
Counting Admissible Orderings of a Pinnacle Set

Quinn Minnich

Michigan State University

October 27, 2021

Q. Minnich, MSU Counting Admissible Orderings of a Pinnacle Set October 27, 2021 1 / 26



Pinnacle sets

Definition

If π = π1 . . . πn is a permutation in the symmetric group Sn then its
pinnacle set is

Pinπ = {πi | πi−1 < πi > πi+1}.

Example: n = 9
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If π = π1 . . . πn is a permutation in the symmetric group Sn then its
pinnacle set is

Pinπ = {πi | πi−1 < πi > πi+1}.

Example: n = 9

π = 297418356
So Pinπ = {8, 9}
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Pinnacle sets

Definition

If π = π1 . . . πn is a permutation in the symmetric group Sn then its
pinnacle set is

Pinπ = {πi | πi−1 < πi > πi+1}.

Example: n = 9

π = 297418356
So Pinπ = {8, 9}

It is also possible to go backwards by first specifying a desired pinnacle
set P ⊆ [n] and then asking if there exists any π ∈ Sn such that
Pinπ = P. If such a π exists, we say it is a witness to the pinnacle set. If
P has a witness, we say it is an admissible pinnacle set.
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So Pinπ = {8, 9}

It is also possible to go backwards by first specifying a desired pinnacle
set P ⊆ [n] and then asking if there exists any π ∈ Sn such that
Pinπ = P. If such a π exists, we say it is a witness to the pinnacle set. If
P has a witness, we say it is an admissible pinnacle set.

Example: n = 9 and P = {5, 6, 9} has witness π = 152639478
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Pinnacle sets

Definition

If π = π1 . . . πn is a permutation in the symmetric group Sn then its
pinnacle set is

Pinπ = {πi | πi−1 < πi > πi+1}.

Example: n = 9

π = 297418356
So Pinπ = {8, 9}

It is also possible to go backwards by first specifying a desired pinnacle
set P ⊆ [n] and then asking if there exists any π ∈ Sn such that
Pinπ = P. If such a π exists, we say it is a witness to the pinnacle set. If
P has a witness, we say it is an admissible pinnacle set.

Example: n = 9 and P = {5, 6, 9} has witness π = 152639478

However, P = {3, 4} is not an admissible pinnacle set because there are
not enough small non-pinnacles to surround the 3 and the 4.
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Pinnacle sets

Pinnacle sets were first introduced in 2018 by Davis et al. and have
generated a good deal of recent interest. Among other things in their
paper, they noted that some admissible pinnacle sets only have a witness
for particular orderings of the pinnacle elements.

Example: If n = 7 then P = {4, 5, 7} has multiple witnesses where the
pinnacles appear in the order 457, including π = 1425376.

However, there is no witness where the pinnacles appear in the order 475
since this would require four elements less than both 4 and 5 rather than
just three.

If a particular ordering of P has a witness, we say that it is an admissible
ordering of P.
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Admissible orderings

Definition

Let ω be an ordering of a set S . Then for any permutation π of a set
containing S we say that Ordπ = ω if the elements of S in π appear in
order ω.

Example: Let S = {a, b, c} and suppose we are considering permutations
of the set {1, 2, 3, a, b, c}, which contains S . One such permutation is
π = 13bc2a which has Ordπ = bca.

More specifically, given an arbitrary π ∈ Sn such that Pin π = P, we may
say that Ordπ = ω where ω is the ordering of the elements of P within
π.

Example: Suppose n = 9, P = {5, 7, 8}, and π = 386452719.

Then Ordπ = 857.
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Examples

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

O(P) = {ω | there exists π ∈ Sn with Ordπ = ω, Pinπ = P }.

If we denote the cardinality of a set by #, then we also let

o(P) = #O(P).

Example: n = 7

▶ Out of all orderings of P = {4, 5, 7}, only 457, 547, 745, and 754 are
admissible. Therefore, O(P) = {457, 547, 745, 754} and o(P) = 4.

▶ All orderings of P = {5, 6, 7} are admissible, and so
O(P) = {567, 576, 657, 675, 756, 765} and o(P) = 6

▶ No orderings of P = {3, 4} are admissible. So O(P) = ∅ and
o(P) = 0
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Studied Questions

This raises several interesting questions:

Question

For a fixed n, how many admissible pinnacle sets P ⊆ [n] are there?

Davis et al. showed that the number of admissible pinnacle sets is(
n − 1

⌊(n − 1)/2⌋

)
.

Question

For a fixed n and desired pinnacle set P, how many permutations in Sn
have P as its pinnacle set?

This question has received a lot of attention. Currently the fastest known
algorithms, one of them given by Fang in 2021 and one by myself, have
run time O(k2 log n+ k4) where k is the number of elements in P.
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Main question

Question

For a fixed n and desired pinnacle set P, what is o(P), that is, how many
orderings of P are admissible?

In 2020 Rusu and Tenner did some work characterizing admissible
pinnacle orderings, but they did not give a function to count them.

For the rest of the talk, we will suppose that our given set P has k
elements. We would like to find a formula or algorithm for computing
o(P) which, in principle, would depend on n (the length of π) and
k .

Actually, this problem is independent of n, which is out first result.
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Eliminating n

Definition

Let Ni be the set of the i smallest elements not in P.

Example: If n = 9 and P = {3, 5}, then N4 = {1, 2, 4, 6}.

Theorem

Suppose P ⊆ [n] with |P| = k and let ω be some ordering of the
elements in P. Then there exists a permutation π of the elements [n]
with Ordπ = ω and Pinπ = P if and only if there exists a permutation
π′ of the elements Nk+1 ∪ P with Ordπ′ = ω and Pinπ′ = P.

In essence, this says that if we have a witness π to an ordering, then we
should be able to find a witness π′ to that same ordering where the
largest non-pinnacles are removed and the remaining non-pinnacles
alternate with the pinnacles.

Example: Suppose n = 8 and P = {7, 8}. Then ω = 78 is admissible
because we have π = 43176852. The theorem states there ought to be a
witness using only the non-pinnacles 1, 2, and 3, and there is:
π′ = 17382.
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Eliminating n

Definition
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Eliminating n

The reverse direction of this theorem is easy because given some witness
π′ on the elements Nk+1 ∪ P to an ordering, we may simply add on all
the missing non-pinnacles to the end of π′ in increasing order to get a
permutation π ∈ Sn with the same ordering.

Example: n = 9, P = {3, 7}, Nk+1 = N3 = {1, 2, 4}, ω = 37.

Then if π′ = 13274, we can define π = 132745689 ∈ S9

To prove the other direction, we examine the blocks of elements between
pinnacles in π and try to replace them with single elements that are
sufficiently small.
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To prove the other direction, we examine the blocks of elements between
pinnacles in π and try to replace them with single elements that are
sufficiently small.

Example: n = 9, P = {5, 7}, ω = 57.

π = 453127689
π′ = 453127689

First copy the original permutation, and identify each block of
consecutive non-pinnacles.
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Next, delete all but the smallest non-pinnacle in each block.
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To prove the other direction, we examine the blocks of elements between
pinnacles in π and try to replace them with single elements that are
sufficiently small.

Example: n = 9, P = {5, 7}, ω = 57.

π = 453127689
π′ = 45176

Finally, within π′ standardize just those remaining non-pinnacles to the
set Nk+1, which in this case is the set {1, 2, 3}.
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Eliminating n

By standardizing our result, we can always reduce to a case where the
pinnacles not only alternate with the non-pinnacles, but where the
witness is in S2k+1.

Example: when considering the ordering 57 for P = {5, 7} and n = 9, we
may reduce

π = 453127689 −→ π′ = 25173 −→ π′′ = 24153.

Then π′′ is a witness to the ordering 45 of P ′ = {4, 5} where n = 5. In
π′′ we have that 4 in P ′ plays the role of 5 in P, and 5 in P ′ plays the
role of 7 in P.

Therefore, when trying to find o(P), it is enough to find o(P ′) since
there is a bijection between their orderings.

In what follows, we will assume the case where n = 2k + 1 so that
pinnacles and non-pinnacles alternate.
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Reducing P

Since the complexity of the problem ultimately depends on k alone, we
would like a way of reducing k .

Definition

Given some P = {p1 < p2 < · · · < pk} and complement set
N = {n1 < n2 < · · · < nk+1} so that P ∪ N = [2k + 1], we consider the
set P ∪ N \ {p1, n1} and standardize. We define the reduction operator
r(P) = P ′ to be the set to which P \ {p1} standardizes.

In other words, r(P) is calculated by removing the smallest element in P
and the smallest element not in P, and then shifting the remaining
elements in P down.

▶ If P = {1, 2, 5}, then N = {3, 4, 6, 7}, p1 = 1, n1 = 3, and
P ∪ N \ {p1, n1} = {2, 4, 5, 6, 7}. So r(P) = {1, 3}.

▶ If P = {3, 5, 7}, then N = {1, 2, 4, 6}, p1 = 3, n1 = 1, and
P ∪ N \ {p1, n1} = {2, 4, 5, 6, 7}. So r(P) = {3, 5}.

Note that n1 < p1 implies r(P) = {p2 − 2 < · · · < pk − 2}
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Expanded orderings

Recall that Ni is the set of the i smallest elements not in P.

Definition

Let ω be an ordering of the elements P ∪ Ni for some i . Then we let

Oi (P) = {ω | there exists π ∈ S2k+1 with Ordπ = ω, Pinπ = P}

and let
oi (P) = #Oi (P).

In essence, Oi (P) is a set of orderings in which we keep track of not only
the desired pinnacle values in P, but also some of the smallest elements
not in P.
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Examples

Suppose that P = {3, 5}. Then. . .

▶ O0(P) = O(P) = {35, 53} (with witnesses 13254 and 45231).

▶ O1(P) = {135, 153, 315, 513, 351, 531} since each has a witness. For
instance, the ordering 135 has witness π = 13254.

▶ O2(P) = {1325, 2315, 5132, 5231}. For instance, 1325 has witness
π = 13254, but the ordering 1352 does not have a witness because
there would be no place to insert the 4 to create the necessary
pinnacles.

▶ O3(P) = {13254, 23154, 45132, 45231} which is every permutation
that has pinnacle set P. In general however, we will not need to
consider Oi (P) where i is larger than the smallest element in P.
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Expanded orderings

We can further refine Oi (P) as follows:

Definition

Let j ∈ {0, 1, 2} and p1 be the smallest element in P. Then we define

O j
i (P) = {ω ∈ Oi (P) | p1 is adjacent to exactly j elements in Ni}.

Also we let o j
i (P) = #O j

i (P).

The O j
i (P) clearly partition Oi (P) for j ∈ {0, 1, 2}.

Example: if P = {4, 5} and i = 2 so that ω is an ordering of {1, 2, 4, 5},
then. . .

▶ O2
2 (P) = {1425, 2415, 5241, 5142}

▶ O1
2 (P) = {4251, 4152, 1524, 2514}

▶ O0
2 (P) = ∅ since in any witness 4 has to be surrounded by two

elements in {1, 2, 3} to be a pinnacle.
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Major result

These ideas will allow us to recurse on k = #P thanks to the following
result.

Theorem

Suppose i ≥ 0, P is non-empty, and i < p1. Suppose further that for
some j ∈ {0, 1, 2} we have O j

i (P) ̸= ∅. Then if we let P ′ = r(P), we
have the following

o j
i (P) =


i(i − 1)oi−1(P

′) if j = 2,

2ioi (P
′) if j = 1,

oi+1(P
′) if j = 0.

Basically, this means that every ordering in Oi (P) corresponds to some
ordering in one of Oi−1(P

′),Oi (P
′), or Oi+1(P

′) depending on the value
of j .

The proof effectively deletes the smallest element in P together with
some element smaller than all elements in P, and then standardizes the
remaining elements of P to be in P ′.
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Proof of major result

We’ll illustrate one case of the proof by example.

Suppose that j = 2 and i = 3; we must show that

o2
3(P) = 3(3− 1)o3−1(P

′) = 3 · 2o2(P ′).

Consider P = {4, 6, 8, 9} so that P ′ = {4, 6, 7}, and
ω = 3416829 ∈ O2

3 (P).

To get the ordering in O2(P
′), we replace p1 and its adjacent elements

with the element 0 and standardize to the set P ′ ∪ [i − 1].

3416829 −→ 06829 −→ 14627

The swap has effectively lost us one element in Ni along with the
smallest pinnacle.

We must now show the result is admissible. Take any witness to ω and
preform the same process as above to get a witness to the new ordering,
except now we standardize to [2k − 1].

π = 341658397 −→ 0658397 −→ 1436275
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Proof of major result

Want to show:
o2
3(P) = 3(3− 1)o3−1(P

′) = 3 · 2o2(P ′)

where P = {4, 6, 8, 9} so that P ′ = {4, 6, 7}

To reverse this process, we first choose an ordered pair of distinct
elements x , y ∈ Ni which gives us i(i − 1) choices. We then form the
factor xp1y . For this example, to get back to the original ordering we will
use 341.

Next, we start with our ordering in O2(P
′) and standardize it to the set

(P \ {p1}) ∪ (Ni \ {x , y}) ∪ {0}. Then we replace the 0 with the factor
we formed.

14627 −→ 06829 −→ 3416829

The witness that shows this ordering is admissible is gotten by doing
these same steps on some original witness, except now we standardize to
[2k + 1] \ {p1, x , y} ∪ {0}.

π = 1436275 −→ 0658297 −→ 341658297
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Major result

Theorem

Suppose i ≥ 0, P is non-empty, and i < p1. Suppose further that for
some j ∈ {0, 1, 2} we have O j

i (P) ̸= ∅. Then if we let P ′ = r(P), we
have the following

o j
i (P) =


i(i − 1)oi−1(P

′) if j = 2,

2ioi (P
′) if j = 1,

oi+1(P
′) if j = 0.
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Main recursion

Definition

Given some set P with smallest element p1, we make the following
definition:

δj =

{
1 if p1 > j ,

0 otherwise.

Theorem

Let |P| ≥ 1, P ′ = r(P) and 0 ≤ i < p1. Then we have the following
recursion.

oi (P) = i(i − 1)oi−1(P
′) + (2i)δi+1oi (P

′) + δi+2oi+1(P
′).
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Main recursion

Theorem

Let |P| ≥ 1, P ′ = r(P) and 0 ≤ i < p1. Then we have the following
recursion.

oi (P) = i(i − 1)oi−1(P
′) + (2i)δi+1oi (P

′) + δi+2oi+1(P
′).

Why do we need the δi ’s?

Consider the case P = {3, 5} and i = 2. Then
O2(P) = O2

2 (P) = {1325, 2315, 5132, 5231}.

Therefore only the first term in the recursion, which corresponds to
j = 2, should contribute to the sum.

But P ′ = {3} and O2(P
′) = {132, 231} is nonempty, and therefore will

contribute to the sum if the δi+1 = δ3 didn’t kill it.
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Main recursion

Theorem

Let |P| ≥ 1, P ′ = r(P) and 0 ≤ i < p1. Then we have the following
recursion.

oi (P) = i(i − 1)oi−1(P
′) + (2i)δi+1oi (P

′) + δi+2oi+1(P
′).

So we’re done!

We can find the number of admissible orderings by starting with
o0(P) = o(P). Each time we apply the recursion the number of elements
in P goes down by one until we hit our base case when P = ∅, where we
will always have only one ordering.
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Run time analysis

Let us denote m applications of the reduction operator by Pm.

For instance, r(P) = P ′ = P1 and r(r(r(P))) = P3.

▶ All calculated terms are of the form oi (P
m).

▶ i and m start at zero.
▶ i and m can increase by at most one each time the recursion is

applied.
▶ m can be at most k.
▶ We always have i ≤ k + 1−m, which is the number of elements not

in P after m applications of the recursion.

i-axis

m-axis

k

k
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The terms oi (P

m) we need to compute can be thought of as points in
the plane.
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m must increase whenever i increases, i can never exceed m.
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So the total number of terms is asymptotically k2/4.
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Additional work

There are still some open questions about pinnacle sets.

Question

Is there a faster way of computing o(P), or a closed formula that can
give the number of admissible orderings of P without having to keep
track of elements not in P?

Let pn(P) be the number of permutations π ∈ Sn with pinnacle set
P.

In addition to this recursion, I was also able to give a combinatorial proof
of a weighted sum of pn(Q) over all Q ⊂ P originally proven by Fang in
2021, and I was also able to come up with a recursion to compute pn(P)
directly.

Question

Does there exist a way of computing pn(P) that has a faster run time
than O(k2 log(n) + k4)?
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Thank You!

Thank you!

P ∪ N ∈ [10]-ded

(pun intended)
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