Counting Admissible Orderings of a Pinnacle Set

Quinn Minnich

Michigan State University

October 27, 2021

・ロト ・日下・ ・ ヨト・

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its *pinnacle set* is

$$\mathsf{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.$$

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its *pinnacle set* is

$$\mathsf{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.$$

Example: n = 9

 $\pi=\texttt{297418356}$

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its *pinnacle set* is

$$\mathsf{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.$$

Example: n = 9

 $\pi = 297418356$

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its *pinnacle set* is

$$\mathsf{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.$$

Example: n = 9

 $\pi = 297418356$ So Pin $\pi = \{8, 9\}$

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its *pinnacle set* is

$$\mathsf{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.$$

Example: n = 9

 $\pi = 297418356$ So Pin $\pi = \{8, 9\}$

It is also possible to go backwards by first specifying a desired pinnacle set $P \subseteq [n]$ and then asking if there exists any $\pi \in S_n$ such that $Pin \pi = P$. If such a π exists, we say it is a *witness* to the pinnacle set. If P has a witness, we say it is an *admissible pinnacle set*.

< ロ > < 同 > < 回 > < 回 >

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its *pinnacle set* is

$$\mathsf{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.$$

Example: n = 9

 $\pi = 297418356$ So Pin $\pi = \{8, 9\}$

It is also possible to go backwards by first specifying a desired pinnacle set $P \subseteq [n]$ and then asking if there exists any $\pi \in S_n$ such that $Pin \pi = P$. If such a π exists, we say it is a *witness* to the pinnacle set. If P has a witness, we say it is an *admissible pinnacle set*.

Example: n = 9 and $P = \{5, 6, 9\}$ has witness $\pi = 152639478$

< ロ > < 同 > < 回 > < 回 >

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its *pinnacle set* is

$$\mathsf{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.$$

Example: n = 9

 $\pi = 297418356$ So Pin $\pi = \{8, 9\}$

It is also possible to go backwards by first specifying a desired pinnacle set $P \subseteq [n]$ and then asking if there exists any $\pi \in S_n$ such that $\operatorname{Pin} \pi = P$. If such a π exists, we say it is a *witness* to the pinnacle set. If P has a witness, we say it is an *admissible pinnacle set*.

Example: n = 9 and $P = \{5, 6, 9\}$ has witness $\pi = 152639478$

However, $P = \{3, 4\}$ is not an admissible pinnacle set because there are not enough small non-pinnacles to surround the 3 and the 4.

イロト イヨト イヨト イヨト

< □ > < 同 > < 回 > < 回 >

Example: If n = 7 then $P = \{4, 5, 7\}$ has multiple witnesses where the pinnacles appear in the order 457, including $\pi = 1425376$.

< ロ > < 同 > < 回 > < 回 >

Example: If n = 7 then $P = \{4, 5, 7\}$ has multiple witnesses where the pinnacles appear in the order 457, including $\pi = 1425376$.

However, there is no witness where the pinnacles appear in the order 475 since this would require four elements less than both 4 and 5 rather than just three.

< ロ > < 同 > < 回 > < 回 >

Example: If n = 7 then $P = \{4, 5, 7\}$ has multiple witnesses where the pinnacles appear in the order 457, including $\pi = 1425376$.

However, there is no witness where the pinnacles appear in the order 475 since this would require four elements less than both 4 and 5 rather than just three.

If a particular ordering of P has a witness, we say that it is an *admissible* ordering of P.

イロト イヨト イヨト

Let ω be an ordering of a set S. Then for any permutation π of a set containing S we say that $\operatorname{Ord} \pi = \omega$ if the elements of S in π appear in order ω .

イロト イ団ト イヨト イヨ

Let ω be an ordering of a set *S*. Then for any permutation π of a set containing *S* we say that $\operatorname{Ord} \pi = \omega$ if the elements of *S* in π appear in order ω .

Example: Let $S = \{a, b, c\}$ and suppose we are considering permutations of the set $\{1, 2, 3, a, b, c\}$, which contains S. One such permutation is $\pi = 13bc2a$ which has Ord $\pi = bca$.

< ロ > < 同 > < 回 > < 回 >

Let ω be an ordering of a set *S*. Then for any permutation π of a set containing *S* we say that $\operatorname{Ord} \pi = \omega$ if the elements of *S* in π appear in order ω .

Example: Let $S = \{a, b, c\}$ and suppose we are considering permutations of the set $\{1, 2, 3, a, b, c\}$, which contains S. One such permutation is $\pi = 13bc2a$ which has Ord $\pi = bca$.

More specifically, given an arbitrary $\pi \in S_n$ such that Pin $\pi = P$, we may say that Ord $\pi = \omega$ where ω is the ordering of the elements of P within π .

< ロ > < 同 > < 回 > < 回 >

Let ω be an ordering of a set *S*. Then for any permutation π of a set containing *S* we say that $\operatorname{Ord} \pi = \omega$ if the elements of *S* in π appear in order ω .

Example: Let $S = \{a, b, c\}$ and suppose we are considering permutations of the set $\{1, 2, 3, a, b, c\}$, which contains S. One such permutation is $\pi = 13bc2a$ which has Ord $\pi = bca$.

More specifically, given an arbitrary $\pi \in S_n$ such that Pin $\pi = P$, we may say that Ord $\pi = \omega$ where ω is the ordering of the elements of P within π .

Example: Suppose n = 9, $P = \{5, 7, 8\}$, and $\pi = 386452719$.

イロト イヨト イヨト

Let ω be an ordering of a set S. Then for any permutation π of a set containing S we say that $\operatorname{Ord} \pi = \omega$ if the elements of S in π appear in order ω .

Example: Let $S = \{a, b, c\}$ and suppose we are considering permutations of the set $\{1, 2, 3, a, b, c\}$, which contains S. One such permutation is $\pi = 13bc2a$ which has Ord $\pi = bca$.

More specifically, given an arbitrary $\pi \in S_n$ such that Pin $\pi = P$, we may say that Ord $\pi = \omega$ where ω is the ordering of the elements of P within π .

Example: Suppose n = 9, $P = \{5, 7, 8\}$, and $\pi = 386452719$.

Then $\operatorname{Ord} \pi = 857$.

イロト イヨト イヨト

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

$$O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \operatorname{Ord} \pi = \omega, \operatorname{Pin} \pi = P \}.$$

If we denote the cardinality of a set by #, then we also let

o(P) = #O(P).

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

$$O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \operatorname{Ord} \pi = \omega, \operatorname{Pin} \pi = P \}.$$

If we denote the cardinality of a set by #, then we also let

o(P) = #O(P).

Example: n = 7

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

$$O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \operatorname{Ord} \pi = \omega, \operatorname{Pin} \pi = P \}.$$

If we denote the cardinality of a set by #, then we also let

o(P) = #O(P).

Example: n = 7

Out of all orderings of P = {4, 5, 7}, only 457, 547, 745, and 754 are admissible.

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

$$O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \operatorname{Ord} \pi = \omega, \operatorname{Pin} \pi = P \}.$$

If we denote the cardinality of a set by #, then we also let

o(P) = #O(P).

Example: n = 7

Out of all orderings of P = {4, 5, 7}, only 457, 547, 745, and 754 are admissible. Therefore, O(P) = {457, 547, 745, 754} and o(P) = 4.

Definition

Let ω any ordering of *P*. Then the set of all admissible orderings of *P* is

$$O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \operatorname{Ord} \pi = \omega, \operatorname{Pin} \pi = P \}.$$

If we denote the cardinality of a set by #, then we also let

o(P) = #O(P).

Example: n = 7

- Out of all orderings of P = {4, 5, 7}, only 457, 547, 745, and 754 are admissible. Therefore, O(P) = {457, 547, 745, 754} and o(P) = 4.
- All orderings of P = {5, 6, 7} are admissible, and so O(P) = {567, 576, 657, 675, 756, 765} and o(P) = 6

イロト イヨト イヨト

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

$$O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \operatorname{Ord} \pi = \omega, \operatorname{Pin} \pi = P \}.$$

If we denote the cardinality of a set by #, then we also let

o(P) = #O(P).

Example: n = 7

- Out of all orderings of P = {4, 5, 7}, only 457, 547, 745, and 754 are admissible. Therefore, O(P) = {457, 547, 745, 754} and o(P) = 4.
- ► All orderings of P = {5, 6, 7} are admissible, and so O(P) = {567, 576, 657, 675, 756, 765} and o(P) = 6

イロト イヨト イヨト

This raises several interesting questions:

イロト イヨト イヨト イヨ

This raises several interesting questions:

Question

For a fixed *n*, how many admissible pinnacle sets $P \subseteq [n]$ are there?

This raises several interesting questions:

Question

For a fixed *n*, how many admissible pinnacle sets $P \subseteq [n]$ are there?

Davis et al. showed that the number of admissible pinnacle sets is

$$\binom{n-1}{\lfloor (n-1)/2 \rfloor}$$

<ロト < 回 > < 回 > < 回 > < 回 >

This raises several interesting questions:

Question

For a fixed *n*, how many admissible pinnacle sets $P \subseteq [n]$ are there?

Davis et al. showed that the number of admissible pinnacle sets is

$$\binom{n-1}{\lfloor (n-1)/2 \rfloor}$$

Question

For a fixed *n* and desired pinnacle set *P*, how many permutations in S_n have *P* as its pinnacle set?

(日) (四) (日) (日) (日)

This raises several interesting questions:

Question

For a fixed *n*, how many admissible pinnacle sets $P \subseteq [n]$ are there?

Davis et al. showed that the number of admissible pinnacle sets is

$$\binom{n-1}{\lfloor (n-1)/2 \rfloor}$$

Question

For a fixed *n* and desired pinnacle set *P*, how many permutations in S_n have *P* as its pinnacle set?

This question has received a lot of attention. Currently the fastest known algorithms, one of them given by Fang in 2021 and one by myself, have run time $O(k^2 \log n + k^4)$ where k is the number of elements in P.

< ロ > < 同 > < 回 > < 回 >

For a fixed *n* and desired pinnacle set *P*, what is o(P), that is, how many orderings of *P* are admissible?

For a fixed *n* and desired pinnacle set *P*, what is o(P), that is, how many orderings of *P* are admissible?

In 2020 Rusu and Tenner did some work characterizing admissible pinnacle orderings, but they did not give a function to count them.

(日) (四) (日) (日) (日)

For a fixed n and desired pinnacle set P, what is o(P), that is, how many orderings of P are admissible?

In 2020 Rusu and Tenner did some work characterizing admissible pinnacle orderings, but they did not give a function to count them.

For the rest of the talk, we will suppose that our given set P has k elements. We would like to find a formula or algorithm for computing o(P) which, in principle, would depend on n (the length of π) and k.

< □ > < 同 > < 回 > < 回 >

For a fixed *n* and desired pinnacle set *P*, what is o(P), that is, how many orderings of *P* are admissible?

In 2020 Rusu and Tenner did some work characterizing admissible pinnacle orderings, but they did not give a function to count them.

For the rest of the talk, we will suppose that our given set P has k elements. We would like to find a formula or algorithm for computing o(P) which, in principle, would depend on n (the length of π) and k.

Actually, this problem is independent of n, which is out first result.

< □ > < 同 > < 回 > < 回 >

Definition

Let N_i be the set of the *i* smallest elements not in *P*.

イロト イヨト イヨト イヨト

Definition

Let N_i be the set of the *i* smallest elements not in *P*.

Example: If n = 9 and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

イロト イヨト イヨト イヨト

Definition

Let N_i be the set of the *i* smallest elements not in *P*.

Example: If n = 9 and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

Theorem

Suppose $P \subseteq [n]$ with |P| = k and let ω be some ordering of the elements in P. Then there exists a permutation π of the elements [n] with $Ord \pi = \omega$ and $Pin \pi = P$ if and only if there exists a permutation π' of the elements $N_{k+1} \cup P$ with $Ord \pi' = \omega$ and $Pin \pi' = P$.

(日) (四) (日) (日) (日)

Definition

Let N_i be the set of the *i* smallest elements not in *P*.

Example: If n = 9 and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

Theorem

Suppose $P \subseteq [n]$ with |P| = k and let ω be some ordering of the elements in P. Then there exists a permutation π of the elements [n] with $Ord \pi = \omega$ and $Pin \pi = P$ if and only if there exists a permutation π' of the elements $N_{k+1} \cup P$ with $Ord \pi' = \omega$ and $Pin \pi' = P$.

In essence, this says that if we have a witness π to an ordering, then we should be able to find a witness π' to that same ordering where the largest non-pinnacles are removed and the remaining non-pinnacles alternate with the pinnacles.

イロト イヨト イヨト
Definition

Let N_i be the set of the *i* smallest elements not in *P*.

Example: If n = 9 and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

Theorem

Suppose $P \subseteq [n]$ with |P| = k and let ω be some ordering of the elements in P. Then there exists a permutation π of the elements [n] with $Ord \pi = \omega$ and $Pin \pi = P$ if and only if there exists a permutation π' of the elements $N_{k+1} \cup P$ with $Ord \pi' = \omega$ and $Pin \pi' = P$.

In essence, this says that if we have a witness π to an ordering, then we should be able to find a witness π' to that same ordering where the largest non-pinnacles are removed and the remaining non-pinnacles alternate with the pinnacles.

Example: Suppose n = 8 and $P = \{7, 8\}$. Then $\omega = 78$ is admissible because we have $\pi = 43176852$.

Definition

Let N_i be the set of the *i* smallest elements not in *P*.

Example: If n = 9 and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

Theorem

Suppose $P \subseteq [n]$ with |P| = k and let ω be some ordering of the elements in P. Then there exists a permutation π of the elements [n] with $Ord \pi = \omega$ and $Pin \pi = P$ if and only if there exists a permutation π' of the elements $N_{k+1} \cup P$ with $Ord \pi' = \omega$ and $Pin \pi' = P$.

In essence, this says that if we have a witness π to an ordering, then we should be able to find a witness π' to that same ordering where the largest non-pinnacles are removed and the remaining non-pinnacles alternate with the pinnacles.

Example: Suppose n = 8 and $P = \{7, 8\}$. Then $\omega = 78$ is admissible because we have $\pi = 43176852$. The theorem states there ought to be a witness using only the non-pinnacles 1, 2, and 3,

< □ > < □ > < □ > < □ > < □ >

Definition

Let N_i be the set of the *i* smallest elements not in *P*.

Example: If n = 9 and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

Theorem

Suppose $P \subseteq [n]$ with |P| = k and let ω be some ordering of the elements in P. Then there exists a permutation π of the elements [n] with $Ord \pi = \omega$ and $Pin \pi = P$ if and only if there exists a permutation π' of the elements $N_{k+1} \cup P$ with $Ord \pi' = \omega$ and $Pin \pi' = P$.

In essence, this says that if we have a witness π to an ordering, then we should be able to find a witness π' to that same ordering where the largest non-pinnacles are removed and the remaining non-pinnacles alternate with the pinnacles.

Example: Suppose n = 8 and $P = \{7, 8\}$. Then $\omega = 78$ is admissible because we have $\pi = 43176852$. The theorem states there ought to be a witness using only the non-pinnacles 1, 2, and 3, and there is: $\pi' = 17382$.

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

< □ > < 同 > < 回 > < 回 >

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: n = 9, $P = \{3,7\}$, $N_{k+1} = N_3 = \{1,2,4\}$, $\omega = 37$.

(日) (四) (日) (日) (日)

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: n = 9, $P = \{3,7\}$, $N_{k+1} = N_3 = \{1,2,4\}$, $\omega = 37$.

Then if $\pi' = 13274$, we can define $\pi = 132745689 \in S_9$

(日) (四) (日) (日) (日)

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: n = 9, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi' = 13274$, we can define $\pi = 132745689 \in S_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: n = 9, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi' = 13274$, we can define $\pi = 132745689 \in S_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: $n = 9, P = \{5, 7\}, \omega = 57$.

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: n = 9, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi' = 13274$, we can define $\pi = 132745689 \in S_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: n = 9, $P = \{5, 7\}$, $\omega = 57$.

 $\pi = 453127689$

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: n = 9, $P = \{3,7\}$, $N_{k+1} = N_3 = \{1,2,4\}$, $\omega = 37$.

Then if $\pi' = 13274$, we can define $\pi = 132745689 \in S_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: n = 9, $P = \{5, 7\}$, $\omega = 57$.

 $\pi = 453127689$ $\pi' = 453127689$

First copy the original permutation, and identify each block of consecutive non-pinnacles.

イロト イヨト イヨト イヨト

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: n = 9, $P = \{3,7\}$, $N_{k+1} = N_3 = \{1,2,4\}$, $\omega = 37$.

Then if $\pi' = 13274$, we can define $\pi = 132745689 \in S_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: n = 9, $P = \{5, 7\}$, $\omega = 57$.

 $\pi = 453127689$ $\pi' = 453127689$

First copy the original permutation, and identify each block of consecutive non-pinnacles.

イロト イヨト イヨト イヨト

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: n = 9, $P = \{3,7\}$, $N_{k+1} = N_3 = \{1,2,4\}$, $\omega = 37$.

Then if $\pi' = 13274$, we can define $\pi = 132745689 \in S_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: n = 9, $P = \{5, 7\}$, $\omega = 57$.

 $\pi = 453127689$ $\pi' = 453127689$

Next, delete all but the smallest non-pinnacle in each block.

< □ > < □ > < □ > < □ > < □ >

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: n = 9, $P = \{3,7\}$, $N_{k+1} = N_3 = \{1,2,4\}$, $\omega = 37$.

Then if $\pi' = 13274$, we can define $\pi = 132745689 \in S_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: $n = 9, P = \{5, 7\}, \omega = 57$.

$$\pi = 453127689$$

 $\pi' = 45176$

Next, delete all but the smallest non-pinnacle in each block.

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example:
$$n = 9$$
, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi' = 13274$, we can define $\pi = 132745689 \in S_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: n = 9, $P = \{5, 7\}$, $\omega = 57$.

$$\pi = 453127689$$

 $\pi' = 45176$

Finally, within π' standardize just those remaining non-pinnacles to the set N_{k+1} , which in this case is the set $\{1, 2, 3\}$.

イロト イヨト イヨト イヨト

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example:
$$n = 9$$
, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi' = 13274$, we can define $\pi = 132745689 \in S_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: n = 9, $P = \{5, 7\}$, $\omega = 57$.

$$\pi = 453127689$$

 $\pi' = 25173$

Finally, within π' standardize just those remaining non-pinnacles to the set N_{k+1} , which in this case is the set $\{1, 2, 3\}$.

イロト イヨト イヨト イヨト

The reverse direction of this theorem is easy because given some witness π' on the elements $N_{k+1} \cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: n = 9, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi' = 13274$, we can define $\pi = 132745689 \in S_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: n = 9, $P = \{5, 7\}$, $\omega = 57$.

 $\pi = 453127689$ $\pi' = 25173$

イロト イ団ト イヨト イヨ

By standardizing our result, we can always reduce to a case where the pinnacles not only alternate with the non-pinnacles, but where the witness is in S_{2k+1} .

Example: when considering the ordering 57 for $P = \{5,7\}$ and n = 9, we may reduce

イロト イボト イヨト イヨ

Example: when considering the ordering 57 for $P = \{5,7\}$ and n = 9, we may reduce

$$\pi = 453127689 \longrightarrow \pi' = 25173 \longrightarrow \pi'' = 24153.$$

イロト イボト イヨト イヨ

Example: when considering the ordering 57 for $P = \{5,7\}$ and n = 9, we may reduce

$$\pi = 453127689 \longrightarrow \pi' = 25173 \longrightarrow \pi'' = 24153.$$

Then π'' is a witness to the ordering 45 of $P' = \{4, 5\}$ where n = 5. In π'' we have that 4 in P' plays the role of 5 in P, and 5 in P' plays the role of 7 in P.

< ロ > < 同 > < 回 > < 回 >

Example: when considering the ordering 57 for $P = \{5,7\}$ and n = 9, we may reduce

$$\pi = 453127689 \longrightarrow \pi' = 25173 \longrightarrow \pi'' = 24153.$$

Then π'' is a witness to the ordering 45 of $P' = \{4, 5\}$ where n = 5. In π'' we have that 4 in P' plays the role of 5 in P, and 5 in P' plays the role of 7 in P.

Therefore, when trying to find o(P), it is enough to find o(P') since there is a bijection between their orderings.

Example: when considering the ordering 57 for $P = \{5,7\}$ and n = 9, we may reduce

$$\pi = \textbf{453127689} \longrightarrow \pi' = \textbf{25173} \longrightarrow \pi'' = \textbf{24153}.$$

Then π'' is a witness to the ordering 45 of $P' = \{4, 5\}$ where n = 5. In π'' we have that 4 in P' plays the role of 5 in P, and 5 in P' plays the role of 7 in P.

Therefore, when trying to find o(P), it is enough to find o(P') since there is a bijection between their orderings.

In what follows, we will assume the case where n = 2k + 1 so that pinnacles and non-pinnacles alternate.

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k.

イロト イヨト イヨト イヨト

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k.

Definition

Given some $P = \{p_1 < p_2 < \cdots < p_k\}$ and complement set $N = \{n_1 < n_2 < \cdots < n_{k+1}\}$ so that $P \cup N = [2k + 1]$, we consider the set $P \cup N \setminus \{p_1, n_1\}$ and standardize. We define the *reduction operator* r(P) = P' to be the set to which $P \setminus \{p_1\}$ standardizes.

(日) (四) (日) (日) (日)

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k.

Definition

Given some $P = \{p_1 < p_2 < \cdots < p_k\}$ and complement set $N = \{n_1 < n_2 < \cdots < n_{k+1}\}$ so that $P \cup N = [2k + 1]$, we consider the set $P \cup N \setminus \{p_1, n_1\}$ and standardize. We define the *reduction operator* r(P) = P' to be the set to which $P \setminus \{p_1\}$ standardizes.

In other words, r(P) is calculated by removing the smallest element in P and the smallest element not in P, and then shifting the remaining elements in P down.

(日) (四) (日) (日) (日)

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k.

Definition

Given some $P = \{p_1 < p_2 < \cdots < p_k\}$ and complement set $N = \{n_1 < n_2 < \cdots < n_{k+1}\}$ so that $P \cup N = [2k + 1]$, we consider the set $P \cup N \setminus \{p_1, n_1\}$ and standardize. We define the *reduction operator* r(P) = P' to be the set to which $P \setminus \{p_1\}$ standardizes.

In other words, r(P) is calculated by removing the smallest element in P and the smallest element not in P, and then shifting the remaining elements in P down.

▶ If $P = \{1, 2, 5\}$, then $N = \{3, 4, 6, 7\}$, $p_1 = 1$, $n_1 = 3$, and $P \cup N \setminus \{p_1, n_1\} = \{2, 4, 5, 6, 7\}$. So $r(P) = \{1, 3\}$.

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k.

Definition

Given some $P = \{p_1 < p_2 < \cdots < p_k\}$ and complement set $N = \{n_1 < n_2 < \cdots < n_{k+1}\}$ so that $P \cup N = [2k + 1]$, we consider the set $P \cup N \setminus \{p_1, n_1\}$ and standardize. We define the *reduction operator* r(P) = P' to be the set to which $P \setminus \{p_1\}$ standardizes.

In other words, r(P) is calculated by removing the smallest element in P and the smallest element not in P, and then shifting the remaining elements in P down.

▶ If $P = \{1, 2, 5\}$, then $N = \{3, 4, 6, 7\}$, $p_1 = 1$, $n_1 = 3$, and $P \cup N \setminus \{p_1, n_1\} = \{2, 4, 5, 6, 7\}$. So $r(P) = \{1, 3\}$.

▶ If $P = \{3, 5, 7\}$, then $N = \{1, 2, 4, 6\}$, $p_1 = 3$, $n_1 = 1$, and $P \cup N \setminus \{p_1, n_1\} = \{2, 4, 5, 6, 7\}$. So $r(P) = \{3, 5\}$.

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k.

Definition

Given some $P = \{p_1 < p_2 < \cdots < p_k\}$ and complement set $N = \{n_1 < n_2 < \cdots < n_{k+1}\}$ so that $P \cup N = [2k + 1]$, we consider the set $P \cup N \setminus \{p_1, n_1\}$ and standardize. We define the *reduction operator* r(P) = P' to be the set to which $P \setminus \{p_1\}$ standardizes.

In other words, r(P) is calculated by removing the smallest element in P and the smallest element not in P, and then shifting the remaining elements in P down.

▶ If $P = \{1, 2, 5\}$, then $N = \{3, 4, 6, 7\}$, $p_1 = 1$, $n_1 = 3$, and $P \cup N \setminus \{p_1, n_1\} = \{2, 4, 5, 6, 7\}$. So $r(P) = \{1, 3\}$.

▶ If
$$P = \{3, 5, 7\}$$
, then $N = \{1, 2, 4, 6\}$, $p_1 = 3$, $n_1 = 1$, and $P \cup N \setminus \{p_1, n_1\} = \{2, 4, 5, 6, 7\}$. So $r(P) = \{3, 5\}$.

Note that $n_1 < p_1$ implies $r(P) = \{p_2 - 2 < \cdots < p_k - 2\}$

< ロ > < 同 > < 回 > < 回 >

Recall that N_i is the set of the *i* smallest elements not in *P*.

・ロト ・日下・ ・ ヨト・

Recall that N_i is the set of the *i* smallest elements not in *P*.

Definition

Let ω be an ordering of the elements $P \cup N_i$ for some *i*. Then we let

$$O_i(P) = \{ \omega \mid \text{there exists } \pi \in S_{2k+1} \text{ with } \operatorname{Ord} \pi = \omega, \operatorname{Pin} \pi = P \}$$

and let

$$o_i(P) = \#O_i(P).$$

イロト イヨト イヨト イヨ

Recall that N_i is the set of the *i* smallest elements not in *P*.

Definition

Let ω be an ordering of the elements $P \cup N_i$ for some *i*. Then we let

$$O_i(P) = \{ \omega \mid \text{there exists } \pi \in S_{2k+1} \text{ with } \operatorname{Ord} \pi = \omega, \operatorname{Pin} \pi = P \}$$

and let

$$o_i(P) = \#O_i(P).$$

In essence, $O_i(P)$ is a set of orderings in which we keep track of not only the desired pinnacle values in P, but also some of the smallest elements not in P.

< □ > < 同 > < 回 > < 回 >

< □ > < □ > < □ > < □ > < □ >

• $O_0(P) = O(P) = \{35, 53\}$ (with witnesses 13254 and 45231).

< □ > < □ > < □ > < □ > < □ >

- $O_0(P) = O(P) = \{35, 53\}$ (with witnesses 13254 and 45231).
- $O_1(P) = \{135, 153, 315, 513, 351, 531\}$ since each has a witness. For instance, the ordering 135 has witness $\pi = 13254$.

(日) (四) (日) (日) (日)

- $O_0(P) = O(P) = \{35, 53\}$ (with witnesses 13254 and 45231).
- $O_1(P) = \{135, 153, 315, 513, 351, 531\}$ since each has a witness. For instance, the ordering 135 has witness $\pi = 13254$.
- $O_2(P) = \{1325, 2315, 5132, 5231\}$. For instance, 1325 has witness $\pi = 13254$, but the ordering 1352 does not have a witness because there would be no place to insert the 4 to create the necessary pinnacles.

(日) (四) (日) (日) (日)

- $O_0(P) = O(P) = \{35, 53\}$ (with witnesses 13254 and 45231).
- $O_1(P) = \{135, 153, 315, 513, 351, 531\}$ since each has a witness. For instance, the ordering 135 has witness $\pi = 13254$.
- $O_2(P) = \{1325, 2315, 5132, 5231\}$. For instance, 1325 has witness $\pi = 13254$, but the ordering 1352 does not have a witness because there would be no place to insert the 4 to create the necessary pinnacles.
- $O_3(P) = \{13254, 23154, 45132, 45231\}$ which is every permutation that has pinnacle set *P*. In general however, we will not need to consider $O_i(P)$ where *i* is larger than the smallest element in *P*.

イロト イボト イヨト イヨト
We can further refine $O_i(P)$ as follows:

イロト イヨト イヨト イヨ

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{\omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i\}.$

Also we let

$$o_i^j(P) = \#O_i^j(P).$$

イロト イ団ト イヨト イヨト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{\omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i\}.$

Also we let

$$o_i^j(P) = \#O_i^j(P).$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0, 1, 2\}$.

イロト イヨト イヨト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{\omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i\}.$

Also we let

$$o_i^j(P) = \#O_i^j(P).$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0, 1, 2\}$.

Example: if $P = \{4, 5\}$ and i = 2 so that ω is an ordering of $\{1, 2, 4, 5\}$, then...

イロト イヨト イヨト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{\omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i\}.$

Also we let

$$o_i^j(P) = \#O_i^j(P).$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0, 1, 2\}$.

Example: if $P = \{4, 5\}$ and i = 2 so that ω is an ordering of $\{1, 2, 4, 5\}$, then...

イロト 不得 トイヨト イヨト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{\omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i\}.$

Also we let

$$o_i^j(P) = \#O_i^j(P).$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0, 1, 2\}$.

Example: if $P = \{4, 5\}$ and i = 2 so that ω is an ordering of $\{1, 2, 4, 5\}$, then...

$$\bullet \ O_2^2(P) = \{1425, 2415, 5241, 5142\}$$

イロト イヨト イヨト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{\omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i\}.$

Also we let

$$o_i^j(P) = \#O_i^j(P).$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0, 1, 2\}$.

Example: if $P = \{4, 5\}$ and i = 2 so that ω is an ordering of $\{1, 2, 4, 5\}$, then...

$$\blacktriangleright O_2^2(P) = \{1425, 2415, 5241, 5142\}$$

► $O_2^1(P)$

イロト イボト イヨト イヨト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{\omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i\}.$

Also we let

$$o_i^j(P) = \#O_i^j(P).$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0, 1, 2\}$.

Example: if $P = \{4, 5\}$ and i = 2 so that ω is an ordering of $\{1, 2, 4, 5\}$, then...

- $\bullet \ O_2^2(P) = \{1425, 2415, 5241, 5142\}$
- $\bullet \ O_2^1(P) = \{4251, 4152, 1524, 2514\}$

イロト イボト イヨト イヨト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{\omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i\}.$

Also we let

$$o_i^j(P) = \#O_i^j(P).$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0, 1, 2\}$.

Example: if $P = \{4, 5\}$ and i = 2 so that ω is an ordering of $\{1, 2, 4, 5\}$, then...

- $O_2^2(P) = \{1425, 2415, 5241, 5142\}$
- $\bullet \ O_2^1(P) = \{4251, 4152, 1524, 2514\}$
- ► $O_2^0(P)$

イロト 不得 トイヨト イヨト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{\omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i\}.$

Also we let

$$o_i^j(P) = \#O_i^j(P).$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0, 1, 2\}$.

Example: if $P = \{4, 5\}$ and i = 2 so that ω is an ordering of $\{1, 2, 4, 5\}$, then...

- $\bullet \ O_2^2(P) = \{1425, 2415, 5241, 5142\}$
- $\bullet \ O_2^1(P) = \{4251, 4152, 1524, 2514\}$

O⁰₂(P) = Ø since in any witness 4 has to be surrounded by two elements in {1, 2, 3} to be a pinnacle.

イロト イボト イヨト イヨト

These ideas will allow us to recurse on k = #P thanks to the following result.

イロト イヨト イヨト イヨ

These ideas will allow us to recurse on k = #P thanks to the following result.

Theorem

Suppose $i \ge 0$, P is non-empty, and $i < p_1$. Suppose further that for some $j \in \{0, 1, 2\}$ we have $O_i^j(P) \ne \emptyset$. Then if we let P' = r(P), we have the following

$$o_i^j(P) = \begin{cases} i(i-1)o_{i-1}(P') & \text{if } j = 2, \\ 2io_i(P') & \text{if } j = 1, \\ o_{i+1}(P') & \text{if } j = 0. \end{cases}$$

(日) (四) (日) (日) (日)

These ideas will allow us to recurse on k = #P thanks to the following result.

Theorem

Suppose $i \ge 0$, P is non-empty, and $i < p_1$. Suppose further that for some $j \in \{0, 1, 2\}$ we have $O_i^j(P) \ne \emptyset$. Then if we let P' = r(P), we have the following

$$o_i^j(P) = \begin{cases} i(i-1)o_{i-1}(P') & \text{if } j = 2, \\ 2io_i(P') & \text{if } j = 1, \\ o_{i+1}(P') & \text{if } j = 0. \end{cases}$$

Basically, this means that every ordering in $O_i(P)$ corresponds to some ordering in one of $O_{i-1}(P')$, $O_i(P')$, or $O_{i+1}(P')$ depending on the value of j.

(日) (四) (日) (日) (日)

These ideas will allow us to recurse on k = #P thanks to the following result.

Theorem

Suppose $i \ge 0$, P is non-empty, and $i < p_1$. Suppose further that for some $j \in \{0, 1, 2\}$ we have $O_i^j(P) \ne \emptyset$. Then if we let P' = r(P), we have the following

$$o_i^j(P) = \begin{cases} i(i-1)o_{i-1}(P') & \text{if } j = 2, \\ 2io_i(P') & \text{if } j = 1, \\ o_{i+1}(P') & \text{if } j = 0. \end{cases}$$

Basically, this means that every ordering in $O_i(P)$ corresponds to some ordering in one of $O_{i-1}(P')$, $O_i(P')$, or $O_{i+1}(P')$ depending on the value of j.

The proof effectively deletes the smallest element in P together with some element smaller than all elements in P, and then standardizes the remaining elements of P to be in P'.

イロト イヨト イヨト

We'll illustrate one case of the proof by example.

・ロト ・日 ・ ・ ヨト ・

We'll illustrate one case of the proof by example.

Suppose that
$$j = 2$$
 and $i = 3$; we must show that
 $o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

・ロト ・日 ・ ・ ヨト ・

We'll illustrate one case of the proof by example.

Suppose that
$$j = 2$$
 and $i = 3$; we must show that
 $o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

イロト イ団ト イヨト イヨト

We'll illustrate one case of the proof by example.

Suppose that
$$j = 2$$
 and $i = 3$; we must show that
 $o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P').$
Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$ and

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

To get the ordering in $O_2(P')$, we replace p_1 and its adjacent elements with the element 0 and standardize to the set $P' \cup [i-1]$.

(日) (四) (日) (日) (日)

We'll illustrate one case of the proof by example.

Suppose that
$$j = 2$$
 and $i = 3$; we must show that
 $o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P').$
Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$ and

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

To get the ordering in $O_2(P')$, we replace p_1 and its adjacent elements with the element 0 and standardize to the set $P' \cup [i-1]$.

 $\textbf{3416829} \longrightarrow \textbf{06829} \longrightarrow \textbf{14627}$

イロト イポト イヨト イヨト

We'll illustrate one case of the proof by example.

Suppose that
$$j = 2$$
 and $i = 3$; we must show that
 $o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

To get the ordering in $O_2(P')$, we replace p_1 and its adjacent elements with the element 0 and standardize to the set $P' \cup [i-1]$.

 $3416829 \longrightarrow 06829 \longrightarrow 14627$

The swap has effectively lost us one element in N_i along with the smallest pinnacle.

< ロ > < 同 > < 回 > < 回 >

We'll illustrate one case of the proof by example.

Suppose that
$$j = 2$$
 and $i = 3$; we must show that
 $o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

To get the ordering in $O_2(P')$, we replace p_1 and its adjacent elements with the element 0 and standardize to the set $P' \cup [i-1]$.

 $\textbf{3416829} \longrightarrow \textbf{06829} \longrightarrow \textbf{14627}$

The swap has effectively lost us one element in N_i along with the smallest pinnacle.

We must now show the result is admissible. Take any witness to ω and preform the same process as above to get a witness to the new ordering, except now we standardize to [2k - 1].

イロト イボト イヨト イヨト

We'll illustrate one case of the proof by example.

Suppose that
$$j = 2$$
 and $i = 3$; we must show that
 $o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

To get the ordering in $O_2(P')$, we replace p_1 and its adjacent elements with the element 0 and standardize to the set $P' \cup [i-1]$.

 $\textbf{3416829} \longrightarrow \textbf{06829} \longrightarrow \textbf{14627}$

The swap has effectively lost us one element in N_i along with the smallest pinnacle.

We must now show the result is admissible. Take any witness to ω and preform the same process as above to get a witness to the new ordering, except now we standardize to [2k - 1].

 $\pi = \textbf{341658397} \longrightarrow \textbf{0658397} \longrightarrow \textbf{1436275}$

イロン イロン イヨン イヨン

Want to show:

$$o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

< □ > < □ > < □ > < □ > < □ >

Want to show:

$$o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

To reverse this process, we first choose an ordered pair of distinct elements $x, y \in N_i$ which gives us i(i - 1) choices. We then form the factor xp_1y . For this example, to get back to the original ordering we will use 341.

Want to show:

$$o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

To reverse this process, we first choose an ordered pair of distinct elements $x, y \in N_i$ which gives us i(i - 1) choices. We then form the factor xp_1y . For this example, to get back to the original ordering we will use 341.

Next, we start with our ordering in $O_2(P')$ and standardize it to the set $(P \setminus \{p_1\}) \cup (N_i \setminus \{x, y\}) \cup \{0\}$. Then we replace the 0 with the factor we formed.

< ロ > < 同 > < 回 > < 回 >

Want to show:

$$o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

To reverse this process, we first choose an ordered pair of distinct elements $x, y \in N_i$ which gives us i(i - 1) choices. We then form the factor xp_1y . For this example, to get back to the original ordering we will use 341.

Next, we start with our ordering in $O_2(P')$ and standardize it to the set $(P \setminus \{p_1\}) \cup (N_i \setminus \{x, y\}) \cup \{0\}$. Then we replace the 0 with the factor we formed.

 $14627 \longrightarrow 06829 \longrightarrow 3416829$

< ロ > < 同 > < 回 > < 回 >

Want to show:

$$o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

To reverse this process, we first choose an ordered pair of distinct elements $x, y \in N_i$ which gives us i(i - 1) choices. We then form the factor xp_1y . For this example, to get back to the original ordering we will use 341.

Next, we start with our ordering in $O_2(P')$ and standardize it to the set $(P \setminus \{p_1\}) \cup (N_i \setminus \{x, y\}) \cup \{0\}$. Then we replace the 0 with the factor we formed.

 $14627 \longrightarrow 06829 \longrightarrow 3416829$

The witness that shows this ordering is admissible is gotten by doing these same steps on some original witness, except now we standardize to $[2k + 1] \setminus \{p_1, x, y\} \cup \{0\}.$

イロト イヨト イヨト

Want to show:

$$o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

To reverse this process, we first choose an ordered pair of distinct elements $x, y \in N_i$ which gives us i(i - 1) choices. We then form the factor xp_1y . For this example, to get back to the original ordering we will use 341.

Next, we start with our ordering in $O_2(P')$ and standardize it to the set $(P \setminus \{p_1\}) \cup (N_i \setminus \{x, y\}) \cup \{0\}$. Then we replace the 0 with the factor we formed.

 $14627 \longrightarrow 06829 \longrightarrow 3416829$

The witness that shows this ordering is admissible is gotten by doing these same steps on some original witness, except now we standardize to $[2k + 1] \setminus \{p_1, x, y\} \cup \{0\}.$

 $\pi = \mathbf{1436275} \longrightarrow \mathbf{0658297} \longrightarrow \mathbf{341658297}$

< ロ > < 同 > < 回 > < 回 >

Suppose $i \ge 0$, P is non-empty, and $i < p_1$. Suppose further that for some $j \in \{0, 1, 2\}$ we have $O_i^j(P) \ne \emptyset$. Then if we let P' = r(P), we have the following

$$o_i^j(P) = \begin{cases} i(i-1)o_{i-1}(P') & \text{if } j = 2, \\ 2io_i(P') & \text{if } j = 1, \\ o_{i+1}(P') & \text{if } j = 0. \end{cases}$$

イロト イ団ト イヨト イヨト

Definition

Given some set P with smallest element p_1 , we make the following definition:

δ

$$_{j} = egin{cases} 1 & ext{if } p_{1} > j, \\ 0 & ext{otherwise.} \end{cases}$$

< □ > < □ > < □ > < □ > < □ >

Definition

Given some set P with smallest element p_1 , we make the following definition:

$$_{j} = egin{cases} 1 & ext{if } p_{1} > j, \\ 0 & ext{otherwise.} \end{cases}$$

Theorem

Let $|P| \ge 1$, P' = r(P) and $0 \le i < p_1$. Then we have the following recursion.

$$o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').$$

<ロ> <四> <四> <四> <三</p>

Compare

Theorem

Suppose $i \ge 0$, P is non-empty, and $i < p_1$. Suppose further that for some $j \in \{0, 1, 2\}$ we have $O_i^j(P) \ne \emptyset$. Then if we let P' = r(P), we have the following

$$\sigma_i^j(P) = \begin{cases} i(i-1)o_{i-1}(P') & \text{if } j = 2, \\ 2io_i(P') & \text{if } j = 1, \\ o_{i+1}(P') & \text{if } j = 0. \end{cases}$$

Theorem

Let $|P| \ge 1$, P' = r(P) and $0 \le i < p_1$. Then we have the following recursion.

$$o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').$$

イロト イ団ト イヨト イヨト

Let $|P| \ge 1$, P' = r(P) and $0 \le i < p_1$. Then we have the following recursion.

$$o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').$$

Why do we need the δ_i 's?

イロト イヨト イヨト イヨト

Let $|P| \ge 1$, P' = r(P) and $0 \le i < p_1$. Then we have the following recursion.

$$o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').$$

Why do we need the δ_i 's?

Consider the case $P = \{3, 5\}$ and i = 2. Then $O_2(P) = O_2^2(P) = \{1325, 2315, 5132, 5231\}$.

イロト イ団ト イヨト イヨト

Let $|P| \ge 1$, P' = r(P) and $0 \le i < p_1$. Then we have the following recursion.

$$o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').$$

Why do we need the δ_i 's?

Consider the case $P = \{3, 5\}$ and i = 2. Then $O_2(P) = O_2^2(P) = \{1325, 2315, 5132, 5231\}$.

Therefore only the first term in the recursion, which corresponds to j = 2, should contribute to the sum.

(日) (四) (日) (日) (日)

Let $|P| \ge 1$, P' = r(P) and $0 \le i < p_1$. Then we have the following recursion.

$$o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').$$

Why do we need the δ_i 's?

Consider the case $P = \{3, 5\}$ and i = 2. Then $O_2(P) = O_2^2(P) = \{1325, 2315, 5132, 5231\}$.

Therefore only the first term in the recursion, which corresponds to j = 2, should contribute to the sum.

But $P' = \{3\}$ and $O_2(P') = \{132, 231\}$ is nonempty, and therefore will contribute to the sum if the $\delta_{i+1} = \delta_3$ didn't kill it.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・
Theorem

Let $|P| \ge 1$, P' = r(P) and $0 \le i < p_1$. Then we have the following recursion.

$$o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').$$

So we're done!

イロト イヨト イヨト イヨト

Theorem

Let $|P| \ge 1$, P' = r(P) and $0 \le i < p_1$. Then we have the following recursion.

$$o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').$$

So we're done!

We can find the number of admissible orderings by starting with $o_0(P) = o(P)$. Each time we apply the recursion the number of elements in P goes down by one until we hit our base case when $P = \emptyset$, where we will always have only one ordering.

(日) (四) (日) (日) (日)

Let us denote m applications of the reduction operator by P^m .

イロト イヨト イヨト イヨ

Let us denote *m* applications of the reduction operator by P^m . For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

< □ > < □ > < □ > < □ > < □ >

Let us denote *m* applications of the reduction operator by P^m . For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

• All calculated terms are of the form $o_i(P^m)$.

(日) (四) (日) (日) (日)

Let us denote *m* applications of the reduction operator by P^m . For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- ▶ *i* and *m* start at zero.

イロト イ団ト イヨト イヨト

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- ▶ *i* and *m* start at zero.
- i and m can increase by at most one each time the recursion is applied.

イロト イヨト イヨト

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- ▶ *i* and *m* start at zero.
- i and m can increase by at most one each time the recursion is applied.
- m can be at most k.

イロト イボト イヨト イヨト

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- ▶ *i* and *m* start at zero.
- ▶ i and m can increase by at most one each time the recursion is applied.
- m can be at most k.
- We always have i ≤ k + 1 − m, which is the number of elements not in P after m applications of the recursion.

(日) (四) (日) (日) (日)

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- ▶ *i* and *m* start at zero.
- i and m can increase by at most one each time the recursion is applied.
- m can be at most k.
- We always have i ≤ k + 1 − m, which is the number of elements not in P after m applications of the recursion.

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- ▶ *i* and *m* start at zero.
- ▶ i and m can increase by at most one each time the recursion is applied.
- m can be at most k.
- We always have i ≤ k + 1 − m, which is the number of elements not in P after m applications of the recursion.

m must increase whenever i increases, i can never exceed m.

< ロ > < 同 > < 回 > < 回 >

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- ▶ *i* and *m* start at zero.
- ▶ i and m can increase by at most one each time the recursion is applied.
- m can be at most k.
- We always have i ≤ k + 1 − m, which is the number of elements not in P after m applications of the recursion.

< ロ > < 同 > < 回 > < 回 >

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- ▶ *i* and *m* start at zero.
- i and m can increase by at most one each time the recursion is applied.
- m can be at most k.
- We always have i ≤ k + 1 − m, which is the number of elements not in P after m applications of the recursion.

< ロ > < 同 > < 回 > < 回 >

イロト イヨト イヨト イヨ

Question

Is there a faster way of computing o(P), or a closed formula that can give the number of admissible orderings of P without having to keep track of elements not in P?

< □ > < 同 > < 回 > < Ξ > < Ξ

Additional work

There are still some open questions about pinnacle sets.

Question

Is there a faster way of computing o(P), or a closed formula that can give the number of admissible orderings of P without having to keep track of elements not in P?

Let $p_n(P)$ be the number of permutations $\pi \in S_n$ with pinnacle set P.

Question

Is there a faster way of computing o(P), or a closed formula that can give the number of admissible orderings of P without having to keep track of elements not in P?

Let $p_n(P)$ be the number of permutations $\pi \in S_n$ with pinnacle set P.

In addition to this recursion, I was also able to give a combinatorial proof of a weighted sum of $p_n(Q)$ over all $Q \subset P$ originally proven by Fang in 2021, and I was also able to come up with a recursion to compute $p_n(P)$ directly.

イロト イヨト イヨト

Question

Is there a faster way of computing o(P), or a closed formula that can give the number of admissible orderings of P without having to keep track of elements not in P?

Let $p_n(P)$ be the number of permutations $\pi \in S_n$ with pinnacle set P.

In addition to this recursion, I was also able to give a combinatorial proof of a weighted sum of $p_n(Q)$ over all $Q \subset P$ originally proven by Fang in 2021, and I was also able to come up with a recursion to compute $p_n(P)$ directly.

Question

Does there exist a way of computing $p_n(P)$ that has a faster run time than $O(k^2 \log(n) + k^4)$?

Thank you! $P \cup N \in [10]$ -ded (pun intended)

イロト イヨト イヨト イヨ

Robert Davis, Sarah A. Nelson, T. Kyle Petersen, and Bridget E. Tenner. The pinnacle set of a permutation. *Discrete Mathematics*, 341(11):3249–3270, 2018.

Irena Rusu and Bridget Tenner. Admissible pinnacle orderings. *Graphs and Combinatorics*, 37:1205–1214, 2021.

Diaz-Lopez, Alexander and Harris, Pamela E. and Huang, Isabella and Insko, Erik and Nilsen,Lars. A formula for enumerating permutations with a fixed pinnacle set. *Discrete Mathematics*, 344(6):112375, 2021

Justice Falque, Jean-Christophe Novelli, and Jean-Yves Thibon. Pinnacle Sets Revisited. arXiv:2106.05248v1. 2021

Wenjie Fang. Efficient recurrence for the enumeration of permutations with a fixed pinnacle set. arXiv:2106.09147v1. 2021

イロト イヨト イヨト