The Newton Polytope and Lorentzian Property of Chromatic Symmetric Functions

Alejandro H. Morales UMass, Amherst

February 23, 2022

Outline

Newton polytopes

Saturated Newton Polytopes of CSFs

Lorentzian property of CSFs

" Polynomials and Power series, May they forever rule the world!

You cannot conquer us with the rings of Chow And shrieks of Chern! For we too are armed, with *Polygons of Newton* And Algorithms of Perron!

Shreeram S. Abhyankar 1970

. . .

Newton Polytopes

• For a polynomial
$$p = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} \in \mathbf{R}[x_1, \dots, x_n]$$
,

$$\mathsf{supp}(\pmb{p}) = \{ lpha \mid \pmb{c}_lpha
eq \mathsf{0} \} \subset \mathbf{N}^n$$

► The **Newton polytope** of *p* is

Newton(P) = conv($\alpha \mid \alpha \in \text{supp}(p)$).

Saturated Newton Polytope (Monical–Tokcan–Yong 2017)

p has a saturated Newton polytope ("is SNP") if

 $supp(p) = Newton(p) \cap \mathbf{N}^n$

Figure: An unsaturated and a saturated Newton polytope.

Examples of SNP in Algebraic Combinatorics

Lots of polynomials in algebraic combinatorics are SNP:

- Schur functions s_{λ} (Rado 1952)
- Stanley symmetric functions (Monical–Tokcan–Yong 2017)
- Schubert polynomials (Fink–Mészáros–St. Dizier 2017)
- > Any Lorentzian function automatically has SNP (Bränden-Huh)

Why Study SNP?

If p is SNP, supp(p) has a hyperplane description via the Newton polytope, which may give a quick algorithm for deciding if a coefficient of p is zero or nonzero.

 $s_{(2,2,1)}(x_1, x_2, x_3, x_4)$

For G a graph with vertices $\{1, \ldots, n\}$, the chromatic symmetric function is

$$X_G(\mathbf{x}) = \sum_{\substack{f:V(G) \to \mathbf{N} \\ f \text{ proper}}} x_{f(1)} \cdots x_{f(n)}.$$

For G a graph with vertices $\{1, \ldots, n\}$, the chromatic symmetric function is

$$X_G(\mathbf{x}) = \sum_{\substack{f:V(G) \to \mathbf{N} \\ f \text{ proper}}} x_{f(1)} \cdots x_{f(n)}.$$

For G a graph with vertices $\{1, \ldots, n\}$, the chromatic symmetric function is

$$X_G(\mathbf{x}) = \sum_{\substack{f:V(G) \to \mathbf{N} \\ f \text{ proper}}} x_{f(1)} \cdots x_{f(n)}.$$

$$\begin{array}{c|c} \bullet & \mathsf{Example} \\ K_3 & & \\ \bullet & \bullet \\ \bullet & & \\ \bullet$$

▶ We can restrict to k variables, setting the rest to 0, $X_G(x_1, ..., x_k) \in \mathbf{N}[x_1, ..., x_k]$

For G a graph with vertices $\{1, \ldots, n\}$, the chromatic symmetric function is

$$X_G(\mathbf{x}) = \sum_{\substack{f:V(G) \to \mathbf{N} \\ f \text{ proper}}} x_{f(1)} \cdots x_{f(n)}.$$

We can restrict to k variables, setting the rest to 0, X_G(x₁,...,x_k) ∈ N[x₁,...,x_k]
 X_G(1,...,1,0,...) = χ_G(k)

For G a graph with vertices $\{1, \ldots, n\}$, the chromatic symmetric function is

$$X_G(\mathbf{x}) = \sum_{\substack{f:V(G) \to \mathbf{N} \\ f \text{ proper}}} x_{f(1)} \cdots x_{f(n)}.$$

▶ We can restrict to k variables, setting the rest to 0, $X_G(x_1, \ldots, x_k) \in \mathbf{N}[x_1, \ldots, x_k]$

•
$$X_G(\underbrace{1,\ldots,1}_k,0,\ldots) = \chi_G(k)$$

• Conscilization to noncommuting variables by Cobbard-Sagan 2001

Generalization to noncommuting variables by Gebhard–Sagan 2001

Support of a Chromatic Symmetric Function

- Given a proper coloring f, its weight is wt $(f) = (|f^{-1}(1)|, \ldots, |f^{-1}(n)|)$
- supp $(X_G) = \{ wt(f) | f \text{ proper} \}$

Example

 $supp(X_{P_3}(x, y, z)) = \{(1, 1, 1), (2, 1, 0), (1, 2, 0), (2, 0, 1), (1, 0, 2), (0, 2, 1), (0, 1, 2)\}$

Outline

Newton polytopes

Saturated Newton Polytopes of CSFs

Lorentzian property of CSFs

Are Chromatic Symmetric Functions SNP?

Recall supp $(X_G) = {wt(f) | f \text{ proper}}$. Let G be the claw graph.

 $(3,1) \in \operatorname{supp}(X_G(x,y))$ $(1,3) \in \operatorname{supp}(X_G(x,y))$ $(2,2) \not\in \operatorname{supp}(X_G(x,y))$

Are Chromatic Symmetric Functions SNP?

Recall supp $(X_G) = {wt(f) | f \text{ proper}}$. Let G be the claw graph.

 $(3,1) \in \operatorname{supp}(X_G(x,y))$ $(1,3) \in \operatorname{supp}(X_G(x,y))$ $(2,2) \not\in \operatorname{supp}(X_G(x,y))$

The claw graph is not SNP (Monical 2018)

Chromatic symmetric functions of claw-free graphs

- ► The claw graph is not SNP (Monical 2018)
- Conjecture (Stanley 1996)

If G is claw-free then X_G is positive in the Schur basis.

Conjecture is true for claw-free incomparability graphs (Gasharov 96)

Conjecture (Monical 2018)

If X_G is Schur positive then $X_G(x_1, \ldots, x_k)$ is SNP.

- unlikely both conjectures are true (Adve–Robichaux–Yong 19).
- ▶ the latter conjecture has to be tested on *G* with \geq 12 vertices.

For poset *P* with elements [n], the **incomparability graph** G(P) has vertices [n] and edges (i, j) if *i* and *j* are incomparable.

For poset *P* with elements [n], the **incomparability graph** G(P) has vertices [n] and edges (i, j) if *i* and *j* are incomparable.

P is (3+1)-free if it has no subposet that is a 3-chain and an incomparable element, i.e. G(P) is claw-free.

For poset *P* with elements [n], the **incomparability graph** G(P) has vertices [n] and edges (i, j) if *i* and *j* are incomparable.

P is (3+1)-free if it has no subposet that is a 3-chain and an incomparable element, i.e. G(P) is claw-free.

P is (3+1) and (2+2)-free if *P* also has no subposet that is a 3-chain and an incomparable element AND two disjoint 2-chains.

For poset *P* with elements [n], the **incomparability graph** G(P) has vertices [n] and edges (i, j) if *i* and *j* are incomparable.

P is (3+1)-free if it has no subposet that is a 3-chain and an incomparable element, i.e. G(P) is claw-free.

P is (3+1) and (2+2)-free if P also has no subposet that is a 3-chain and an incomparable element AND two disjoint 2-chains. In bijection with Dyck paths.

For poset *P* with elements [n], the **incomparability graph** G(P) has vertices [n] and edges (i, j) if *i* and *j* are incomparable.

P is (3+1)-free if it has no subposet that is a 3-chain and an incomparable element, i.e. G(P) is claw-free.

P is (3+1) and (2+2)-free if P also has no subposet that is a 3-chain and an incomparable element AND two disjoint 2-chains. In bijection with Dyck paths.

P is 3-free if *P* has no subposet that is a 3-chain, i.e. with G(P) a **co-bipartite** graph.

Claw-free Graphs From Dyck Paths

P is (3+1) and (2+2)-free if P also has no subposet that is a 3-chain and an incomparable element AND two disjoint 2-chains. In bijection with Dyck paths.

For d a Dyck path of length 2n, let G(d) be the graph with vertices [n] and edges (i,j), i < j for each cell (i,j) below the path d.

Stanley–Stembridge conjecture

Conjecture (Stanley-Stembridge 1993)

Let P be a (3+1)-free poset, then $X_{G(P)}$ is positive in the elementary basis.

Stanley–Stembridge conjecture

Conjecture (Stanley-Stembridge 1993)

Let P be a (3+1)-free poset, then $X_{G(P)}$ is positive in the elementary basis.

Theorem (Gasharov 1996) Let P be a (3+1)-free poset, then $X_{G(P)}$ is positive in the Schur basis.

Stanley–Stembridge conjecture

Conjecture (Stanley-Stembridge 1993)

Let P be a (3+1)-free poset, then $X_{G(P)}$ is positive in the elementary basis.

Theorem (Gasharov 1996)

Let P be a (3+1)-free poset, then $X_{G(P)}$ is positive in the Schur basis.

Theorem (Guay-Paquet 2013)

Suffices to verify the conjecture on (3+1) and (2+2)-free posets, i.e. for G(d) for Dyck paths d.

Claw-free Graphs From Dyck Paths

For d a Dyck path of length 2n, let G(d) be the graph with vertices [n] and edges (i, j), i < j for each cell (i, j) below the path d.

Conjecture (Stanley-Stembridge 1993)

Let d be a Dyck path, then $X_{G(d)}$ is positive in the elementary basis.

Claw-free Graphs From Dyck Paths

For d a Dyck path of length 2n, let G(d) be the graph with vertices [n] and edges (i, j), i < j for each cell (i, j) below the path d.

Conjecture (Stanley-Stembridge 1993)

Let d be a Dyck path, then $X_{G(d)}$ is positive in the elementary basis.

Theorem (Brosnan–Chow 2015, Guay-Paquet 2016)

Let d be a Dyck path of length 2n, then $X_{G(d)}$ encodes a \mathfrak{S}_n -representation of Tymoczko on the cohomology of a regular semisimple Hessenberg variety associated to d.

Greedy coloring co-bipartite graphs

A co-bipartite graph G vertices $\{1, 2, ..., n_1\} \cup \{n_1 + 1, ..., n_1 + n_2\}$ corresponds to a **board** $B \subset [n_1] \times [n_2]$ with (i, j) in B iff $(i, n_1 + j)$ not in G.

Proposition (Stanley-Stembridge)

$$X_G = \sum_i i! \cdot (n_1 + n_2 - 2i)! \cdot r_i(B) \cdot m_{2^i 1^{n_1 + n_2 - 2i}},$$

where $r_i(B)$ is the number of placements of *i* non-attacking rooks on *B*. Let $\lambda^{gr}(G) = 2^i 1^{n_1+n_2-2i}$ for max *i* such that $r_i(B) \neq 0$. X_G for co-bipartite graphs are SNP

Proposition

Let G be a co-bipartite graph, then $X_G(x_1, \ldots, x_k)$ is SNP, and its Newton polytope is $P_{\lambda^{gr}(G)}^{(k)}$.

Example

 $X_G = 24m_{1111} + 6m_{211} + 2m_{22}$, and Newton $(X_{G(d)}(x_1, x_2, x_3, x_4)) = \mathcal{P}_{22}^{(4)}$.

Greedy coloring of a Dyck path

• If d is a Dyck path, let gr(d) be the greedy coloring of G(d)

• Define $\lambda^{gr}(d) = wt(gr(d))$

X_G for Dyck paths are SNP

Theorem (Matherne–M–Selover 2022) Let d be a Dyck path, then $X_{G(d)}(x_1,...,x_k)$ is SNP, and its Newton polytope is $P_{\lambda^{gr}(d)}^{(k)}$.

Example

$$X_{G(d)} = 36s_{(1,1,1,1,1)} + 16s_{(2,1,1,1)} + 4s_{(2,2,1)}$$

X_G for (3+1)-free posets is SNP

Theorem (Matherne–M–Selover 2022) Let P be a (3+1)-free poset, then $X_{G(P)}(x_1, \ldots, x_k)$ is SNP, and its Newton polytope is $P_{\lambda^{gr}(P)}^{(k)}$.

Example

$$X_{G(P)} = 120m_{1^5} + 36 * m_{21^3} + 10m_{2^21} + 4m_{31^2} + 2m_{32}$$
 and
Newton $(X_{G(P)}(x_1, x_2, x_3)) = \mathcal{P}_{32}^{(3)}$

About the proof for Dyck paths

Since G(d) is claw-free, whenever $\lambda \in \text{supp}(X_{G(d)}(x_1, \ldots, x_k))$ then integerPoints $(\mathcal{P}_{\lambda}^{(k)}) \subset \text{supp}(X_{G(d)}(x_1, \ldots, x_k))$ (Stanley 1998)

About the proof for Dyck paths

- Since G(d) is claw-free, whenever $\lambda \in \text{supp}(X_{G(d)}(x_1, \ldots, x_k))$ then integerPoints $(\mathcal{P}_{\lambda}^{(k)}) \subset \text{supp}(X_{G(d)}(x_1, \ldots, x_k))$ (Stanley 1998)
- We show that each λ ∈ supp(X_{G(d)}(x₁,...,x_k)) is in integerPoints(P^(k)_{λ^{gr}(d)}), proving supp(X_{G(d)}(x₁,...,x_k)) = integerPoints(P^(k)_{λ^{gr}(d)}) This result was already known by Tim Chow (2015).

About the proof for Dyck paths

- Since G(d) is claw-free, whenever $\lambda \in \text{supp}(X_{G(d)}(x_1, \ldots, x_k))$ then integerPoints $(\mathcal{P}_{\lambda}^{(k)}) \subset \text{supp}(X_{G(d)}(x_1, \ldots, x_k))$ (Stanley 1998)
- We show that each λ ∈ supp(X_{G(d)}(x₁,...,x_k)) is in integerPoints(P^(k)_{λ^{gr}(d)}), proving supp(X_{G(d)}(x₁,...,x_k)) = integerPoints(P^(k)_{λ^{gr}(d)}) This result was already known by Tim Chow (2015).
About the proof for Dyck paths

- Since G(d) is claw-free, whenever $\lambda \in \text{supp}(X_{G(d)}(x_1, \ldots, x_k))$ then integerPoints $(\mathcal{P}_{\lambda}^{(k)}) \subset \text{supp}(X_{G(d)}(x_1, \ldots, x_k))$ (Stanley 1998)
- We show that each λ ∈ supp(X_{G(d)}(x₁,...,x_k)) is in integerPoints(P^(k)_{λ^{gr}(d)}), proving supp(X_{G(d)}(x₁,...,x_k)) = integerPoints(P^(k)_{λ^{gr}(d)}) This result was already known by Tim Chow (2015).
- Main tool: Bounce path characterization of greedy coloring

About the proof for (3+1)-free posets: listings

Theorem (Guay-Paquet-M-Rowland 2013)

- ▶ A (3+1)-free poset P can be represent by a part listing: certain word L on alphabet $\{v_0, v_1, \ldots, \} \cup \{b_{i,i+1}(H) \mid H \text{ bicolored graph}\}.$
- ▶ If L has no $b_{i,i+1}(H)$ then P is (3+1) and (2+2)-free.

About the proof for (3+1)-free posets: modular law

The basic bicolored graphs for j = 0, 1, ..., s are $U_i^{(i)} := v_{i+1}^{s-j} v_i^r v_{i+1}^j$.

About the proof for (3+1)-free posets: modular law

The **basic bicolored graphs** for j = 0, 1, ..., s are $U_i^{(i)} := v_{i+1}^{s-j} v_i^r v_{i+1}^j$.

Theorem (Guay-Paquet 2013)

Let L be part listing of poset P_L with bicolored graph $b_{i,i+1}(H)$, then $X_{G(L)}$ is a convex combination of $X_{G(L_j)}$ where L_i is obtained from L by replacing $b_{i,i+1}(H)$ by $U_j^{(i)}$.

$$X_{G(L)} = \sum_{j=0}^{r} q_j X_{G(L_j)}$$

About the proof for (3+1)-free posets: modular law

The basic bicolored graphs for j = 0, 1, ..., s are $U_i^{(i)} := v_{i+1}^{s-j} v_i^r v_{i+1}^j$.

Theorem (Guay-Paquet 2013)

Let L be part listing of poset P_L with bicolored graph $b_{i,i+1}(H)$, then $X_{G(L)}$ is a convex combination of $X_{G(L_j)}$ where L_i is obtained from L by replacing $b_{i,i+1}(H)$ by $U_j^{(i)}$.

$$X_{G(L)} = \sum_{j=0}^{r} q_j X_{G(L_j)}$$

Theorem (Guay-Paquet 2013)

Let L be part listing of poset P_L with bicolored graph $b_{i,i+1}(H)$, then $X_{G(L)}$ is a convex combination of $X_{G(L_j)}$:

$$X_{G(L)} = \sum_{j=0}^{r} q_j X_{G(L_j)},$$

Theorem (Guay-Paquet 2013)

Let L be part listing of poset P_L with bicolored graph $b_{i,i+1}(H)$, then $X_{G(L)}$ is a convex combination of $X_{G(L_j)}$:

$$X_{G(L)} = \sum_{j=0}^{r} q_j X_{G(L_j)},$$

To find $\lambda^{gr}(P)$:

Find part listing L corresponding to (3+1)-free poset P.

Theorem (Guay-Paquet 2013)

Let L be part listing of poset P_L with bicolored graph $b_{i,i+1}(H)$, then $X_{G(L)}$ is a convex combination of $X_{G(L_j)}$:

$$X_{G(L)} = \sum_{j=0}^{r} q_j X_{G(L_j)},$$

- Find part listing L corresponding to (3+1)-free poset P.
- ▶ for each $b_{i,i+1}(H)$ in listing, find max j such that $q_j \neq 0$

Theorem (Guay-Paquet 2013)

Let L be part listing of poset P_L with bicolored graph $b_{i,i+1}(H)$, then $X_{G(L)}$ is a convex combination of $X_{G(L_j)}$:

$$X_{G(L)} = \sum_{j=0}^{r} q_j X_{G(L_j)},$$

- Find part listing L corresponding to (3+1)-free poset P.
- ▶ for each $b_{i,i+1}(H)$ in listing, find max j such that $q_j \neq 0$
- \blacktriangleright replace *L* by L_j .

Theorem (Guay-Paquet 2013)

Let L be part listing of poset P_L with bicolored graph $b_{i,i+1}(H)$, then $X_{G(L)}$ is a convex combination of $X_{G(L_j)}$:

$$X_{G(L)} = \sum_{j=0}^{r} q_j X_{G(L_j)},$$

- Find part listing L corresponding to (3+1)-free poset P.
- ▶ for each $b_{i,i+1}(H)$ in listing, find max j such that $q_j \neq 0$
- ▶ replace L by L_j .
- iterate until obtaining L' of a (3+1) and (2+2)-free poset. Then $\lambda^{gr}(P) := \lambda^{gr}(L')$.

Theorem (Guay-Paquet 2013)

Let L be part listing of poset P_L with bicolored graph $b_{i,i+1}(H)$, then $X_{G(L)}$ is a convex combination of $X_{G(L_j)}$:

$$X_{G(L)} = \sum_{j=0}^{r} q_j X_{G(L_j)},$$

- Find part listing L corresponding to (3+1)-free poset P.
- ▶ for each $b_{i,i+1}(H)$ in listing, find max j such that $q_j \neq 0$
- ▶ replace L by L_j .
- iterate until obtaining L' of a (3+1) and (2+2)-free poset. Then $\lambda^{gr}(P) := \lambda^{gr}(L')$.

Lemma (Matherne–M–Selover)

Let j < k and part listings $L_j = Ab_{i,i+1}(U_j)B$ and $L_k = Ab_{i,i+1}(U_k)B$ then $supp(X_{G(L_j)}) \subseteq supp(X_{G(L_k)}).$

To show $X_{G(P)}$ is SNP:

Lemma (Matherne–M–Selover)

Let j < k and part listings $L_j = Ab_{i,i+1}(U_j)B$ and $L_k = Ab_{i,i+1}(U_k)B$ then $supp(X_{G(L_j)}) \subseteq supp(X_{G(L_k)}).$

To show $X_{G(P)}$ is SNP:

▶ for each $b_{i,i+1}(H)$ in listing, find max j such that $q_j \neq 0$

Lemma (Matherne–M–Selover)

Let j < k and part listings $L_j = Ab_{i,i+1}(U_j)B$ and $L_k = Ab_{i,i+1}(U_k)B$ then $supp(X_{G(L_j)}) \subseteq supp(X_{G(L_k)}).$

To show $X_{G(P)}$ is SNP:

- ▶ for each $b_{i,i+1}(H)$ in listing, find max j such that $q_j \neq 0$
- ▶ by Lemma supp $X_{G(L)} \subset \text{supp}X_{G(L_{i'})}$

Lemma (Matherne–M–Selover)

Let j < k and part listings $L_j = Ab_{i,i+1}(U_j)B$ and $L_k = Ab_{i,i+1}(U_k)B$ then $supp(X_{G(L_j)}) \subseteq supp(X_{G(L_k)}).$

To show $X_{G(P)}$ is SNP:

▶ for each $b_{i,i+1}(H)$ in listing, find max j such that $q_j \neq 0$

▶ by Lemma supp
$$X_{G(L)} \subset \text{supp} X_{G(L_{i'})}$$

Outline

Newton polytopes

Saturated Newton Polytopes of CSFs

Lorentzian property of CSFs

M-convexity

 $I \subset \mathbb{Z}^k$ is **M-convex** if it has the **exchange property**: for any *i* and $\alpha, \beta \in I$ with $\alpha_i > \beta_i$ there is *j* such that

 $\alpha_j < \beta_j$ and $\alpha - e_i + e_j \in I$ and $\beta - e_j + e_i \in I$.

conv(1) is a generalized permutahedra

M-convexity

 $I \subset \mathbb{Z}^k$ is **M-convex** if it has the **exchange property**: for any *i* and $\alpha, \beta \in I$ with $\alpha_i > \beta_i$ there is *j* such that

$$\alpha_j < \beta_j$$
 and $\alpha - e_i + e_j \in I$ and $\beta - e_j + e_i \in I$.

conv(1) is a generalized permutahedra

Example

 $supp(X_G(x_1,...,x_6))$ is not M-convex since (1, 1, 1, 3, 0, 0) and (0, 0, 2, 2, 2, 0) are in support but not

$$0, 0, 2, 2, 2, 0) - e_i + e_4.$$

Definition (Brändén-Huh 2020)

A homogeneous polynomial $f \in \mathbb{R}_{\geq 0}[x_1, \ldots, x_k]$ of degree *n* is **Lorentzian** if

- supp(f) is M-convex, and
- the quadratic form of

$$\frac{\partial}{\partial x_{i_1}} \circ \cdots \circ \frac{\partial}{\partial x_{i_{n-2}}}(f)$$

has at most one positive eigenvalue for all $i_1, i_2, \ldots, i_{n-2} \in [k]$.

Lorentzian property and log-concavity

Theorem (Brändén-Huh 2020)

Let $f = \sum_{lpha \in \Delta_k^n} c_lpha \mathbf{x}^lpha$ be a Lorentzian polynomial. Then

$$(\alpha!)^2 c_{\alpha}^2 \ge (\alpha + e_i - e_j)! (\alpha - e_i + e_j)! \cdot c_{\alpha + e_i - e_j} c_{\alpha - e_i + e_j} \text{ for all } i, j \text{ in } [k] \text{ and } \alpha \text{ in } \Delta_k^n,$$

and thus

$$c_{\alpha}^2 \geq c_{\alpha+e_i-e_j}c_{\alpha-e_i+e_j}$$
 for all i,j in $[k]$ and α in Δ_k^n .

Definition (Brändén-Huh 2020)

A homogeneous polynomial $f \in \mathbb{R}_{\geq 0}[x_1, \dots, x_k]$ of degree n is Lorentzian if

- supp(f) is M-convex, and
- the quadratic form of

$$\frac{\partial}{\partial x_{i_1}} \circ \cdots \circ \frac{\partial}{\partial x_{i_{n-2}}}(f)$$

has at most one positive eigenvalue for all $i_1, i_2, \ldots, i_{n-2} \in [k]$.

Example

$$s_2(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2$$
 has matrix $\begin{bmatrix} 1 & 1/2 \\ 1/2 & 1 \end{bmatrix}$.

Example

$$s_2(x_1, x_2) = \frac{1}{2}x_1^2 + x_1x_2 + \frac{1}{2}x_2^2$$
 has matrix $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$.

Definition (Brändén-Huh 2020)

A homogeneous polynomial $f \in \mathbb{R}_{\geq 0}[x_1, \dots, x_k]$ of degree n is Lorentzian if

- supp(f) is M-convex, and
- the quadratic form of

$$\frac{\partial}{\partial x_{i_1}} \circ \cdots \circ \frac{\partial}{\partial x_{i_{n-2}}}(f)$$

has at most one positive eigenvalue for all $i_1, i_2, \ldots, i_{n-2} \in [k]$.

Examples of Lorentzian polynomials:

Definition (Brändén-Huh 2020)

A homogeneous polynomial $f \in \mathbb{R}_{\geq 0}[x_1, \dots, x_k]$ of degree n is Lorentzian if

- supp(f) is M-convex, and
- the quadratic form of

$$\frac{\partial}{\partial x_{i_1}} \circ \cdots \circ \frac{\partial}{\partial x_{i_{n-2}}}(f)$$

has at most one positive eigenvalue for all $i_1, i_2, \ldots, i_{n-2} \in [k]$.

Examples of Lorentzian polynomials:

▶ *e_k* is Lorentzian (Bränden–Huh 2020)

Definition (Brändén-Huh 2020)

A homogeneous polynomial $f \in \mathbb{R}_{\geq 0}[x_1, \dots, x_k]$ of degree *n* is **Lorentzian** if

- supp(f) is M-convex, and
- the quadratic form of

$$\frac{\partial}{\partial x_{i_1}} \circ \cdots \circ \frac{\partial}{\partial x_{i_{n-2}}}(f)$$

has at most one positive eigenvalue for all $i_1, i_2, \ldots, i_{n-2} \in [k]$.

Examples of Lorentzian polynomials:

▶ *e_k* is Lorentzian (Bränden–Huh 2020)

► $N(s_{\lambda}(x_1,...,x_k))$ is Lorentzian (Huh–Matherne–Mészáros–St. Dizier 2019)

Definition (Brändén-Huh 2020)

A homogeneous polynomial $f \in \mathbb{R}_{\geq 0}[x_1, \ldots, x_k]$ of degree *n* is **Lorentzian** if

- supp(f) is M-convex, and
- the quadratic form of

$$\frac{\partial}{\partial x_{i_1}} \circ \cdots \circ \frac{\partial}{\partial x_{i_{n-2}}}(f)$$

has at most one positive eigenvalue for all $i_1, i_2, \ldots, i_{n-2} \in [k]$.

Examples of Lorentzian polynomials:

- ▶ *e_k* is Lorentzian (Bränden–Huh 2020)
- ► $N(s_{\lambda}(x_1,...,x_k))$ is Lorentzian (Huh–Matherne–Mészáros–St. Dizier 2019)
- Schubert polynomials N(G_w(x₁,...,x_k)) (conjecture Huh–Matherne–Mészáros–St. Dizier 2019)

Conjecture (Matherne–M–Selover 2022) Let d be a Dyck path. Then $X_{G(d)}(x_1, ..., x_k)$ is Lorentzian.

Main conjecture

Conjecture (Matherne-M-Selover 2022)

Let d be a Dyck path. Then $X_{G(d)}(x_1, \ldots, x_k)$ is Lorentzian.

• Verified for Dyck paths of size $n \le 7$ with $k \le 8$ variables.

Example

For d = nneneene, $\lambda^{gr}(d) = (3, 1)$, $X_{G(d)} = 24m_{1111} + 8m_{211} + 2m_{22} + m_{31}$, and Newton $(X_{G(d)}(x_1, \dots, x_k)) = \mathcal{P}_{31}^{(k)}$.

Main conjecture

Conjecture (Matherne-M-Selover 2022)

Let d be a Dyck path. Then $X_{G(d)}(x_1, \ldots, x_k)$ is Lorentzian.

- Verified for Dyck paths of size $n \le 7$ with $k \le 8$ variables.
- Not true for other incomparability graphs.

Example

Let P be the (2+2)-poset so $G(P) = C_4$ and $X_{C_4} = 24m_{1111} + 4m_{211} + 2m_{22}$. Now $f = X_{C_4}(x_1, \dots, x_5)$ is not Lorentzian. Quadratic form of $\frac{\partial}{\partial x_1} \circ \frac{\partial}{\partial x_2} f$ has matrix

$$A = \begin{pmatrix} 0 & 8 & 8 & 8 & 8 \\ 8 & 0 & 8 & 8 & 8 \\ 8 & 8 & 8 & 24 & 24 \\ 8 & 8 & 24 & 8 & 24 \\ 8 & 8 & 24 & 24 & 8 \end{pmatrix}, \quad \text{eigenvalues } 32 + 8\sqrt{15}, 32 - 8\sqrt{15}, \dots$$

Abelian Dyck paths

Definition (Harada–Precup 2019)

An **Abelian Dyck path** is a path d such that G(d) is co-bipartite.

Definition (Harada-Precup 2019)

An **Abelian Dyck path** is a path d such that G(d) is co-bipartite.

 $X_{G(d)}$ of Abelian Dyck paths are Lorentzian

Theorem (Matherne–M–Selover 2022)

Let d be an abelian Dyck path. Then $X_{G(d)}(x_1, \ldots, x_k)$ is Lorentzian.

Example

$$X_G = 24m_{1111} + 6m_{211} + 2m_{22}$$
. For $f = X_G(x_1, x_2, x_3)$, quadratic form of $\frac{\partial}{\partial x_3}f = 4x_1^2 + 12x_1x_2 + 4x_2^2$ has matrix $\begin{bmatrix} 8 & 12\\ 12 & 8 \end{bmatrix}$.

1-2-3-4

G(d)

About proof: block matrix

For abelian Dyck paths d_{λ}

$$X_G = \sum_{\alpha} c_{\alpha} \mathbf{x}^{\alpha} = \sum_{i} i! \cdot (n-2i)! \cdot r_i(\lambda) \cdot m_{2^i 1^{n-2i}},$$

where $r_i(\lambda)$ is the number of placements of *i* non-attacking rooks on λ . For each $\alpha \in \Delta_k^{n-2}$ we check $k \times k$ matrix $H_\alpha = ((\alpha + e_r + e_s)! \cdot c_{\alpha+e_r+e_s})_{r,s=1}^k$ has at most one positive eigenvalue. For $\alpha = (2^{i-1}, 1^{n-2i}, 0^{k-n+i+1})$:

$$a = 2^{i+1} \cdot (i+1)! \cdot (n-2i-2)! \cdot r_{i+1}$$

$$b = 2^{i} \cdot i! \cdot (n-2i)! \cdot r_{i}$$

$$c = 2^{i-1} \cdot (i-1)! \cdot (n-2i+2)! \cdot r_{i-1},$$

$$a = 2^{i+1} \cdot (i+1)! \cdot (n-2i-2)! \cdot r_{i+1}$$

$$b = 2^{i} \cdot i! \cdot (n-2i)! \cdot r_{i}$$

$$c = 2^{i-1} \cdot (i-1)! \cdot (n-2i+2)! \cdot r_{i-1},$$

 $X_{G(d_{\lambda})}(x_1,\ldots,x_k)$ is Lorentzian iff

 $b-c \leq 0,$ (1) $-(n-2i)(k-n+i+1)b^2 + (n-2i-1)a(b+(k-n+i)c) \leq 0,$ (2)

$$a = 2^{i+1} \cdot (i+1)! \cdot (n-2i-2)! \cdot r_{i+1}$$

$$b = 2^{i} \cdot i! \cdot (n-2i)! \cdot r_{i}$$

$$c = 2^{i-1} \cdot (i-1)! \cdot (n-2i+2)! \cdot r_{i-1},$$

 $X_{G(d_{\lambda})}(x_1,\ldots,x_k)$ is Lorentzian iff

$$b-c \leq 0,$$
 (1)
 $-(n-2i)(k-n+i+1)b^2 + (n-2i-1)a(b+(k-n+i)c) \leq 0,$ (2)

▶ (1) follows from

$$(i+1) \cdot r_{i+1} \leq (n_1 - i)(n_2 - i) \cdot r_i$$

$$a = 2^{i+1} \cdot (i+1)! \cdot (n-2i-2)! \cdot r_{i+1}$$

$$b = 2^{i} \cdot i! \cdot (n-2i)! \cdot r_{i}$$

$$c = 2^{i-1} \cdot (i-1)! \cdot (n-2i+2)! \cdot r_{i-1},$$

 $X_{G(d_{\lambda})}(x_1,\ldots,x_k)$ is Lorentzian iff

$$b-c \leq 0,$$
 (1)
 $-(n-2i)(k-n+i+1)b^2 + (n-2i-1)a(b+(k-n+i)c) \leq 0,$ (2)

(1) follows from $(i+1) \cdot r_{i+1} \leq (n_1-i)(n_2-i) \cdot r_i$

(2) follows from

$$r_i^2 \geq \left(1+\frac{1}{i}\right)\left(1+\frac{1}{\ell-i}\right)\left(1+\frac{1}{\lambda_1-i}\right)r_{i-1}r_{i+1}.$$

$$a = 2^{i+1} \cdot (i+1)! \cdot (n-2i-2)! \cdot r_{i+1}$$

$$b = 2^{i} \cdot i! \cdot (n-2i)! \cdot r_{i}$$

$$c = 2^{i-1} \cdot (i-1)! \cdot (n-2i+2)! \cdot r_{i-1},$$

 $X_{G(d_{\lambda})}(x_1,\ldots,x_k)$ is Lorentzian iff

$$b-c \leq 0,$$
 (1)
 $-(n-2i)(k-n+i+1)b^2 + (n-2i-1)a(b+(k-n+i)c) \leq 0,$ (2)

▶ (1) follows from

$$(i+1) \cdot r_{i+1} \leq (n_1 - i)(n_2 - i) \cdot r_i$$

► (2) follows from

$$r_i^2 \geq \left(1 + \frac{1}{i}\right) \left(1 + \frac{1}{\ell - i}\right) \left(1 + \frac{1}{\lambda_1 - i}\right) r_{i-1}r_{i+1}.$$

A consequence of real-rootedness of **hit polynomial** for *Ferrers boards*: $\sum_{i=0}^{N} (N-i)! \cdot r_i(\lambda) \cdot (x-1)^i$ (Haglund–Ono–Wagner 1999)
Thank you

P. Brändén and J. Huh. Lorentzian polynomials. Ann. of Math. (2), 192(3):821–891, 2020.

M. Guay-Paquet.

A modular relation for the chromatic symmetric functions of (3+1)-free posets. *arXiv preprint arXiv:1306.2400*, 2013.

 C. Monical, N. Tokcan, and A. Yong.
Newton polytopes in algebraic combinatorics. Selecta Math. (N.S.), 25(5):Paper No. 66, 37, 2019.