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Diagrams and Reduced Words

The Rothe diagram for w ∈ Sn is the collection of boxes

D(w) = {(i , j) ∈ [n]× [n] : j < w(i), i < w−1(j)}.

Filling boxes in row i of D(w) with i , i + 1, . . . gives a reduced
word for D(w) (reading labels bottom to top, left to right).

Example: w = 31726845 = s6s7s5s6s3s4s5s6s1s2

1 2

3 4 5 6

5 6
6 7

1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 1011
5 6 7 8 9 101112
6 7 8 9 10111213
7 8 9 1011121314
8 9 101112131415
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Reduced Words

Question

What are all of the ways to shade entries in this labelled grid to
give a reduced word for w (reading labels bottom to top, left to
right)?

Example: w = 1432 = s3s2s3

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
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Reduced Pipe dreams (Bergeron–Billey ’94)

The set of reduced pipe dreams RPD(w) for w ∈ Sn is the set of
diagrams obtainable through successive moves

+ +
.
.
.

.

.

.

+ +
+

7→
+

+ +
.
.
.

.

.

.

+ +

starting from left justified D(w) in [n]× [n].

Example: RPD(w) for w = 1432

→ ++
+

+
+
+

++

+

++
+

+
++
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Pipe dreams (Fomin–Kirillov ’94)

The set of pipe dreams PD(w) for w ∈ Sn is the set of diagrams
obtainable through successive moves

+ +
.
.
.

.

.

.

+ +
+

7→
+

+ +
.
.
.

.

.

.

+ +
∪

+
+ +
.
.
.

.

.

.

+ +
+

.

starting from left justified D(w) ⊆ [n]× [n].

Example: PD(w) for w = 132

→ +
+ +

+
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Grothendieck polynomials

Here PD(w) corresponds shadings of the labelled grid such that
the Demazure product of the corresponding entries gives w .

These PD(w) generate Grothendieck polynomials:

Theorem [Fomin–Kirillov ’94]

Gw (x1, . . . , xn) =
∑

P∈PD(w)

(−1)(#+ ′s)−ℓ(w)xwt(P)

Here xwt(P) = x#+ ′s in row 1
1 . . . x#+ ′s in row n

n .

Problem

Give an easily computable formula for deg(Gw (x1, . . . , xn)), where
w ∈ Sn.

Colleen Robichaux UCLA Castelnuovo–Mumford regularity and excited Young diagrams



Degrees of Grothedieck polynomials

Initial work of Rajchgot-Ren-R.-St. Dizier-Weigandt ’19 proved a
formula for Grassmannian permutations.

Theorem [Pechenik-Speyer-Weigandt ’21]

For w ∈ Sn,

deg(Gw (x1, . . . , xn)) = raj(w) =
∑
i∈[n]

ri .

Here ri counts the number of terms in (wi ,wi+1, . . . ,wn) excluded
from the longest increasing subsequence in w starting with wi .

Example: w = 2341756

We compute deg(Gw (x1, . . . , xn)) = 2+ 2+ 2+ 1+ 2+ 0+ 0 = 9.
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Matrix Schubert varieties

Matrix Schubert variety Xw has defining ideal

Iw = ⟨rw (i , j) + 1 minors of zi×j(w)⟩.

Example: w = 4132

rw−→

0 0 0 1
1 1 1 2
1 1 2 3
1 2 3 4

 z(v)−−→

z11 z12 z13 z14
z21 z22 z23 z24
z31 z32 z33 z34
z41 z42 z43 z44


Iw = ⟨z11, z12, z13, z21z32−z22z31, z11z22−z12z21, z11z32−z12z31⟩

We can study C[Xw ] = C[z]/Iw .
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Minimal free resolution

Consider the coordinate ring S/I . The minimal free resolution

0 → ⊕
j∈Z

S(−j)βl,j → · · · → ⊕
j∈Z

S(−j)β0,j → S/I → 0.

The Castelnuovo–Mumford regularity of S/I

reg(S/I ) := max{j − i | βi ,j ̸= 0}.

Combining results of Fulton ’92, Knutson–Miller ’05, and Buch ’02:

Theorem

reg(C[Xw ]) = deg(Gw (x1, . . . , xn)) − ℓ(w).
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Kazhdan–Lusztig varieties of Woo–Yong ’06

Kazhdan–Lusztig variety Nv ,w has defining ideal

Iv ,w = ⟨rw (i , j) + 1 minors of zi×j(v)⟩.

Example: w = 4132, v = 4231

rw−→

0 0 0 1
1 1 1 2
1 1 2 3
1 2 3 4

 z(v)−−→

z11 z12 z13 1
z21 1 0 0
z31 0 1 0
1 0 0 0


Iv ,w = ⟨z11, z12, z13, z11 − z12z21, −z12z31, −z31⟩

Matrix Schubert varieties are examples of KL varieties.
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Unspecialized Grothendiecks and pipe dreams

The set of unspecialized pipe dreams PD(v ,w) for v ,w is the set
of pipe dreams for w supported on left justified D(v).

Example: PD(v ,w) for w = 132, v = 312.

→ +
+ +

+

so #PD(v ,w) = 1.

Defined by Woo–Yong, the unspecialized Grothendiecks Gv ,w are

Gv ,w (x1, . . . , xn) =
∑

P∈PD(v ,w)

(−1)(#+ ′s)−ℓ(w)xwt(P)

Theorem

reg(C[Nv ,w ]) = deg (Gv ,w ) − ℓ(w).
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Correspondence with subwords

The set PD(v ,w) bijects with subwords of v for w under the
Demazure product.

Example: v = 46128935(10)7 and w = 412368597(10).

1 2 3
2 3 4 5

5
6

6
7

7
8

9

1 2 3

5
6 7

8

+++
+

+ +
+

+++
+

+
+

+
+

Colleen Robichaux UCLA Castelnuovo–Mumford regularity and excited Young diagrams



321-avoiding permutations

321-avoiding permutations are permutations such that there is no
i < j < k such that wi > wj > wk . For example, w = 1746235 is
not 321-avoiding.

To simplify the problem of computing deg(Gv ,w ), we restrict to
321-avoiding permutations v ,w .

Helpful facts:

321-avoiding permutations are totally commutative.

321-avoiding permutations naturally correspond with
skew-Young diagrams.
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K-skew excited Young diagrams

Let v ≥ w ∈ Sn be 321-avoiding. We can associate v with a skew
Young diagram Rv . Mark positions in Rv with +’s corresponding
to the earliest subword of w in v .

A K-skew excited Young diagram of w in v is a diagram
obtainable by applying K-excited moves

+ 7→ + ∪ +
+

to the initial diagram for w . Call the set of these SEYD(v ,w).

Example: Below are SEYD(v ,w) for v = 47128356 and
w = 14273568.

++
+++

+
+++ +

++
+++ +
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Unspecialized Grothendieck polynomials

Restricting to 321-avoiding permutations:

Gv ,w (x1, . . . , xn) =
∑

P∈SEYD(v ,w)

(−1)#P−ℓ(w)xwt(P).

This gives

deg(Gv ,w ) = max{#P | P ∈ SEYD(v ,w)}

reg(C[Nv ,w ]) = max{#P | P ∈ SEYD(v ,w)}− ℓ(w).

Example: SEYD(v ,w) for v = 47128356 and w = 14273568.

++
+++

+
+++ +

++
+++ +

Thus deg(Gv ,w )) = 6, so reg(C[Nv ,w ]) = 6− 5 = 1.
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Computing CM-regularity of certain KL varieties

Theorem [Rajchgot–R.–Weigandt ’23]

For vρ,wν ∈ Sn Grassmannian with same descent,

reg(C[Nvρ,wν ]) =

n∑
i=1

#antidiag(T(ρ, ν)|≥i).

Example: v(5,4,2,1,0),w(6,6,4,4,4) 7→ T ((5, 4, 2, 1, 0), (6, 6, 4, 4, 4))

+++++
++++
++
+

→ ++++
++++ +

+
+ +

→ 0 0 0 0 1
0 0 0 0
1 2
1

gives reg(C[Nvρ,wν ]) = 1+ 2+ 1 = 4.
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Application: one-sided mixed ladder determinantal ideals

A ladder L is a Young diagram filled with indeterminates zij . The
ideal IL ⊆ C[L] is generated by NW minors of L determined by
marked points on its boundary. This defines the one-sided mixed
ladder determinantal variety C[L]/IL.

For example, we can take L:

z11 z12 z13 z14

z21 z22 z23 z24

z31 z32 s2s1 s
2

These are Grassmannian KL-varieties

C[L]/IL ∼= C[Nvρ,wν ].

Corollary [Rajchgot–R.–Weigandt ’23]

reg(C[L]/IL) =
n∑

i=1

#antidiag(T(ρ, ν)|≥i).
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One-sided ladders and lattice paths

To each one-sided ladder, we can associate families of
non-intersecting NE-oriented lattice paths.

The marked points on horizontal edges determine starting points of
the paths and the marked points on vertical edges determine
ending points of the paths.

Example: Constructing lattice paths from L

s
2

s
3

s
2

s
1 → s s

sss
s
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Bijection between lattice paths and SEYD

Lattice paths in the region L naturally biject with SEYD’s by
drawing +’s in each cell not occupied by a path.

Example

++++
++++ +

+
+ +s s

sss
s +++++

++++
+
+ +s s

sss
s +++++

++++
++
+s s

sss
s

In this setting, maximizing K-excited moves translates to

maximizing elbows in the region L.
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CM-regularity and lattice paths

Reframing Conca ’95, we compute the regularities of these
determinantal ideals IL using lattice paths:

Theorem [Conca ’95, Krattenhaler–Ghorpade ’15]

For IL cogenerated by NW-minors of an n ×m matrix

reg(C[L]/IL) = max
P∈NILP(L)

#{elbows in P}.

Example: P ∈ NILP(L) with maximal number of elbows

s
2

s
3

s
4

s
2 → s s s

sss→ s s s
sss

gives reg(C[L]/IL) = 7.
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CM-regularity and lattice paths

Using this lattice path formula, we can re-derive the formula for
the classical case, i.e., for IL generated by the (k + 1)-minors of an
n ×m rectangle L:

reg(C[L]/IL) = nm − (n − k)(m − k) − k ·max(n,m).

Example: P ∈ NILP(L) with maximal number of elbows

s
4

→ s s s
sss→ s s s

sss
gives reg(C[L]/IL) = 6 = 5 · 6− 2 · 3− 3 · 6.
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CM-regularity of one-sided ladders and lattice paths

Following work of Krattenhaler–Prohaska ’99 and Ghorpade ’02:

Theorem [Krattenhaler–Ghorpade ’15, Rajchgot–R.–Weigandt ’23]

For a one-sided ladder L

reg(C[L]/IL) = max
P∈NILP(L)

#{elbows in P}.

Example: P ∈ NILP(L) with maximal number of elbows

+++++
++++
++
+ → s s

sss
s

gives reg(C[L]/IL) = 4 = reg(C[Nvρ,wν ]).
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Two-sided mixed ladder determinantal ideals

A two-sided ladder L̃ is a skew-Young diagram filled with zij ’s. IL̃ is

the ideal generated by the NW ri minors of L̃. This defines the
two-sided mixed ladder determinantal variety C[L̃]/I

L̃
.

ri
L̃

Theorem [Escobar-Fink-Rajchgot-Woo (’24+)]

For particular v ,w ∈ Sn 321-avoiding

C[L̃]/I
L̃
∼= C[Nv ,w ].

We give an algorithm to construct a maximal P ∈ SEYD(v ,w) for
v ,w ∈ Sn 321-avoiding.
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Algorithm example computing reg(C[Nv ,w ])

Example: Constructing a maximal skew-excited Young diagram
given by certain 321-avoiding v ,w ∈ S15.

++++
++ ++
++ ++

++
++

++++
+ ++
+ ++

++
++

+++
+ +
+ +

++
++

+++
+ +

+
++

+++

+++
+ +

+
++

+++

gives reg(C[Nv ,w ]) = 9.
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CM-regularity of two-sided ladders and lattice paths

Generalizing work of Krattenhaler–Ghorpade ’15 combined with
Woo–Yong ’12, we can compute reg(C[L̃]/I

L̃
) using lattice paths:

Theorem [Krattenhaler–Ghorpade ’15, R. ’23]

For a two-sided ladder L̃

reg(C[L̃]/I
L̃
) = max

P∈NILP(L̃)
#{unforced elbows in P}.

Example: P ∈ NILP(L̃) with maximal number of elbows

s
2

s
3

s
2

s
1 → s s

sss
s→ s s

sss
s

gives reg(C[L̃]/I
L̃
) = 3.
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Conclusions

We can express reg(C[Nv ,w ]) in terms of excited Young
diagrams and ℓ(w).

For v ,w Grassmannian, we obtain a tableaux-based formula
to compute reg(C[Nv ,w ]).

For v ,w 321-avoiding, we obtain an algorithm to compute
reg(C[Nv ,w ]).

We connect our formulas to the combinatorics of lattice paths
to compute regularities for ladder determinantal ideals.
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Finding µ maximal

Let R(λ) = R1 ∪ . . . ∪ Rr partition the columns of λ according to
length and set λ(k) = ∪k

j=1Rj . Then if (i , λi ) ∈ Rhi ,

µi = λi + sv(λ(hi−1)).

Example: λ = (10, 10, 9, 7, 7, 2, 1)

2
1 2 3
2 3 4

1 2 3 4 5
1 2 3 4 5 6

↔
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Regularity Formula for wλ Grassmannian

Theorem [Rajchgot-Ren-R-St.Dizier-Weigandt (2019)]

Suppose wλ ∈ Sn has descent k. Then

reg(S/Iwλ
) =

∑
1≤i≤k

sv(λ(hi−1))

Example: λ = (10, 10, 9, 7, 7, 2, 1)

Thus reg(S/Iwλ
)

= 1+ 3+ 3+ 5+ 6 = 18
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Previous results

Then following special cases were known:

classical determinantal ideals (Gräbe ’88)

For (k + 1)-minors of an n ×m matrix, the regularity is
nm − (n − k)(m − k) − k ·max(n,m)

Ideals cogenerated by NW-minors of an n ×m matrix (Conca
’95)

given by RSK
extended/reframed by Krattenhaler–Ghorpade ’15 in terms of
lattice paths.

In fact, K(X (L); t) is determinantal in terms of these lattice
paths, as established by Abhyankar–Kulkarni ’89 and
Herzog–Trung ’92.
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Grassmannian permutations

A permutation w ∈ Sn is Grassmannian if it has a unique descent
k , i.e. if i ̸= k, then wi < wi+1. To each Grassmannian
permutation w ∈ Sn, we can uniquely associate a partition λ with
k parts.

Example: w = 24813567 and λ = (5, 2, 1)

⇐⇒
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