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“ Polynomials and Power series,
May they forever rule the world!
. . .
You cannot conquer us with the rings of Chow
And shrieks of Chern!
For we too are armed, with Polygons of Newton
And Algorithms of Perron!
. . . ”

Shreeram S. Abhyankar 1970



Newton Polytopes
I For a polynomial p =

∑
α cαx

α ∈ R[x1, . . . , xn],

supp(p) = {α | cα 6= 0} ⊂ Nn

I The Newton polytope of p is

Newton(P) = conv(α | α ∈ supp(p)).
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Figure: x1y1 + x2y2 + x2y4 + x5y3



Saturated Newton Polytope (Monical–Tokcan–Yong 2017)

I p has a saturated Newton polytope (“is SNP”) if

supp(p) = Newton(p) ∩Nn
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(a) x1y 1 + x2y 2 + x2y 4 + x5y 3

x
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(b) x1y 1 + x2y 2+x2y 3 +
x2y 4+x3y 2 + x3y 3 + x4y 3 + x5y 3

Figure: An unsaturated and a saturated Newton polytope.



Examples of SNP in Algebraic Combinatorics

Lots of polynomials in algebraic combinatorics are SNP:

I Schur functions sλ (Rado 1952)

I Stanley symmetric functions (Monical–Tokcan–Yong 2017)

I Schubert polynomials (Fink–Mészáros–St. Dizier 2017)

I Any Lorentzian function automatically has SNP (Bränden–Huh)



Why Study SNP?
If p is SNP, supp(p) has a hyperplane description via the Newton polytope, which may
give a quick algorithm for deciding if a coefficient of p is zero or nonzero.

s(2,2,1)(x1, x2, x3, x4)

(2, 2, 1, 0) (2, 1, 2, 0)

(1, 2, 2, 0)

(2, 2, 0, 1)(1, 2, 0, 2)

(2, 1, 0, 2)

(0, 2, 2, 1)

(0, 2, 1, 2)(0, 2, 1, 2)

(2, 0, 1, 2)

(2, 0, 2, 1) (1, 0, 2, 2)

(0, 1, 2, 2)

Figure: The permutahedron P
(4)
(2,2,1).



Chromatic Symmetric Function (Stanley 1995)

I For G a graph with vertices {1, . . . , n}, the chromatic symmetric function is

XG (x) =
∑

f :V (G)→N

f proper

xf (1) · · · xf (n).

I Example
K3 XK3

= 6(x1x2x3 + x1x2x4 + · · ·)
= 6m1,1,1

P3 XP3
= 6(x1x2x3 + · · ·) + (x2

1x2 + · · ·)
= 6m1,1,1 +m2,1

I We can restrict to k variables, setting the rest to 0, XG (x1, . . . , xk) ∈ N[x1, . . . , xk ]

I XG (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . .) = χG (k)

I Generalization to noncommuting variables by Gebhard–Sagan 2001



Chromatic Symmetric Function (Stanley 1995)

I For G a graph with vertices {1, . . . , n}, the chromatic symmetric function is

XG (x) =
∑

f :V (G)→N

f proper

xf (1) · · · xf (n).

I Example
K3 XK3

= 6(x1x2x3 + x1x2x4 + · · ·)
= 6m1,1,1

P3 XP3
= 6(x1x2x3 + · · ·) + (x2

1x2 + · · ·)
= 6m1,1,1 +m2,1

I We can restrict to k variables, setting the rest to 0, XG (x1, . . . , xk) ∈ N[x1, . . . , xk ]

I XG (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . .) = χG (k)

I Generalization to noncommuting variables by Gebhard–Sagan 2001



Chromatic Symmetric Function (Stanley 1995)

I For G a graph with vertices {1, . . . , n}, the chromatic symmetric function is

XG (x) =
∑

f :V (G)→N

f proper

xf (1) · · · xf (n).

I Example
K3 XK3

= 6(x1x2x3 + x1x2x4 + · · ·)
= 6m1,1,1

P3 XP3
= 6(x1x2x3 + · · ·) + (x2

1x2 + · · ·)
= 6m1,1,1 +m2,1

I We can restrict to k variables, setting the rest to 0, XG (x1, . . . , xk) ∈ N[x1, . . . , xk ]

I XG (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . .) = χG (k)

I Generalization to noncommuting variables by Gebhard–Sagan 2001



Chromatic Symmetric Function (Stanley 1995)

I For G a graph with vertices {1, . . . , n}, the chromatic symmetric function is

XG (x) =
∑

f :V (G)→N

f proper

xf (1) · · · xf (n).

I Example
K3 XK3

= 6(x1x2x3 + x1x2x4 + · · ·)
= 6m1,1,1

P3 XP3
= 6(x1x2x3 + · · ·) + (x2

1x2 + · · ·)
= 6m1,1,1 +m2,1

I We can restrict to k variables, setting the rest to 0, XG (x1, . . . , xk) ∈ N[x1, . . . , xk ]

I XG (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . .) = χG (k)

I Generalization to noncommuting variables by Gebhard–Sagan 2001



Chromatic Symmetric Function (Stanley 1995)

I For G a graph with vertices {1, . . . , n}, the chromatic symmetric function is

XG (x) =
∑

f :V (G)→N

f proper

xf (1) · · · xf (n).

I Example
K3 XK3

= 6(x1x2x3 + x1x2x4 + · · ·)
= 6m1,1,1

P3 XP3
= 6(x1x2x3 + · · ·) + (x2

1x2 + · · ·)
= 6m1,1,1 +m2,1

I We can restrict to k variables, setting the rest to 0, XG (x1, . . . , xk) ∈ N[x1, . . . , xk ]

I XG (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . .) = χG (k)

I Generalization to noncommuting variables by Gebhard–Sagan 2001



Support of a Chromatic Symmetric Function
I Given a proper coloring f , its weight is wt(f ) = (|f −1(1)|, . . . , |f −1(n)|)
I supp(XG ) = {wt(f ) | f proper}
I Example

supp(XP3(x , y , z)) = {(1, 1, 1), (2, 1, 0), (1, 2, 0), (2, 0, 1), (1, 0, 2), (0, 2, 1), (0, 1, 2)}
(0, 2, 1) (1, 2, 0)

(1, 0, 2) (2, 0, 1)

(0, 1, 2) (2, 1, 0)(1, 1, 1)
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Are Chromatic Symmetric Functions SNP?

Recall supp(XG ) = {wt(f ) | f proper}. Let G be the claw graph.

1

1 1

2

2

2 2

1

(3, 1) ∈ supp(XG (x , y))

(1, 3) ∈ supp(XG (x , y))

(2, 2) 6∈ supp(XG (x , y))

I The claw graph is not SNP (Monical 2018)
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Chromatic symmetric functions of claw-free graphs

I The claw graph is not SNP (Monical 2018)

Conjecture (Stanley 1996)

If G is claw-free then XG is positive in the Schur basis.

I Conjecture is true for claw-free incomparability graphs (Gasharov 96)

Conjecture (Monical 2018)

If XG is Schur positive then XG (x1, . . . , xk) is SNP.

I unlikely both conjectures are true (Adve–Robichaux–Yong 19).

I the latter conjecture has to be tested on G with ≥ 12 vertices.



Claw-free incomparability graphs

For poset P with elements [n], the incomparability graph G (P) has vertices [n] and
edges (i , j) if i and j are incomparable.

P is (3+1)-free if it has no subposet that is a 3-chain and an incomparable element,
i.e. G (P) is claw-free.

P is (3+1) and (2+2)-free if P also has no subposet that is a 3-chain and an
incomparable element AND two disjoint 2-chains. In bijection with Dyck paths.

P is 3-free if P has no subposet that is a 3-chain, i.e. with G (P) a co-bipartite
graph.
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Claw-free Graphs From Dyck Paths

P is (3+1) and (2+2)-free if P also has no subposet that is a 3-chain and an
incomparable element AND two disjoint 2-chains. In bijection with Dyck paths.

For d a Dyck path of length 2n, let G (d) be the graph with vertices [n] and edges
(i , j), i < j for each cell (i , j) below the path d .

1

2

3

4

5

1 2 3 4 5

G(d)

d

1 2

4 5

3

P



Stanley–Stembridge conjecture

Conjecture (Stanley–Stembridge 1993)

Let P be a (3+1)-free poset, then XG(P) is positive in the elementary basis.

Theorem (Gasharov 1996)

Let P be a (3+1)-free poset, then XG(P) is positive in the Schur basis.

Theorem (Guay-Paquet 2013)

Suffices to verify the conjecture on (3+1) and (2+2)-free posets, i.e. for G (d) for
Dyck paths d.
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Claw-free Graphs From Dyck Paths

For d a Dyck path of length 2n, let G (d) be the graph with vertices [n] and edges
(i , j), i < j for each cell (i , j) below the path d .
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Conjecture (Stanley–Stembridge 1993)

Let d be a Dyck path, then XG(d) is positive in the elementary basis.

Theorem (Brosnan–Chow 2015, Guay-Paquet 2016)

Let d be a Dyck path of length 2n, then XG(d) encodes a Sn-representation of
Tymoczko on the cohomology of a regular semisimple Hessenberg variety
associated to d.
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Greedy coloring co-bipartite graphs

A co-bipartite graph G vertices {1, 2, . . . , n1} ∪ {n1 + 1, . . . , n1 + n2} corresponds to a
board B ⊂ [n1]× [n2] with (i , j) in B iff (i , n1 + j) not in G .

G

42

1 3

B

Proposition (Stanley–Stembridge)

XG =
∑
i

i ! · (n1 + n2 − 2i)! · ri (B) ·m2i1n1+n2−2i ,

where ri (B) is the number of placements of i non-attacking rooks on B.

Let λgr (G ) = 2i1n1+n2−2i for max i such that ri (B) 6= 0.



XG for co-bipartite graphs are SNP

Proposition

Let G be a co-bipartite graph, then XG (x1, . . . , xk) is SNP, and its Newton polytope is

P
(k)
λgr (G).

Example

XG = 24m1111 + 6m211 + 2m22, and Newton(XG(d)(x1, x2, x3, x4)) = P(4)
22 .

G

42

1 3



Greedy coloring of a Dyck path

I If d is a Dyck path, let gr(d) be the greedy coloring of G (d)

I Define λgr (d) = wt(gr(d))

1 12 23

λgr (d) = (2, 2, 1)



XG for Dyck paths are SNP

Theorem (Matherne–M–Selover 2022)

Let d be a Dyck path, then XG(d)(x1, . . . , xk) is SNP, and its Newton polytope is

P
(k)
λgr (d).

Example

XG(d) = 36s(1,1,1,1,1) + 16s(2,1,1,1) + 4s(2,2,1)

1

2

3

4

5

1 2 3 4 5

G(d)

d

(2, 2, 1, 0) (2, 1, 2, 0)

(1, 2, 2, 0)

(2, 2, 0, 1)(1, 2, 0, 2)

(2, 1, 0, 2)

(0, 2, 2, 1)

(0, 2, 1, 2)

(2, 0, 1, 2)

(2, 0, 2, 1) (1, 0, 2, 2)

(0, 1, 2, 2)



XG for (3+1)-free posets is SNP

Theorem (Matherne–M–Selover 2022)

Let P be a (3+1)-free poset, then XG(P)(x1, . . . , xk) is SNP, and its Newton polytope

is P
(k)
λgr (P).

Example

XG(P) = 120m15 + 36 ∗m213 + 10m221 + 4m312 + 2m32 and

Newton(XG(P)(x1, x2, x3)) = P(3)
32

P

1 3

G(P )

42

1 3

2 4

5 5



About the proof for Dyck paths

I Since G (d) is claw-free, whenever λ ∈ supp(XG(d)(x1, . . . , xk)) then

integerPoints(P(k)
λ ) ⊂ supp(XG(d)(x1, . . . , xk)) (Stanley 1998)

I We show that each λ ∈ supp(XG(d)(x1, . . . , xk)) is in integerPoints(P(k)
λgr (d)),

proving supp(XG(d)(x1, . . . , xk)) = integerPoints(P(k)
λgr (d))

This result was already known by Tim Chow (2015).

I Main tool: Bounce path characterization of greedy coloring

1

1

1

1

2

2

1
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1

2

3

1 1 1 12 2 1 12 23
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About the proof for (3+1)-free posets: listings

Theorem (Guay-Paquet–M–Rowland 2013)

I A (3+1)-free poset P can be represent by a part listing: certain word L on
alphabet {v0, v1, . . . , } ∪ {bi ,i+1(H) | H bicolored graph}.

I If L has no bi ,i+1(H) then P is (3+1) and (2+2)-free.

Example

P

0

1

2



About the proof for (3+1)-free posets: modular law
The basic bicolored graphs for j = 0, 1, . . . , s are U

(i)
j := v s−ji+1v

r
i v

j
i+1.

U0 U1 U2

Theorem (Guay-Paquet 2013)

Let L be part listing of poset PL with bicolored graph bi ,i+1(H), then XG(L) is a convex

combination of XG(Lj ) where Li is obtained from L by replacing bi ,i+1(H) by U
(i)
j .

XG(L) =
r∑

j=0

qjXG(Lj )

Example

L0 L1 L2L
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About the proof for (3+1)-free posets: greedy weight

Theorem (Guay-Paquet 2013)

Let L be part listing of poset PL with bicolored graph bi ,i+1(H), then XG(L) is a convex
combination of XG(Lj ):

XG(L) =
r∑

j=0

qjXG(Lj ),

To find λgr (P):

I Find part listing L corresponding to (3+1)-free poset P.
I for each bi ,i+1(H) in listing, find max j such that qj 6= 0
I replace L by Lj .
I iterate until obtaining L′ of a (3+1) and (2+2)-free poset. Then
λgr (P) := λgr (L′).

L0 L1 L2L
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About the proof for (3+1)-free posets: dominance lemma

Lemma (Matherne–M–Selover)

Let j < k and part listings Lj = Abi ,i+1(Uj)B and Lk = Abi ,i+1(Uk)B then
supp(XG(Lj )) ⊆ supp(XG(Lk )).

To show XG(P) is SNP:

I for each bi ,i+1(H) in listing, find max j such that qj 6= 0

I by Lemma suppXG(L) ⊂ suppXG(Lj′ )

L0 L1 L2L



About the proof for (3+1)-free posets: dominance lemma

Lemma (Matherne–M–Selover)

Let j < k and part listings Lj = Abi ,i+1(Uj)B and Lk = Abi ,i+1(Uk)B then
supp(XG(Lj )) ⊆ supp(XG(Lk )).

To show XG(P) is SNP:

I for each bi ,i+1(H) in listing, find max j such that qj 6= 0

I by Lemma suppXG(L) ⊂ suppXG(Lj′ )

L0 L1 L2L



About the proof for (3+1)-free posets: dominance lemma

Lemma (Matherne–M–Selover)

Let j < k and part listings Lj = Abi ,i+1(Uj)B and Lk = Abi ,i+1(Uk)B then
supp(XG(Lj )) ⊆ supp(XG(Lk )).

To show XG(P) is SNP:

I for each bi ,i+1(H) in listing, find max j such that qj 6= 0

I by Lemma suppXG(L) ⊂ suppXG(Lj′ )

L0 L1 L2L



About the proof for (3+1)-free posets: dominance lemma

Lemma (Matherne–M–Selover)

Let j < k and part listings Lj = Abi ,i+1(Uj)B and Lk = Abi ,i+1(Uk)B then
supp(XG(Lj )) ⊆ supp(XG(Lk )).

To show XG(P) is SNP:

I for each bi ,i+1(H) in listing, find max j such that qj 6= 0

I by Lemma suppXG(L) ⊂ suppXG(Lj′ )

L0 L1 L2L



Outline

Newton polytopes

Saturated Newton Polytopes of CSFs

Lorentzian property of CSFs



M-convexity

I ⊂ Zk is M-convex if it has the exchange property: for any i and α, β ∈ I with
αi > βi there is j such that

αj < βj and α− ei + ej ∈ I and β − ej + ei ∈ I .

I conv(I ) is a generalized permutahedra

Example

supp(XG (x1, . . . , x6)) is not M-convex since (1, 1, 1, 3, 0, 0) and (0, 0, 2, 2, 2, 0) are in
support but not

(0, 0, 2, 2, 2, 0)− ei + e4.
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Lorentzian property

Definition (Brändén–Huh 2020)

A homogeneous polynomial f ∈ R≥0[x1, . . . , xk ] of degree n is Lorentzian if

I supp(f ) is M-convex, and

I the quadratic form of
∂

∂xi1
◦ · · · ◦ ∂

∂xin−2

(f )

has at most one positive eigenvalue for all i1, i2, . . . , in−2 ∈ [k].



Lorentzian property and log-concavity

Theorem (Brändén–Huh 2020)

Let f =
∑

α∈∆n
k
cαxα be a Lorentzian polynomial. Then

(α!)2c2
α ≥ (α + ei − ej)!(α− ei + ej)! · cα+ei−ej cα−ei+ej for all i , j in [k] and α in ∆n

k ,

and thus
c2
α ≥ cα+ei−ej cα−ei+ej for all i , j in [k] and α in ∆n

k .
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Examples of Lorentzian polynomials

Definition (Brändén–Huh 2020)

A homogeneous polynomial f ∈ R≥0[x1, . . . , xk ] of degree n is Lorentzian if

I supp(f ) is M-convex, and

I the quadratic form of
∂

∂xi1
◦ · · · ◦ ∂

∂xin−2

(f )

has at most one positive eigenvalue for all i1, i2, . . . , in−2 ∈ [k].

Example

s2(x1, x2) = x2
1 + x1x2 + x2

2 has matrix

[
1 1/2

1/2 1

]
.

Example

s2(x1, x2) = 1
2x

2
1 + x1x2 + 1

2x
2
2 has matrix

[
1/2 1/2
1/2 1/2

]
.
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Examples of Lorentzian polynomials:

I ek is Lorentzian (Bränden–Huh 2020)

I N(sλ(x1, . . . , xk)) is Lorentzian (Huh–Matherne–Mészáros–St. Dizier 2019)

I Schubert polynomials N(Sw (x1, . . . , xk)) (conjecture
Huh–Matherne–Mészáros–St. Dizier 2019)
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I N(sλ(x1, . . . , xk)) is Lorentzian (Huh–Matherne–Mészáros–St. Dizier 2019)
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Main conjecture

Conjecture (Matherne–M–Selover 2022)

Let d be a Dyck path. Then XG(d)(x1, . . . , xk) is Lorentzian.

I Verified for Dyck paths of size n ≤ 7 with k ≤ 8 variables.

I Not true for other incomparability graphs.
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Conjecture (Matherne–M–Selover 2022)

Let d be a Dyck path. Then XG(d)(x1, . . . , xk) is Lorentzian.

I Verified for Dyck paths of size n ≤ 7 with k ≤ 8 variables.

I Not true for other incomparability graphs.

Example

For d = nneneene, λgr (d) = (3, 1), XG(d) = 24m1111 + 8m211 + 2m22 + m31, and

Newton(XG(d)(x1, . . . , xk)) = P(k)
31 .
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Main conjecture

Conjecture (Matherne–M–Selover 2022)

Let d be a Dyck path. Then XG(d)(x1, . . . , xk) is Lorentzian.

I Verified for Dyck paths of size n ≤ 7 with k ≤ 8 variables.

I Not true for other incomparability graphs.

Example

Let P be the (2+2)-poset so G (P) = C4 and XC4 = 24m1111 + 4m211 + 2m22.

Now f = XC4(x1, . . . , x5) is not Lorentzian. Quadratic form of
∂

∂x1
◦ ∂

∂x2
f has matrix

A =


0 8 8 8 8
8 0 8 8 8
8 8 8 24 24
8 8 24 8 24
8 8 24 24 8

 , eigenvalues 32 + 8
√

15, 32− 8
√

15, . . .



Abelian Dyck paths

Definition (Harada–Precup 2019)

An Abelian Dyck path is a path d such that G (d) is co-bipartite.

Encoded by λ ⊂ n1 × n2.

1 2 3 4 5

1
2

3
4

5λ

3

2
G(dλ)
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XG (d) of Abelian Dyck paths are Lorentzian

Theorem (Matherne–M–Selover 2022)

Let d be an abelian Dyck path. Then XG(d)(x1, . . . , xk) is Lorentzian.

Example

XG = 24m1111 + 6m211 + 2m22. For f = XG (x1, x2, x3), quadratic form of
∂

∂x3
f = 4x2

1 + 12x1x2 + 4x2
2 has matrix

[
8 12

12 8

]
.

1

2

3

4

1 2 3 4

G(d)

d



About proof: block matrix
For abelian Dyck paths dλ

XG =
∑
α

cαx
α =

∑
i

i ! · (n − 2i)! · ri (λ) ·m2i1n−2i ,

where ri (λ) is the number of placements of i non-attacking rooks on λ.
For each α ∈ ∆n−2

k we check k × k matrix Hα = ((α+ er + es)! · cα+er+es )
k
r ,s=1 has at

most one positive eigenvalue.
For α = (2i−1, 1n−2i , 0k−n+i+1):

Hα =


0 a

. . . b
a 0

b c

b
. . .

c b


n− 2i k − n+ i+ 1

,
a = 2i+1 · (i + 1)! · (n − 2i − 2)! · ri+1

b = 2i · i ! · (n − 2i)! · ri
c = 2i−1 · (i − 1)! · (n − 2i + 2)! · ri−1,



About proof: ultra log-concavity of rook numbers
For λ ⊂ n1 × n2

a = 2i+1 · (i + 1)! · (n − 2i − 2)! · ri+1

b = 2i · i ! · (n − 2i)! · ri
c = 2i−1 · (i − 1)! · (n − 2i + 2)! · ri−1,

XG(dλ)(x1, . . . , xk) is Lorentzian iff

b − c ≤ 0, (1)

−(n − 2i)(k − n + i + 1)b2 + (n − 2i − 1)a(b + (k − n + i)c) ≤ 0, (2)

I (1) follows from
(i + 1) · ri+1 ≤ (n1 − i)(n2 − i) · ri

I (2) follows from

r2
i ≥

(
1 +

1

i

)(
1 +

1

`− i

)(
1 +

1

λ1 − i

)
ri−1ri+1.
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About proof: ultra log-concavity of rook numbers
For λ ⊂ n1 × n2

a = 2i+1 · (i + 1)! · (n − 2i − 2)! · ri+1

b = 2i · i ! · (n − 2i)! · ri
c = 2i−1 · (i − 1)! · (n − 2i + 2)! · ri−1,

XG(dλ)(x1, . . . , xk) is Lorentzian iff

b − c ≤ 0, (1)

−(n − 2i)(k − n + i + 1)b2 + (n − 2i − 1)a(b + (k − n + i)c) ≤ 0, (2)

I (1) follows from
(i + 1) · ri+1 ≤ (n1 − i)(n2 − i) · ri

I (2) follows from

r2
i ≥

(
1 +

1

i

)(
1 +

1

`− i

)(
1 +

1

λ1 − i

)
ri−1ri+1.

A consequence of real-rootedness of hit polynomial for Ferrers boards:∑N
i=0(N − i)! · ri (λ) · (x − 1)i (Haglund–Ono–Wagner 1999)
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