map t : S !S (called a self-map). Applying
the map iteratively to any x 2S eventually yields a recurrent cycle, and the recurrent set is the union of these cycles.
(See Figure 2.) We call a statistic f : S !K homomesic if the average of f is the same over every recurrent cycle. It
is clear that if t is an invertible action on a finite set S, then this definition specializes to the original one.

Example 9. Number of parts under Bulgarian solitaire on partitions of nnn Consider the example of Bulgarian
solitaire for n = 8 as displayed in Figure 2. Let the statistic f (l ) := `(l ), the number of parts. We claim that this is



Bulgarian solitaire: “orbits” are now “trajectories”

E.g., for n = 8, two trajectories are

53→ 422→ 3311→ 422→ . . .

and

62→ 521→ 431→ 332→ 3221→ 4211→ 431→ . . .

(the new heaps are underlined).
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Bulgarian solitaire: homomesies
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Let φ(λ) be the number of parts of λ. In the forward orbit of λ = (5, 3), the average value of φ is
(4 + 3)/2 = 7/2; while for λ = (6, 2), the average value of φ is (3 + 4 + 4 + 3)/4 = 14/4 = 7/2.

Proposition (“Bulgarian Solitaire has homomesic number of parts”)

If n = k(k − 1)/2 + j with 0 ≤ j < k , then for every partition λ of n, the ergodic average of φ
on the forward orbit of λ is k − 1 + j/k .

(n = 8 corresponds to k = 4, j = 2.) So the number-of-parts statistic on partitions of n is
homomesic wrt/b; similarly for “size of (kth) largest part”.



Ignoring transience

Since S is finite, every forward orbit is eventually periodic, and the ergodic average of φ
for the forward orbit that starts at x is just the average of φ over the periodic orbit that
x eventually goes into.

This definition also works in situations where S is infinite. But for rest of this talk, we’ll
restrict attention to maps τ that are invertible on S , where S is finite, so our initial
definition (below) makes sense.

Definition ([PrRo15])

Given an (invertible) action τ on a finite set of objects S , call a statistic f : S → C
homomesic with respect to (S , τ) if the average of f over each τ -orbit O is the same

constant c for all O, i.e.,
1

#O
∑
s∈O

f (s) = c does not depend on the choice of O.

(Call f c-mesic for short.)
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Coxeter Toggling

Independent Sets

of Path Graphs



Independent Sets of a Path Graph

Definition
An independent set of a graph is a subset of the vertices that does not contain any
adjacent pair.

Let In denote the set of independent sets of the n-vertex path graph Pn. We usually
refer to an independent set by its binary representation.

Example
is written 1010100.

In this case, In refers to all binary strings with length n that do not contain the factor 11.
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Toggles

Definition (Striker - generalized earlier concept of Cameron and Fon-der-Flaass)

For 1 ≤ i ≤ n, the map τi : In → In, the toggle at vertex i is defined in the following
way. Given S ∈ In:

if i ∈ S , τi removes i from S ,
if i ̸∈ S , τi adds i to S , if S ∪ {i} is still independent,
otherwise, τi (S) = S .

Formally,

τi (S) =


S \ {i} if i ∈ S
S ∪ {i} if i ̸∈ S and S ∪ {i} ∈ In
S if i ̸∈ S and S ∪ {i} ̸∈ In

.



Toggles

Proposition

Each toggle τi is an involution, i.e., τ2
i is the identity. Also, τi and τj commute if and only if

|i − j | ≠ 1.

Definition
Let φ := τn ◦ · · · ◦ τ2 ◦ τ1, which applies the toggles left to right.

Example

In I5, φ(10010) = 01001 by the following steps:

10010 τ17−→ 00010 τ27−→ 01010 τ37−→ 01010 τ47−→ 01000 τ57−→ 01001.



Order & Orbits

The order of this action grows quite fast as n increases and is difficult to describe in
general. It is the LCM of the orbit sizes, which are not all divisors of some small
number (relative to n):
2, 3, 6, 15, 24, 231, 210, 1989, 240, 72105, 18018, 3354725, 3360
For n = 6 orbit sizes are 3, 7, and 11, so order is LCM(3,7,11)= 231.
The number of orbits appeared to be OEIS A000358 , but we didn’t understand why
at first.
This means that this action is unlikely to exhibit interesting Cyclic Sieving.
But we can still find homomesy.



Homomesy

Here is an example φ-orbit in I7, containing 1010100. In this case, φ10(S) = S .

1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1

Total: 4 2 3 2 3 2 4
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Theorem (Joseph–R. [JR18])

Define 1i : In → {0, 1} to be the indicator function of vertex i .

For 1 ≤ i ≤ n, 1i − 1n+1−i is 0-mesic on φ-orbits of In.
Also 211 + 12 and 1n−1 + 21n are 1-mesic on φ-orbits of In.
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Idea of the proof that 1i − 1n+1−i is 0-mesic: Given a 1 in an “orbit board”, if the 1 is not in the right
column, then there is a 1 either

2 spaces to the right,
or 1 space diagonally down and right,

and never both.
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Idea of the proof that 1i − 1n+1−i is 0-mesic: This allows us to partition the 1’s in the orbit board into
snakes that begin in the left column and end in the right column.

This technique is similar to one used by Shahrzad Haddadan to prove homomesy in orbits of an invertible
map called “winching” on k-element subsets of {1, 2, . . . , n}.
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Idea of the proof that 1i − 1n+1−i is 0-mesic: Each snake corresponds to a composition of n − 1 into
parts 1 and 2. Also, any snake determines the orbit!

1 refers to 1 space diagonally down and right
2 refers to 2 spaces to the right
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φ5(S) 0 1 0 0 0 0 0 1 0 1
φ6(S) 0 0 1 0 1 0 0 0 0 0
φ7(S) 1 0 0 0 0 1 0 1 0 1
φ8(S) 0 1 0 1 0 0 0 0 0 0
φ9(S) 0 0 0 0 1 0 1 0 1 0
φ10(S) 1 0 1 0 0 0 0 0 0 1
φ11(S) 0 0 0 1 0 1 0 1 0 0
φ12(S) 1 0 0 0 0 0 0 0 1 0
φ13(S) 0 1 0 1 0 1 0 0 0 1
φ14(S) 0 0 0 0 0 0 1 0 0 0
Total: 6 3 4 4 4 4 4 4 3 6

Red snake composition: 221121
Purple snake composition: 211212
Orange snake composition: 112122
Green snake composition: 121221
Blue snake composition: 212211

Brown snake composition: 122112



More Consequences of Snakes

Besides homomesy, this snake representation can be used to explain a lot about the
orbits (particularly the orbit sizes, i.e. the number of independent sets in an orbit).

When n is even, all orbits have odd size.
“Most” orbits in In have size congruent to 3(n − 1) mod 4.
The number of orbits of In (OEIS A000358)
And much more...

Using elementary Coxeter theory, it’s possible to extend our main theorem to other
“Coxeter elements” of toggles. We get the same homomesy if we toggle exactly once at
each vertex in any order.



Antichain Rowmotion

on Posets



Rowmotion: an invertible operation on antichains

Let A(P) be the set of antichains of a finite poset P .

Given A ∈ A(P), let ρA(A) be the set of minimal elements of the complement of the
downward-saturation of A (the smallest downset containing A).

ρA is invertible since it is a composition of three invertible operations:

antichains←→ downsets←→ upsets←→ antichains

# #

ρA :  # # −→

#  

# #

 # # −→

  

  

#   −→

# #

# #

#   

# #

This map and its inverse have been considered with varying degrees of generality, by many
people more or less independently (using a variety of nomenclatures and notations): Duchet,
Brouwer and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and
Striker and Williams, who named it rowmotion.
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Panyushev’s conjecture (AST’s theorem)

Let ∆ be a (reduced irreducible) root system in Rn. (Pictures soon!)

Choose a system of positive roots and make it a poset of rank n by decreeing that y covers x iff
y − x is a simple root.

Theorem (Armstrong–Stump–Thomas [AST11], Conj. [Pan09])

Let O be an arbitrary ρA-orbit. Then

1
#O

∑
A∈O

#A =
n

2
.

In our language, the cardinality statistic is homomesic with respect to the action of rowmotion
on antichains in root posets.



Picture of root posets

Here are the classes of posets included in Panyushev’s conjecture.

Φ+(A3)

e1 − e4

e1 − e3 e2 − e4

e1 − e2 e2 − e3 e3 − e4

Φ+(B3) e1 + e2

e1 + e3

e1 e2 + e3

e1 − e3 e2

e1 − e2 e2 − e3 e3

Φ+(C3) 2e1

e1 + e2

e1 + e3 2e2

e1 − e3 e2 + e3

e1 − e2 e2 − e3 2e3

Φ+(D4) e1 + e2

e1 + e3

e1 − e4 e1 + e4 e2 + e3

e1 − e3 e2 − e4 e2 + e4

e1 − e2 e2 − e3 e3 − e4 e3 + e4

Figure: The positive root posets A3, B3, C3, and D4.

(Graphic courtesy of Striker-Williams.)



Example of antichain rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρA-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

 # #

#

 # −→

# # #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

# #  

#

#  ↰

# # #

#

# # −→

# # #

#

# # −→

   

#

  −→

# # #

 

# # ↰

# # #

#

# # ←→

 #  

#

# #

#  #

Checking the average cardinality for each orbit we find that
1 + 2 + 2 + 1 + 1 + 2 + 2 + 1

8
=

0 + 3 + 2 + 1
4

=
2 + 1

2
=

3
2
.



Orbits of rowmotion on antichains of [2]× [3]

ρA

2

ρA

1

ρA

1

Average cardinality: 6/5

ρA

1 1

..

ρA

1

ρA

2

ρA

2

Average cardinality: 6/5

ρA

1 0

..



Orbits of rowmotion on antichains of [2]× [2]

ρA

1

ρA

2

Average cardinality: 1

ρA

1 0

..

ρA

1

..
1

For antichain rowmotion on this poset, periodicity has been known for a long time:

Theorem (Brouwer–Schrijver 1974)

On [a]× [b], rowmotion is periodic with period a+ b.

Theorem (Fon-Der-Flaass 1993)

On [a]× [b], every rowmotion orbit has length (a + b)/d , some d dividing both a and b.



Antichains in [a]× [b]: cardinality is homomesic

For rectangular posets [a]× [b] (the type A minuscule poset, where [k] = {1, 2, . . . , k}), the
homomesy is easier to show than for root posets.

Theorem (Propp, R.)

Let O be an arbitrary ρA-orbit in A([a]× [b]). Then
1

#O
∑
A∈O

#A =
ab

a+ b
.

7

6

5

4

3

2

1 8

9

10

11
12

-1+1-1-1-1 -1 -1 -1+1+1 +1 +1

(Graphic courtesy of Ben Young.)

This proof uses an non-obvious equivariant
bijection (the “Stanley–Thomas” word [Sta09,
§2]) between antichains in [a]× [b] and binary
strings, which carries the ρA map to cyclic
rotation of bitstrings.

The figure shows the Stanley–Thomas word
for a 3-element antichain in A([7]× [5]). Red
↔ +1, while Black ↔ −1.

This bijection also allowed Propp–R. to derive
refined homomesy results for fibers and
antipodal points in [a]× [b].
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Orbits of rowmotion on antichains of [2]× [3]

Look at the cardinalities across a positive fiber such as the one highlighted in red.

ρA

1

ρA

0

ρA

1

Average: 3/5

ρA

0 1

..

ρA

1

ρA

1

ρA

1

Average: 3/5

ρA

0 0

..



Orbits of rowmotion on antichains of [2]× [3]

How about across a negative fiber such as the one highlighted in red.

ρA

0

ρA

1

ρA

0

Average: 2/5

ρA

0 1

..

ρA

0

ρA

1

ρA

1

Average: 2/5

ρA

0 0

..



Antichains in [a]× [b]: fiber-cardinality is homomesic

For (i , j) ∈ [a]× [b], and A an antichain in [a]× [b], let 1i ,j(A) be 1 or 0 according to
whether or not A contains (i , j).

Also, let fi (A) =
∑

j∈[b] 1i ,j(A) ∈ {0, 1} (the cardinality of the intersection of A with the
fiber {(i , 1), (i , 2), . . . , (i , b)} in [a]× [b]), so that #A =

∑
i fi (A).

Likewise let gj(A) =
∑

i∈[a] 1i ,j(A), so that #A =
∑

j gj(A).

Theorem (Propp, R.)

For all i , j ,

1
#O

∑
A∈O

fi (A) =
b

a+ b
and

1
#O

∑
A∈O

gj(A) =
a

a+ b
.

The indicator functions fi and gj are homomesic under ρA, even though the indicator
functions 1i ,j aren’t.



Rowmotion on order ideals

We’ve already seen examples of Rowmotion on antichains ρA:

# #

ρA :  # # −→

#  

# #

 # # −→

  

  

#   −→

# #

# #

#   

# #

We can also define it as an operator ρJ on J(P), the set of order ideals of a poset P , by
shifting the waltz beat by 1:

# #

ρJ :  # # −→

  

  

#   −→

# #

# #

#   −→

# #

# #

#   

  

Or as an operator on the up-sets (order filters) U(P), of P :

  

ρU : #   −→

# #

# #

#   −→

# #

# #

#   

  

  

 # #

# #



Rowmotion via Toggling
(Rowmotion in Slow motion)



Toggling order ideals

Cameron and Fond-Der-Flaass showed how to write rowmotion on order ideals
(equivalently order filters) as a product of simple involutions called toggles.

Definition (Cameron and Fon-Der-Flaass 1995)

Let J(P) be the set of order ideals of a finite poset P .
Let e ∈ P . Then the toggle corresponding to e is the map Te : J(P)→ J(P) defined by

Te(U) =


U ∪ {e} if e ̸∈ U and U ∪ {e} ∈ J(P),
U \ {e} if e ∈ U and U \ {e} ∈ J(P),
U otherwise.

Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles Te from top to bottom along a linear extension of P gives
rowmotion on order ideals of P .



Toggling Up-sets
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Applying the toggles Te from top to bottom on P gives rowmotion on order ideals of P .

Example
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Toggling Up-sets

Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles Te from top to bottom on P gives rowmotion on order ideals of P .
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Toggling Up-sets

Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles Te from top to bottom on P gives rowmotion on order ideals of P .

Example



Rowmotion

We define the group action of rowmotion on the set of order ideals J(P) via the map
Row : J(P)→ J(P) given by the following three step process.

Start with an order ideal, and

1 Θ: Take the complement (giving an order filter)
2 ∇: Take the minimal elements (giving an antichain)
3 ∆−1: Saturate downward (giving a order ideal )

Example

Θ ∇ ∆−1



Rowmotion on [4]× [2]: Orbit 1



Rowmotion on [4]× [2]: Orbit 1

1

Area = 0

2

Area = 1

3

Area = 3

4

Area = 5

5

Area = 7

6

Area = 8

(0+1+3+5+7+8) / 6 = 4



Rowmotion on [4]× [2]: Orbit 2



Rowmotion on [4]× [2]: Orbit 2

1

Area = 2

2

Area = 4

3

Area = 6

4

Area = 6

5

Area = 4

6

Area = 2

(2+4+6+6+4+2) / 6 = 4



Rowmotion on [4]× [2]: Orbit 3



Rowmotion on [4]× [2]: Orbit 3

1

Area = 3

2

Area = 5

3

Area = 4

4

Area = 3

5

Area = 5

6

Area = 4

(3+5+4+3+5+4) / 6 = 4



Example of order ideal rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρJ -orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

   

#

 # −→

  #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

   

#

#  ↰

#   

#

# # −→

# # #

#

# # −→

   

#

  −→

   

 

  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average cardinality for each orbit we find that
1 + 2 + 4 + 3 + 1 + 2 + 4 + 3

8
=

5
2
;

0 + 3 + 5 + 6
4

=
7
2
;

2 + 1
2

=
3
2
. Darn!



Example of order ideal rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρA-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

   

#

 # −→

  #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

   

#

#  ↰

#   

#

# # −→

# # #

#

# # −→

   

#

  −→

   

 

  ↰

   

#

# # ←→

 #  

#

# #

#  #

Checking the average rank-alternating cardinality for each orbit we find:
1 + 2 + 2 + 1 + 1 + 2 + 2 + 1

8
=

1 + 2 + 2 + 1
4

=
2 + 1

2
=

3
2

Yay!



Root posets of type A: rank-signed cardinality is homomesic

Theorem (Haddadan)

Let P be the root poset of type An. If we assign an element x ∈ P weight
wt(x) = (−1)rank(x), and assign an order ideal I ∈ J(P) weight f (I ) =

∑
x∈I wt(x),

then f is homomesic under rowmotion and promotion, with average n/2.



Ideals in [a]× [b]: the case a = b = 2

Again we have an orbit of size 2 and an orbit of size 4:

Within each orbit, the average order ideal has cardinality ab/2 = 2.

0 1 3 4

2 2

1



Ideals in [a]× [b]: file-cardinality is homomesic

0 0 0 0 1 0 1 1 1 1 2 1

1 1 0 0 1 1

1

Within each orbit, the average order ideal has

1/2 of a violet element, 1 red element, and 1/2 of a brown element.



Ideals in [a]× [b]: file-cardinality is homomesic

For 1− b ≤ k ≤ a− 1, define the kth file of [a]× [b] as

{(i , j) : 1 ≤ i ≤ a, 1 ≤ j ≤ b, i − j = k}.

For 1− b ≤ k ≤ a− 1, let hk(I ) be the number of elements of I in the kth file of
[a]× [b], so that #I =

∑
k hk(I ).

Theorem (Propp, R.)

For every ρJ -orbit O in J([a]× [b]):

• 1
#O

∑
I∈O

hk(I ) =

{
(a−k)b
a+b if k ≥ 0

a(b+k)
a+b if k ≤ 0.

• 1
#O

∑
I∈O

#I =
ab

2
.



Piecewise-linear and

birational liftings



Generalizing to the piecewise-linear setting

The decomposition of classical rowmotion into toggles allows us to define a
piecewise-linear (PL) version of rowmotion acting on functions on a poset.

For a finite poset P , let P̂ denote P with an extra minimal element 0̂ and an extra
maximal element 1̂ adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of functions
f : P̂ → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y) whenever x ≤P y .

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f to the unique f ′

satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz⋗x f (z) + maxw⋖x f (w)− f (x) if y = x ,

where z ⋗ x means z covers x and w ⋖ x means x covers w .
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Generalizing to the piecewise-linear setting

For each x ∈ P , define the flip-map σx : O(P)→ O(P) sending f to the unique f ′

satisfying

f ′(y) =

{
f (y) if y ̸= x ,
minz⋗x f (z) + maxw⋖x f (w)− f (x) if y = x ,

where z ⋗ x means z covers x and w ⋖ x means x covers w .

Note that the interval [minz⋗x f (z),maxw⋖x f (w)] is precisely the set of values that
f ′(x) could have so as to satisfy the order-preserving condition.

If f ′(y) = f (y) for all y ̸= x , the map that sends

f (x) to min
z⋗x

f (z) + max
w⋖x

f (w)− f (x)

is just the affine involution that swaps the endpoints of the interval.



Example of flipping at a node

w1 w2

x

z1 z2

.1 .2

.4

.7 .8

−→

.1 .2

.5

.7 .8

1

min
z⋗x

f (z) + max
w⋖x

f (w) = .7 + .2 = .9

f (x) + f ′(x) = .4 + .5 = .9



Composing flips

Just as we can apply toggle-maps from top to bottom, we can apply flip-maps from top
to bottom, to get piecewise-linear rowmotion:

.8 .6 .6

.4 .3
σN

→ .4 .3
σW

→ .3 .3

.1 .1 .1

.6 .6
σE

→ .3 .4
σS

→ .3 .4

.1 .2

(We successively flip at N = (1, 1), W = (1, 0), E = (0, 1), and S = (0, 0) in order.)



Composing flips and example of PL rowmotion orbit

We can apply flip-maps from top to bottom (successively flipping at N = (1, 1),
W = (1, 0), E = (0, 1), and S = (0, 0) in order.), to get piecewise-linear rowmotion:

.8 .6 .6 .6 .6

.4 .3
σN

→ .4 .3
σW

→ .3 .3
σE

→ .3 .4
σS

→ .3 .4

.1 .1 .1 .1 .2

Here’s an orbit of this map (τ = σS ◦ σE ◦ σW ◦ σN), which again has period 4.

.8 .6 .8 .9

τ

vv

.4 .3 τ→ .3 .4 τ→ .7 .6 τ→ .6 .7

.1 .2 .4 .2



De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary ring operations (+, ·)
with the tropical operations (max,+). In the piecewise-linear (PL) category of the order
polytope studied above, our flipping-map at x replaced the value of a function
f : P → [0, 1] at a point x ∈ P with f ′, where

f ′(x) := min
z⋗x

f (z) + max
w⋖x

f (w)− f (x)

We can “detropicalize” this flip map and apply it to an assignment f : P → R(x) of
rational functions to the nodes of the poset, using that

min(zi ) = −max(−zi ), to get the birational toggle map

(Tx f )(x) = f ′(x) =

∑
w⋖x f (w)

f (x)
∑

z⋗x
1

f (z)



Birational rowmotion: definition

For a field K, a K-labelling of P will mean a function f : P̂ → K. We always set
f (0̂) = f (1̂) = 1.
For any v ∈ P , define the birational v-toggle as the rational map

Tv : KP̂ 99K KP̂ defined by (Tv f ) (w) =

∑
P̂∋u⋖v

f (u)

f (v)
∑

P̂∋u⋗v

1
f (u)

for w = v .

(We leave (Tv f ) (w) = f (w) when w ̸= v .)

This is a local change only to the label at v , and T 2
v = id (on the range of Tv ).

We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P .
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For a field K, a K-labelling of P will mean a function f : P̂ → K. We always set
f (0̂) = f (1̂) = 1.
For any v ∈ P , define the birational v-toggle as the rational map

Tv : KP̂ 99K KP̂ defined by (Tv f ) (w) =

∑
P̂∋u⋖v

f (u)

f (v)
∑

P̂∋u⋗v

1
f (u)

for w = v .

(We leave (Tv f ) (w) = f (w) when w ̸= v .)
This is a local change only to the label at v , and T 2

v = id (on the range of Tv ).
We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P .



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling

1̂

(1, 1)

(1, 0) (0, 1)

(0, 0)

0̂

1

z

x y

w

1

We have ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1)

using the linear extension ((1, 1), (1, 0), (0, 1), (0, 0)).

That is, toggle in the order “top, left, right, bottom”.
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(1, 1)
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1

z

x y

w

1
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Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,1)f

1

z

x y

w

1

1

(x+y)
z

x y

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,0)T(1,1)f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz y

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(0,1)T(1,0)T(1,1)f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz

w(x+y)
yz

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion: example

Example:

Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(0,0)T(0,1)T(1,0)T(1,1)f = ρB f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz

w(x+y)
yz

1
z

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).



Birational rowmotion orbit on a product of chains

Example: Iterating this procedure we get

(x+y)
z

ρB f = (x+y)w
xz

(x+y)w
yz

1
z ,

(x+y)w
xy

ρ2
B f = 1

y
1
x

z
x+y ,

1
w

ρ3
B f = yz

(x+y)w
xz

(x+y)w

xy
(x+y)w ,

z

ρ4
B f = x y

w .

Notice that ρ4
B f = f , which generalizes to ρr+s+2

B f = f for P = [0, r ]× [0, s]
[Grinberg-R 2015]. Notice also “antipodal reciprocity”.



Birational rowmotion orbit on a product of chains

Example: Iterating this procedure we get

(x+y)
z

ρB f = (x+y)w
xz

(x+y)w
yz

1
z ,

(x+y)w
xy

ρ2
B f = 1

y
1
x

z
x+y ,

1
w

ρ3
B f = yz

(x+y)w
xz

(x+y)w

xy
(x+y)w ,

z

ρ4
B f = x y

w .

Notice that ρ4
B f = f , which generalizes to ρr+s+2

B f = f for P = [0, r ]× [0, s]
[Grinberg-R 2015]. Notice also “antipodal reciprocity”.



Why study this generalization?

Motivations and Connections

Classical rowmotion is closely related to the Auslander-Reiten translation in quivers
arising in certain special posets (e.g., rectangles) [Yil17].
This generalization implies the results at the PL and combinatorial level (but not
vice-versa).
Birational rowmotion can be related to Y -systems of type Am × An described in
Zamolodchikov periodicity [Rob16, §4.4].
The orbits of these maps all have natural homomesic
statistics [PrRo15, EiPr13+, EiPr14].
Periodicity of these systems is generally nontrivial to prove.



Birational homomesy on files of J([0, r ]× [0, s])

The poset [0, 1]× [0, 1] has three files, {(1, 0)}, {(0, 0), (1, 1)}, and {(0, 1)}.

Multiplying over all iterates of birational rowmotion in a given file:

4∏
k=1

ρkB(f )(1, 0) =
(x + y)w

xz

1
y

yz

(x + y)w
(x) = 1,

4∏
k=1

ρkB(f )(0, 0)ρ
k
B(f )(1, 1) =

1
z

x + y

z

z

x + y

(x + y)w

xy

xy

(x + y)w

1
w

(w) (z) = 1,

4∏
k=1

ρkB(f )(0, 1) =
(x + y)w

yz

1
x

xz

(x + y)w
(y) = 1.

Each of these products equalling one is the manifestation, for the poset of a product of
two chains, of homomesy along files at the birational level.



Birational homomesy on files of J([0, r ]× [0, s])

The poset [0, 1]× [0, 1] has three files, {(1, 0)}, {(0, 0), (1, 1)}, and {(0, 1)}.

Multiplying over all iterates of birational rowmotion in a given file:
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Birational homomesy on files of J([0, r ]× [0, s])

Theorem ([GrRo15b, Thm. 30, 32])

(1) The birational rowmotion map ρB on the product of two chains P = [0, r ]× [0, s] is
periodic, with period r + s + 2.

(2) The birational rowmotion map ρB on the product of two chains P = [0, r ]× [0, s]
satisfies the following reciprocity: ρi+j+1

B f (i , j) = 1/ρ0
B f (r − i , s − j) = 1

xr−i,s−j
.

Theorem (Musiker-R [MR19])

Given a file F in [0, r ]× [0, s],
r+s+1∏
k=0

∏
(i ,j)∈F

ρkB f (i , j) = 1.

The proof of this involves constructing a complicated formula for the ρkB in terms of
families of non-intersecting lattice paths, from which one can also deduce periodicity and
the other geometric homomesies of this map, first proved by Grinberg-R [GrRo15b,
Thm. 32].
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Noncommutative Liftings

Much of this story lifts to skew fields, where the variables are not assumed to commute.

In this setting toggles are no longer involutions, but the NC analogue of ρB can be
defined, and their inverses can be included in the study.
Periodicity miraculously still appears to hold, though we have no proofs and
computer experiments are much more challenging.
In parallel with the lifting of ρJ to ρB , there is a lifting of ρA via Stanley’s Chain
polytope to birational (BAR-motion) and NC (NAR-motion) [JR19+].
The Stanley–Thomas word which we used to show periodicity and homomesy for ρA
lifts all the way to the NC setting, where it still shows homomesy. However, it does
not show periodicity outside the combinatorial realm, since it no longer losslessly
encodes the labelings [JR20+].



Rowmotion on Fence Posets



Fence posets

Let α = (α1, . . . , αt) be a composition of N − 1 into t parts (all αi ∈ P). The fence
poset F(α) has N = 1 +

∑
αi elements (segments of lengths αi ) and covering relations

a1 ⋖ a2 ⋖ · · ·⋖ aα1+1 ⋗ aα1+2 ⋗ · · ·⋗ aα1+α2+1 ⋖ · · ·

The lattice of order ideals J(F (α)) comes up
in cluster algebras and can be used to define
q-analogues of rational numbers.
Rowmotion on order ideals and antichains of
F (α) is currently being studied by a subgroup
of a recent BIRS workshop on d.a.c.
Bruce presented the problem based on the
following result he proved.

F (4, 2, 3) =



Antichain rowmotion on two-segment fences

Theorem (B. Sagan, Unpub)

Rowmotion on the antichains of F (a− 1, b − 1) has the following properties.

(1) All orbits have size ℓ = LCM(a, b) except for one which has size ℓ+ 1.

(2) The number of orbits is GCD(a, b).

(3) The number of antichain elements in the orbits of size ℓ is m =
2ab − a− b

GCD(a, b)
.

The number of antichain elements in the other orbit is m + 1.

(4) The total size of the order ideals in the orbits of size ℓ is
ℓ(a+ b − 2)

2
.

The total size of the order ideals in the orbit of length ℓ+ 1 is
(ℓ+ 2)(a+ b − 2)

2
+ 1.



Antichain homomesies for rowmotion on two-segment fences

Theorem
Label the elements of F (a− 1, b − 1) above by 1, 2, 3, . . . , a (going up) then
a+ 1, . . . , a+ b − 1, and let χj be the indicator function of node j . Then

1 The statistic χi − χj is 0-mesic for i and j unshared elements in the same segment.
2 The statistics a ∗ χ1 + χa and b ∗ χa+b−1 + χa are 1-mesic.

F (3, 5) =



Unilink fences: F (1, 1, . . . , 1)

One of Bruce’s initial questions was what about F (1, 1, . . . , 1). It turned out that this case had
already been explored. Let Zn = F (1n−1) (with n elements).

Proposition (Joseph–R.)

We have a bijection η : In → J(Zn) by
η(S) := {ai | i ∈ [n], i odd, i ̸∈ S} ∪ {ai | i ∈ [n], i even, i ∈ S}.

Example

Let n = 7 and S = 1001010 = {1, 4, 6}. Then a1 ̸∈ η(S) and a3, a5, a7 ∈ η(S) because 1 ∈ S
and 3, 5, 7 ̸∈ S . Also, a2 ̸∈ η(S) and a4, a6 ∈ η(S), since 2 ̸∈ S and 4, 6 ∈ S .

a1

a2

a3

a4

a5

a6

a7

η
7−→1001010



Equivariant bijection between promotion on Zn and toggling independent sets of Pn.

This map η is an equivariant bijection at the level of toggles, giving an equivariant bijection with
(Striker–Williams) promotion, which toggles at each element of Zn from left to right. Promotion
and rowmotion are two examples of Coxeter-toggling ; any two such maps are conjugate in the
toggle group [Striker–Williams].

Proposition (Joseph–R.)

For every i ∈ [n], η ◦ τi = ti ◦ η. Thus, η ◦ φ = Pro ◦η, making η an equivariant bijection, as
shown in the following commutative diagrams.

In

In

J(Zn)

J(Zn)

τi

η

η

ti

In

In

J(Zn)

J(Zn)

φ

η

η

Pro



Homomesies for Coxeter toggling J(Zn)

Theorem (Joseph–R.)

Let w be a Coxeter element in Tog(Zn). Let χaj : J(Zn)→ {0, 1} be the indicator function of
aj . Then on w -orbits in J(Zn), the following statistics are homomesic.

If n is odd, then χaj − χan+1−j is 0-mesic for every j ∈ [n]. Also 2χa1 − χa2 and
2χan − χan−1 are both 1-mesic.

If n is even, then χaj + χan+1−j is 1-mesic for every j ∈ [n]. Also 2χa1 − χa2 is 1-mesic and
2χan − χan−1 is 0-mesic.

Proof.
From the definition of η, it is clear that for any S ∈ In,

χaj (η(S)) =

{
χj(S) if j is even
1− χj(S) if j is odd .

The rest of the proof follows the from equivariant bijection and our earlier work on toggling
I(Pn)



Summary and Take Aways

• Studying dynamics on objects in algebraic combinatorics is interesting, particularly
with regard to our THEMES:
1) Periodicity/order ; 2) Orbit structure; 3) Homomesy 4) Equivariant bijections

• Examples of cyclic sieving are also ripe for homomesy hunting.

• Situations in which maps can be built out of toggles seem particularly fruitful.

• Combinatorial objects are often discrete “shadows” of continuous PL objects, which
in turn reflect algebraic dynamics. But combinatorial tools are still frequently useful, even
at this level.

Slides for this talk are available online at

Google “Tom Roby”.

Thanks very much for coming to this talk!
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