Kneser graphs are Hamiltonian
Torsten Mütze (Warwick + Prague)
joint with Arturo Merino (TU Berlin) and Namrata (Warwick)

MSU Combinatorics and Graph Theory Seminar

extended abstract in [STOC 2023]

Introduction

```
• Kneser graph K(n, k)vertices = \binom{[n]}{k}\boldsymbol{k}\left( \right)edges = pairs of disjoint setsA \cap B = \emptyset
```
Introduction

• **Kneser graph**
$$
K(n, k)
$$

\nvertices = $\binom{[n]}{k}$
\nedges = pairs of disjoint sets
\n $A \cap B = \emptyset$
\n $A \cap B = \emptyset$
\n $\{3, 5\}$
\n $\{4, 2\}$
\n $\{3, 4\}$

Petersen graph $K(5, 2)$

Introduction

• **Kneser graph**
$$
K(n, k)
$$

\nvertices = $\binom{[n]}{k}$
\nedges = pairs of disjoint sets
\n $A \cap B = \emptyset$
\n $A \cap B = \emptyset$
\n $\{3, 5\}$
\n $\{4, 2\}$
\n $\{3, 4\}$
\n $\{4, 2\}$
\n $\{3, 4\}$

Petersen graph $K(5, 2)$

• [Lovász 1978]: proof of Kneser's conjecture

 $\chi(K(n,k)) = n - 2k + 2$

- [Lovász 1978]: proof of Kneser's conjecture $\chi(K(n, k)) = n - 2k + 2$
- used Borsuk-Ulam theorem \longrightarrow topological combinatorics [Bárány 1978], [Greene 2002], [Ziegler 2002], [Matoušek 2004]

- [Lovász 1978]: proof of Kneser's conjecture $\chi(K(n,k)) = n - 2k + 2$
- used Borsuk-Ulam theorem \longrightarrow topological combinatorics [Bárány 1978], [Greene 2002], [Ziegler 2002], [Matoušek 2004]
- [Erdős, Ko, Rado 1961]: $\alpha(K(n,k)) = \binom{n-1}{k-1}$ $k-1$ $\big)$

• vertex-transitive

- vertex-transitive
- 'dense' if n is large w.r.t. k
- 'sparse' if n is small w.r.t. k

-
- 'dense' if n is large w.r.t. k • vertex-transitive
• 'dense' if n is large w.r.t.
• 'sparse' if n is small w.r.t
• sparsest case $n = 2k + 1$
- \bullet 'sparse' if n is small w.r.t. k
-

-
- 'dense' if n is large w.r.t. k • vertex-transitive
• 'dense' if n is large w.r.t.
• 'sparse' if n is small w.r.t
• sparsest case $n = 2k + 1$
- \bullet 'sparse' if n is small w.r.t. k
-
- $O_k := K(2k + 1, k)$ odd graph [Biggs 1979]

• long conjectured to have a Hamilton cycle

- long conjectured to have a Hamilton cycle
- notorious exception: Petersen graph $K(5,2)$

- long conjectured to have a Hamilton cycle
- notorious exception: Petersen graph $K(5,2)$
- Conjecture [Lovász 1970]:
	- Every connected vertex-transitive graph admits a Hamilton cycle, with five exceptions (one of them $K(5,2)$).

- long conjectured to have a Hamilton cycle
- notorious exception: Petersen graph $K(5, 2)$
- Conjecture [Lovász 1970]:
	- Every connected vertex-transitive graph admits a Hamilton cycle, with five exceptions (one of them $K(5,2)$).
	- Every connected vertex-transitive graph admits a Hamilton path.

- long conjectured to have a Hamilton cycle
- notorious exception: Petersen graph $K(5, 2)$
- Conjecture [Lovász 1970]:
	- Every connected vertex-transitive graph admits a Hamilton cycle, with five exceptions (one of them $K(5,2)$).
	- Every connected vertex-transitive graph admits a Hamilton path.
- unknown even for specific and explicit families of graphs (e.g., Cayley graphs)

- long conjectured to have a Hamilton cycle
- notorious exception: Petersen graph $K(5, 2)$
- Conjecture [Lovász 1970]:
	- Every connected vertex-transitive graph admits a Hamilton cycle, with five exceptions (one of them $K(5,2)$).
	- Every connected vertex-transitive graph admits a Hamilton path.
- unknown even for specific and explicit families of graphs (e.g., Cayley graphs)
- Kneser graphs: should be easier for dense cases

• [Heinrich, Wallis 1978]: $n \geq (1+o(1))k^2/\ln 2$

- [Heinrich, Wallis 1978]: $n \geq (1+o(1))k^2/\ln 2$
- [B. Chen, Lih 1987]: $n \ge (1 + o(1))k^2 / \log k$

- [Heinrich, Wallis 1978]: $n \geq (1+o(1))k^2/\ln 2$
- [B. Chen, Lih 1987]: $n \ge (1 + o(1))k^2 / \log k$
- [Y. Chen 2000]: $n \geq 3k$

- [Heinrich, Wallis 1978]: $n \geq (1+o(1))k^2/\ln 2$ **Contract**
- [B. Chen, Lih 1987]: $n \ge (1 + o(1))k^2 / \log k$
- [Y. Chen 2000]: $n \geq 3k$
- $[Y. Chen + Füredi 2002]$: short proof for $n = ck, c \in \{3, 4, ..., \}$

- [Heinrich, Wallis 1978]: $n \geq (1+o(1))k^2/\ln 2$ **CONTRACT**
- [B. Chen, Lih 1987]: $n \ge (1 + o(1))k^2 / \log k$
- [Y. Chen 2000]: $n \geq 3k$
- $[Y. Chen + Füredi 2002]$: short proof for $n = ck, c \in \{3, 4, ..., \}$
- [Y. Chen 2000]: $n \ge (1 + o(1))2.62 \cdot k$

- sparsest case $n = 2k + 1$
- $O_k := K(2k+1, k)$ odd graph [Biggs 1979]

- sparsest case $n = 2k + 1$
- $O_k := K(2k + 1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd $1972+1973$], [Biggs 1979]: $O_k = K(2k+1,k)$ has a Hamilton cycle for all $k \geq 3.$

- sparsest case $n = 2k + 1$
- $O_k := K(2k + 1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd $1972+1973$], [Biggs 1979]: $O_k = K(2k+1,k)$ has a Hamilton cycle for all $k \geq 3.$

 $O_2=K(5,2)$ is Petersen graph

- sparsest case $n = 2k + 1$
- $O_k := K(2k + 1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_k = K(2k+1,k)$ has a Hamilton cycle for all $k \geq 3.$ $O_2=K(5,2)$ is Petersen graph
- [Balaban 1973]: $k = 3, 4$

- sparsest case $n = 2k + 1$
- $O_k := K(2k + 1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_k = K(2k+1,k)$ has a Hamilton cycle for all $k \geq 3.$ $O_2=K(5,2)$ is Petersen graph
- [Balaban 1973]: $k = 3, 4$
- [Meredith, Lloyd 1972]: $k = 5, 6$

- sparsest case $n = 2k + 1$
- $O_k := K(2k + 1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_k = K(2k+1,k)$ has a Hamilton cycle for all $k \geq 3.$ $O_2=K(5,2)$ is Petersen graph
- [Balaban 1973]: $k = 3, 4$
- [Meredith, Lloyd 1972]: $k = 5, 6$
- [Mather 1976]: $k = 7$

REFERENCES 1. GUY H. J. MEREDITH AND E. KEITH LLOYD, The Footballers of Croam, J. Com-

binatorial Theory B 15 (1973), 161-166.

The Rugby Footballers of Croam

MICHAEL MATHER

Department of Mathematics, University of Otago, Dunedin, New Zealand Communicated by W. T. Tutte Received November 7, 1974

The vertices of the graph O_8 are indexed by the 7-subsets of a 15-set. Two vertices are adjacent if and only if their labeling sets are disjoint. This paper demonstrates a Hamiltonian circuit in O_8 .

The following Hamiltonian circuit for O_8 was discovered by the methods of Meredith and Lloyd [1], with the help of a computer.

582b/20/1-5

REFERENCES

The Rugby Footballers of Croam

MICHAEL MATHER

Department of Mathematics, University of Otago, Dunedin, New Zealand Communicated by W. T. Tutte Received November 7, 1974

The vertices of the graph O_8 are indexed by the 7-subsets of a 15-set. Two vertices are adjacent if and only if their labeling sets are disjoint. This paper demonstrates a Hamiltonian circuit in O_8 .

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. 1. GUY H. J. MEREDITH AND E. KEITH LLOYD, The Footballers of Croam, J. Combinatorial Theory B 15 (1973), 161-166.

582b/20/1-5

JOURNAL OF COMBINATORIAL THEORY (B) 20, 62-63 (1976)

REFERENCES

The Rugby Footballers of Croam

MICHAEL MATHER

Department of Mathematics, University of Otago, Dunedin, New Zealand Communicated by W. T. Tutte Received November 7, 1974

The vertices of the graph O_8 are indexed by the 7-subsets of a 15-set. Two vertices are adjacent if and only if their labeling sets are disjoint. This paper demonstrates a Hamiltonian circuit in O_8 .

The following Hamiltonian circuit for O_s was discovered by the methods of Meredith and Lloyd [1], with the help of a computer.

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved.

582b/20/1-5

1. GUY H. J. MEREDITH AND E. KEITH LLOYD. The Footballers of Croam. J. Combinatorial Theory B 15 (1973), 161-166.

- sparsest case $n = 2k + 1$
- $O_k := K(2k + 1, k)$ odd graph [Biggs 1979]
- Conjecture [Meredith, Lloyd 1972+1973], [Biggs 1979]: $O_k = K(2k+1,k)$ has a Hamilton cycle for all $k \geq 3.$ $O_2=K(5,2)$ is Petersen graph
- [Balaban 1973]: $k = 3, 4$
- [Meredith, Lloyd 1972]: $k = 5, 6$
- [Mather 1976]: $k = 7$

• Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_k = K(2k+1,k)$ has a Hamilton cycle for all $k \geq 3.$

• Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_k = K(2k+1,k)$ has a Hamilton cycle for all $k \geq 3.$

• combined with conditional result [Johnson 2011]:

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_k = K(2k+1,k)$ has a Hamilton cycle for all $k \geq 3.$
-

- combined with conditional result [Johnson 2011]:
- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $K(2k+2^a,k)$ has a Hamilton cycle for all $k\geq 3$ and $a\geq 0.$

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_k = K(2k+1,k)$ has a Hamilton cycle for all $k \geq 3.$
	-

- combined with conditional result [Johnson 2011]:
- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $K(2k+2^a,k)$ has a Hamilton cycle for all $k\geq 3$ and $a\geq 0.$
- open: $2k + 1 \le n \le (1 + o(1))2.62k$ where $n \ne 2k + 2^a$
Hamilton cycles: sparse cases

- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $O_k = K(2k+1,k)$ has a Hamilton cycle for all $k \geq 3.$
-

- combined with conditional result [Johnson 2011]:
- Theorem [M., Nummenpalo, Walczak 2021 JLMS]: $K(2k+2^a,k)$ has a Hamilton cycle for all $k\geq 3$ and $a\geq 0.$
- open: $2k + 1 \le n \le (1 + o(1))2.62k$ where $n \ne 2k + 2^a$
- sparsest open case: $n = 2k + 3$

Our results

• Theorem 1:

 $K(n, k)$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2k + 1$, unless $(n, k) = (5, 2)$.

Our results

• Theorem 1:

 $K(n, k)$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2k + 1$, unless $(n, k) = (5, 2)$.

• settles Hamiltonicity of $K(n, k)$ in full generality

• generalized Johnson graphs $J(n, k, s)$

vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\left(\right)$

• generalized Johnson graphs $J(n, k, s)$

vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\left(\right)$ edges $=$ pairs of sets with intersection size s $|A \cap B| = s$ A B

• generalized Johnson graphs $J(n, k, s)$

vertices =
$$
\binom{[n]}{k}
$$

edges = pairs of sets with intersection size *s*
 $|A \cap B| = s$

 $|A \cap B| = s$ $A \cap B$
• we assume $s < k$ and $n \geq 2k - s + 1_{[s=0]}$ (otherwise trivial)

• generalized Johnson graphs $J(n, k, s)$

vertices =
$$
\binom{[n]}{k}
$$

edges = pairs of sets with intersection size *s*
 $|A \cap B| = s$

- We assume $s < k$ and $n \ge 2k s + 1_{[s=0]}$ (otherwise trivial)
• $J(n, k, 0) = K(n, k)$ Kneser graphs
-

• generalized Johnson graphs $J(n, k, s)$

vertices =
$$
\binom{[n]}{k}
$$

edges = pairs of sets with intersection size *s*
 $|A \cap B| = s$

- $|A \cap B| = s$ $A \cap B$
• we assume $s < k$ and $n \geq 2k s + 1_{[s=0]}$ (otherwise trivial)
- $J(n, k, 0) = K(n, k)$ Kneser graphs
- $J(n, k, k 1)$ = (ordinary) Johnson graphs $J(n, k)$

• generalized Johnson graphs $J(n, k, s)$

vertices =
$$
\binom{[n]}{k}
$$

edges = pairs of sets with intersection size *s*
 $|A \cap B| = s$

- $|A \cap B| = s$ $A \cap B$
• we assume $s < k$ and $n \geq 2k s + 1_{[s=0]}$ (otherwise trivial)
- $J(n, k, 0) = K(n, k)$ Kneser graphs
- $J(n, k, k 1)$ = (ordinary) Johnson graphs $J(n, k)$
- vertex-transitive

• Conjecture [Chen, Lih 1987], [Gould 1991]: $J(n, k, s)$ has a Ham. cycle, unless $(n, k, s) = (5, 2, 0), (5, 3, 1)$.

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J(n, k, s)$ has a Ham. cycle, unless $(n, k, s) = (5, 2, 0), (5, 3, 1)$.
- results of [Tang, Liu 1973] settle the case $s = k 1$

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J(n, k, s)$ has a Ham. cycle, unless $(n, k, s) = (5, 2, 0), (5, 3, 1)$.
- results of [Tang, Liu 1973] settle the case $s = k 1$
- [Chen, Lih 1987] proved the cases $s \in \{k-1, k-2, k-3\}$

- Conjecture [Chen, Lih 1987], [Gould 1991]: $J(n, k, s)$ has a Ham. cycle, unless $(n, k, s) = (5, 2, 0), (5, 3, 1)$.
-
- [Chen, Lih 1987] proved the cases $s \in \{k-1,k-2,k-3\}$
- [Jiang, Ruskey 1994], [Knor 1994] proved that 9 results of [Tang, Liu 1973] settle the case $s = k - 1$

• [Chen, Lih 1987] proved the cases $s \in \{k - 1, k - 2\}$

• [Jiang, Ruskey 1994], [Knor 1994] proved that
 $J(n, k, k - 1) = J(n, k - 1)$ is Hamilton-connected

Our results

• Theorem 2:

 $J(n, k, s)$ has a Ham. cycle, unless $(n, k, s) = (5, 2, 0), (5, 3, 1)$.

Our results

• Theorem 2:

 $J(n, k, s)$ has a Ham. cycle, unless $(n, k, s) = (5, 2, 0), (5, 3, 1)$.

• settles Hamiltonicity of $J(n, k, s)$ in full generality

• Bipartite Kneser graphs $H(n, k)$

vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\bigcup\left(\begin{matrix} [n] \ n \end{matrix}\right)$ $n-k$ $\left(\right)$

• Bipartite Kneser graphs $H(n, k)$

vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\bigcup\left(\begin{matrix} [n] \ n \end{matrix}\right)$ $n-k$ $\left(\right)$ edges = pairs of sets $A \subseteq B$

• Bipartite Kneser graphs $H(n, k)$

vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\bigcup\left(\begin{matrix} [n] \ n \end{matrix}\right)$ $n-k$ $\left(\right)$ edges = pairs of sets $A \subseteq B$

• Bipartite Kneser graphs $H(n, k)$ vertices $= \binom{[n]}{k}$ $\bigcup\left(\begin{matrix} [n] \ n \end{matrix}\right)$ $\left(\right)$

 \boldsymbol{k} $n-k$ edges = pairs of sets $A \subseteq B$

Bipartite Kneser graphs • Bipartite Kneser graphs $H(n, k)$ vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\bigcup\left(\begin{matrix} [n] \ n \end{matrix}\right)$ $n-k$ $\left(\right)$ edges = pairs of sets $A \subseteq B$ Q_n level k_{-} level $n - k$

- Bipartite Kneser graphs $H(n, k)$ vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\bigcup\left(\begin{matrix} [n] \ n \end{matrix}\right)$ $n-k$ $\big)$ edges = pairs of sets $A \subseteq B$ • Bipartite Kneser graphs $H(n, k)$ level $n - k$, vertices $= \binom{[n]}{k} \cup \binom{[n]}{n-k}$
edges $=$ pairs of sets $A \subseteq B$
• we assume $k \ge 1$ and $n \ge 2k + 1$ level $n - k$
-

• Bipartite Kneser graphs $H(n, k)$ vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\bigcup\left(\begin{matrix} [n] \ n \end{matrix}\right)$ $n-k$ $\big)$ edges = pairs of sets $A \subseteq B$ • Bipartite Kneser graphs $H(n, k)$ level $n - k$,
vertices = $\binom{[n]}{k} \cup \binom{[n]}{n-k}$
edges = pairs of sets $A \subseteq B$
• we assume $k \ge 1$ and $n \ge 2k + 1$
level k , level $n - k$

level k_{-}

- we assume $k \geq 1$ and $n \geq 2k+1$
-

- Bipartite Kneser graphs $H(n, k)$ vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\bigcup\left(\begin{matrix} [n] \ n \end{matrix}\right)$ $n-k$ $\big)$ edges = pairs of sets $A \subseteq B$ • Bipartite Kneser graphs $H(n, k)$ level $n - k$,
vertices = $\binom{[n]}{k} \cup \binom{[n]}{n-k}$
edges = pairs of sets $A \subseteq B$
• we assume $k \ge 1$ and $n \ge 2k + 1$
level k , level $n - k$
- we assume $k \geq 1$ and $n \geq 2k+1$
-
- sparsest case $n = 2k + 1$: middle levels conjecture

level k_{\perp}

• Bipartite Kneser graphs $H(n, k)$

vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\bigcup\left(\begin{matrix} [n] \ n \end{matrix}\right)$ $n-k$ $\big)$ edges = pairs of sets $A \subseteq B$

- we assume $k \geq 1$ and $n \geq 2k+1$
-
- sparsest case $n = 2k + 1$: middle levels conjecture

• Bipartite Kneser graphs $H(n, k)$

vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\bigcup\left(\begin{matrix} [n] \ n \end{matrix}\right)$ $n-k$ $\big)$ edges = pairs of sets $A \subseteq B$

- we assume $k \geq 1$ and $n \geq 2k+1$
-
- sparsest case $n = 2k + 1$: middle levels conjecture
- Theorem [M. 2016]: $H(2k+1, k)$ has a Hamilton cycle for all $k \geq 1$.

• Bipartite Kneser graphs $H(n, k)$

vertices $= \binom{[n]}{k}$ \boldsymbol{k} $\bigcup\left(\begin{matrix} [n] \ n \end{matrix}\right)$ $n-k$ $\big)$ edges = pairs of sets $A \subseteq B$ • Bipartite Kneser graphs $H(n, k)$
vertices = $\binom{[n]}{k} \cup \binom{[n]}{n-k}$
edges = pairs of sets $A \subseteq B$
• we assume $k \ge 1$ and $n \ge 2k + 1$
• vertex-transitive

- we assume $k \geq 1$ and $n \geq 2k+1$
-
- sparsest case $n = 2k + 1$: middle levels conjecture
- Theorem [M. 2016]: $H(2k+1, k)$ has a Hamilton cycle for all $k \geq 1$.
- Theorem $[M, Su 2017]$: $H(n, k)$ has a Hamilton cycle for all $k \geq 1$ and $n \geq 2k + 1$.

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.
- Lemma: If G has a Hamilton cycle and is not bipartite, then $B(G)$ has a Hamilton cycle or path.

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.
- Lemma: If G has a Hamilton cycle and is not bipartite, then $B(G)$ has a Hamilton cycle or path.
- Corollary: If $K(n, k)$ has a Hamilton cycle, then $H(n, k)$ has a Hamilton cycle or path.

- Observation: $H(n, k)$ is bipartite double cover of $K(n, k)$.
- Lemma: If G has a Hamilton cycle and is not bipartite, then $B(G)$ has a Hamilton cycle or path.
- Corollary: If $K(n, k)$ has a Hamilton cycle, then $H(n, k)$ has a Hamilton cycle or path.
- we thus obtain a new proof for Hamiltonicity of $H(n,k)$

Summary of old and new results

Kneser graphs $K(n, k)$

- two sparsest cases $n = 2k + 1$ and $n = 2k + 2$ settled by
	- [M., Nummenpalo, Walczak 2021]+[Johnson 2011]

- two sparsest cases $n = 2k + 1$ and $n = 2k + 2$ settled by $[M.,$ Nummenpalo, Walczak 2021] $+[$ Johnson 2011]
- new proof assumes $n \geq 2k+3$

- two sparsest cases $n = 2k + 1$ and $n = 2k + 2$ settled by $[M., Nummenpalo, Walczak 2021]+[Johnson 2011]$
- new proof assumes $n \geq 2k+3$
	- 1. construct a cycle factor

- two sparsest cases $n = 2k + 1$ and $n = 2k + 2$ settled by $[M., Nummenpalo, Walczak 2021]+[Johnson 2011]$
- new proof assumes $n \geq 2k+3$
	- 1. construct a cycle factor
	- 2. glue cycles together

- two sparsest cases $n = 2k + 1$ and $n = 2k + 2$ settled by $[M., Nummenpalo, Walczak 2021]+[Johnson 2011]$
- new proof assumes $n \geq 2k+3$
	- 1. construct a cycle factor (works for $n \geq 2k+1$)
	- 2. glue cycles together

- two sparsest cases $n = 2k + 1$ and $n = 2k + 2$ settled by $[M., Nummenpalo, Walczak 2021]+[Johnson 2011]$
- new proof assumes $n \geq 2k+3$
	- 1. construct a cycle factor
	- 2. glue cycles together

(works for $n \geq 2k+1$) (needs $n \geq 2k+3$)

- two sparsest cases $n = 2k + 1$ and $n = 2k + 2$ settled by [M., Nummenpalo, Walczak 2021]+[Johnson 2011]
- new proof assumes $n \geq 2k+3$
	- 1. construct a cycle factor 2. glue cycles together
- requires analyzing the cycles
- (works for $n \geq 2k+1$) (needs $n \geq 2k+3$)

- two sparsest cases $n = 2k + 1$ and $n = 2k + 2$ settled by $[M.,$ Nummenpalo, Walczak 2021] $+[$ Johnson 2011]
- new proof assumes $n \geq 2k+3$
	- 1. construct a cycle factor 2. glue cycles together (works for $n \geq 2k+1$) (needs $n \geq 2k+3$)
-
- requires analyzing the cycles
• o model cycles by kinetic system of interacting particles

- two sparsest cases $n = 2k + 1$ and $n = 2k + 2$ settled by $[M.,$ Nummenpalo, Walczak 2021] $+[$ Johnson 2011]
- new proof assumes $n \geq 2k+3$
	- 1. construct a cycle factor 2. glue cycles together (works for $n \geq 2k+1$) (needs $n \geq 2k+3$)
-
- requires analyzing the cycles
• o model cycles by kinetic system of interacting particles
	- o reminiscent of the gliders in Conway's game of Life

- two sparsest cases $n = 2k + 1$ and $n = 2k + 2$ settled by $[M.,$ Nummenpalo, Walczak 2021] $+[$ Johnson 2011]
- new proof assumes $n \geq 2k+3$
	- 1. construct a cycle factor 2. glue cycles together (works for $n \geq 2k+1$) (needs $n \geq 2k+3$)
- - model cycles by kinetic system of interacting particles
- requires analyzing the cycles
• model cycles by kinetic system of interacting partic
• reminiscent of the gliders in Conway's game of Life
• main technical innovation
	-

• consider characteristic vector of vertices of $K(n, k)$:

• consider characteristic vector of vertices of $K(n, k)$: bitstrings of length n with k many 1s

- consider characteristic vector of vertices of $K(n, k)$: bitstrings of length n with k many 1s
- Example: $n = 12$, $k = 5$, $X = \{1, 3, 7, 11, 12\}$

- consider characteristic vector of vertices of $K(n, k)$: bitstrings of length n with k many 1s
- Example: $n = 12$, $k = 5$, $X = \{1, 3, 7, 11, 12\}$

- parenthesis matching with $1 = [$ and $0 =]$ (cyclically)
- f : complement matched bits

- parenthesis matching with $1 = [$ and $0 =]$ (cyclically)
- \bullet f : complement matched bits

- parenthesis matching with $1 = [$ and $0 =]$ (cyclically)
- \bullet f : complement matched bits

- parenthesis matching with $1 = [$ and $0 =]$ (cyclically)
- \bullet f : complement matched bits

- parenthesis matching with $1 = [$ and $0 =]$ (cyclically)
- \bullet f: complement matched bits

Analyzing the cycles

Analyzing the cycles

Analyzing the cycles

-
- Two matched bits form a glider
• Glider moves forward by 1 unit per step

-
-

• g lider : = set of matched 1s and 0s (same number of each)

-
-

-
-

-
-

-
-

$$
s(t) = v \cdot t + s(0)
$$

-
-

position (modulo n) speed time $t =$ number of applications of f starting position

• during overtaking, slower glider stands still for two time steps

-
- during overtaking, slower glider stands still for two time steps
• faster glider is boosted by twice the speed of slower glider

• non-uniform equations of motion:

$$
s_1(t) = v_1 \cdot t + s_1(0)
$$

$$
s_2(t) = v_2 \cdot t + s_2(0)
$$

• non-uniform equations of motion:

$$
s_1(t) = v_1 \cdot t + s_1(0) - 2v_1 \cdot c_{1,2}
$$

$$
s_2(t) = v_2 \cdot t + s_2(0) + 2v_1 \cdot c_{1,2}
$$

• non-uniform equations of motion:

$$
s_1(t) = v_1 \cdot t + s_1(0) - 2v_1 \cdot c_{1,2}
$$

$$
s_2(t) = v_2 \cdot t + s_2(0) + 2v_1 \cdot c_{1,2}
$$

 $c_{1,2}$:= number of overtakings

• non-uniform equations of motion:

$$
s_1(t) = v_1 \cdot t + s_1(0) \overline{-2v_1 \cdot c_{1,2}}
$$

\n
$$
s_2(t) = v_2 \cdot t + s_2(0) \overline{+2v_1 \cdot c_{1,2}}
$$

 $\begin{array}{c} \begin{array}{c} c_{1,2} \\ c_{1,2} \end{array}$ energy conservation!
 $c_{1,2} := \text{number of overtaking}$

Glider partition

Glider partition

Glider partition

• gliders can be interleaved in complicated ways

Glider partition

- gliders can be interleaved in complicated ways
- general glider partition rule works recursively on Motzkin path

Glider partition

- gliders can be interleaved in complicated ways
- general glider partition rule works recursively on Motzkin path
- general equations of motion have overtaking counters $c_{i,j}$ for all pairs of gliders i, j

• Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.

- Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.
- cycles are characterized by glider speeds and their relative distances

- Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.
- cycles are characterized by glider speeds and their relative distances
- don't have full characterization (complicated number theory)

- Lemma: For any cycle in $K(n, k)$ defined by f, the set of gliders is invariant.
- cycles are characterized by glider speeds and their relative distances
- don't have full characterization (complicated number theory)
- don't know number of cycles

Gluing cycles

Gluing cycles

• connect cycles of factor to a single Hamilton cycle (tree-like)

- connect cycles of factor to a single Hamilton cycle (tree-like)
- gluing 4-cycles must all be edge-disjoint

- connect cycles of factor to a single Hamilton cycle (tree-like)
- gluing 4-cycles must all be edge-disjoint

• decrease speed of slowest glider in x by 1, increase speed of another glider by 1

- decrease speed of slowest glider in x by 1, increase speed of another glider by 1
- number partition of $x _{lex}$ number partition of y

- decrease speed of slowest glider in x by 1, increase speed of another glider by 1
- number partition of $x <_{\text{lex}}$ number partition of $y = \begin{pmatrix} 1 \\ 4 \\ 4 \\ 4 \end{pmatrix}$
 $\begin{pmatrix} 4 \\ 4 \\ 4 \\ 5 \\ 5 \end{pmatrix}$
 $\begin{pmatrix} 4 \\ 1 \\ 6 \\ 6 \end{pmatrix}$

- decrease speed of slowest glider in x by 1, increase speed of another glider by 1 3,2,1,1
- number partition of $x _{lex}$ number partition of y
- sequence of gluing cycles to connect to cycle with lex. largest number partition k

- decrease speed of slowest glider in x by 1, increase speed of another glider by 1 3,2,1,1
- number partition of $x _{lex}$ number partition of y
- sequence of gluing cycles to connect to cycle with lex. largest number partition k
-

Open questions

• efficient algorithms?

Open questions

- efficient algorithms?
- other vertex-transitive graphs (Cayley graphs, etc.)?

Open questions

- efficient algorithms?
- other vertex-transitive graphs (Cayley graphs, etc.)?
- stronger Hamiltonicity properties: Hamilton-connectedness, factorization into HCs

Thank you!