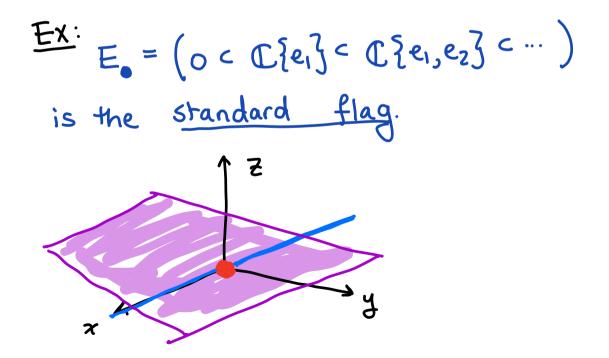
joint work with E.Insko and A. Woo

Flags
A full flag in
$$\mathbb{C}^n$$
 is a nested
sequence of subspaces:
 $V_0 = (0 \neq V_1 \neq V_2 \neq \cdots \neq V_n = \mathbb{C}^n).$

The flag variety is the collection
$$\mathcal{B}$$
 of all full flags in \mathbb{C}^n .



Rmk: & is the flag variety of

$$G = GL_n(\mathbb{C})...$$

() $GC \otimes by gV_{:=} (ocg(V_1)cg(V_2)c...)$
(2) The action is transitive.
(3) $Stab_G(E_{\bullet}) = \begin{bmatrix} * & * \\ 0 & * \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} * & * \\ 0 & * \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} * & * \\ 0 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix}$
Subgp of upper A matrices.
 $B \simeq G/B \rightarrow G = reductive alg. gP$
 $B = Borel sabgp.$
Fact: B is a Smooth variety.
no corners (cusps) \subseteq locally, the self - intersections zero set of some polynomials.
 $y^2 - x^2(x+1) = 0$

Subvarieties of B

(I) Schubert varieties

Given a permutation
$$w \in S_n$$
, the
corresponding Schubert variety is
 $X_w := \overline{BwE} \in \mathcal{B}$
 $wE = (o \in \mathbb{C} \{e_{wG}\} \in \mathbb{C} \{e_{w(s)}, e_{w(z)}\}^{c...})$
"permutation flag"
FACTS: (1) Irreducible, dim $(X_w) = I l w$)
 $\sum_{i < j} w(i) > w(j) \}$
(Lakshnibai - Sandhya) X_w is smooth
iff w avoids 4231 and 3412.
 $\sum_{i < j < j} no$ subsequence of w
in same relative order.
Ex: $w = 631624 \in S_G \Rightarrow X_w$ is
 42.31

<u>RMK</u>: Pattern avoidance also characterizes:

- · Gorenstein (Woo-Yong)
- bundle structures (Richmond+)
- LCI (Úlfarsson Woo) ... etc.

(II) Hessenberg varieties
Let
$$X \in M_n(C)$$
 and $\underline{h}: [n] \longrightarrow [n]$
s.t. $h(i) \ge i$ and $h(i-1) \notin h(i)$.
Z Hessenberg Function. (123) Catalan
(123) Many!
(133)...
The Hessenberg variety corresponding
to X and h is:
Hess $(X,h) := \{V_0 \notin B \mid X(V_1) \subseteq V_{B(i)} \forall i\}$.

FACTS/EX :

(1)
$$h(i) = n \forall i \Rightarrow \text{Hess}(X,h) = \&$$

(2) $h(i) = i \forall i \Rightarrow \text{Hess}(X,h) \text{ is a Springer Fiber.}$
(3) In general, $\text{Hess}(X,h)$ is reducible and dim $\text{Hess}(X,h) = P$.
(4) Given a partition $\lambda = (\lambda_1 \ge \dots \ge \lambda_k)$
of n, let $X_\lambda \in M_n(\mathbb{C})$ be a regular matrix of Jordan type λ .
Ex. $\lambda = (2, \lambda) - 4$
 $X_{(2,2)} = \begin{bmatrix} c_1 & 1 & 0 \\ 0 & c_2 & 1 \\ 0 & 0 & c_2 \end{bmatrix} c_1 \neq c_2$

Regular Hessenberg varietiesHus
$$(X_{\lambda}, h)$$
 is a regular Hessenbergvariety...• Hus (X_{λ}, h) is irreducible iff
 $h(i) > i$ for all $i < n$ • dim Hus $(X_{\lambda}, h) = \sum_{i} (h(i) - i)$.Q: For which λ, h is Hus (X_{λ}, h) smooth? $h_{o}(i) := i + vi < n$ Huss (X_{λ}, h_{o}) $for > mooth$?Huss (X_{λ}, h_{o}) $for > mooth$?Huss (X_{λ}, h_{o}) $for > mooth$?Note: Smooth?Huss (X_{λ}, h_{o}) $for > mooth$?Huss (X_{λ}, h_{o}) $for > mooth$ Huss (X_{λ}, h_{o}) $for > mooth$?Huss (X_{λ}, h_{o}) $for > mooth$ Huss (X_{λ}, h_{o}) $for > mooth$

Singular permutation flags
$$w E_{\bullet}$$

in $Mus(X_{\lambda}, h_{\bullet})$

The partition
$$\lambda = (\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_d)$$
 defines
a set partion of $[n]$:
 $J_{\lambda} := \{1, 2, \dots, \lambda_1\} \amalg \{\lambda_1 + 1, \lambda_1 + 2, \dots, \lambda_l + \lambda_2\} \amalg$
 $(\dots \amalg \{\lambda_l + \dots + \lambda_{d-l} + 1, \dots, n\}$
 $(J_{\lambda} - blocks)''$

For each $w \in S_n$, let w^2 be the permutation obtained by reordering entries in each J_2 -block to be increasing.

 E_X : $\lambda = (4,2,2) ⊢ 8$ $J_{\lambda} = \{1,2,3,4\} J \bot \{5,6\} \bot \{7,8\}$

 $w = 67814532 \longrightarrow w^{2} = 57812634$

$$EX: n = 8, \lambda = (4, 2, 2)$$

$$w = 65 + 78 + 1432 \longrightarrow w^{2} = 56 + 78 + 1234$$
avoid all bad patterns
$$w = 05 + 78 + 1234$$

$$w = 05 + 78 + 1234$$

 $w = 87.65 \underline{1243}$ $\rightarrow wE$ is singular pt!

COR: For all
$$n \ge 3$$
, Hess (X_{λ}, h_{0}) is
smooth iff $\lambda = (1, 1, ..., 1)$.

FURTHER WORK/Q's:

- There is a combinatorial criterion for determining which "Hessenberg-Schubert varieties" Hess (X2, h.) N BWE. are singular - and it is not pattern avoidance!
- · Describe the singular locus of Hers (X2, h.).
- What happens to Herro (X7, h) for 7 fixed as h varies?