Counting Admissible Orderings of a Pinnacle Set

Quinn Minnich

Michigan State University

October 27, 2021

K ロ ⊁ K 個 ▶ K ミ ▶ K

 $2Q$

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its pinnacle set is

$$
\text{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.
$$

 298

メロメメ 倒 メメ ミメメ 毛

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its pinnacle set is

$$
\text{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.
$$

Example: $n = 9$

 $\pi = 297418356$

 Ω

メロトメ 倒 トメ 差 トメ 差

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its pinnacle set is

$$
\text{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.
$$

Example: $n = 9$

 $\pi = 297418356$

 Ω

メロトメ 倒 トメ 差 トメ 差

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its pinnacle set is

$$
\text{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.
$$

Example: $n = 9$

 $\pi = 297418356$ So Pin $\pi = \{8, 9\}$

 Ω

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its pinnacle set is

$$
\text{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.
$$

Example: $n = 9$

 $\pi = 297418356$ So Pin $\pi = \{8, 9\}$

It is also possible to go backwards by first specifying a desired pinnacle set $P \subseteq [n]$ and then asking if there exists any $\pi \in S_n$ such that Pin $\pi = P$. If such a π exists, we say it is a witness to the pinnacle set. If P has a witness, we say it is an admissible pinnacle set.

 Ω

イロト イ押 トイヨ トイヨ)

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its pinnacle set is

$$
\text{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.
$$

Example: $n = 9$

 $\pi = 297418356$ So Pin $\pi = \{8, 9\}$

It is also possible to go backwards by first specifying a desired pinnacle set $P \subseteq [n]$ and then asking if there exists any $\pi \in S_n$ such that Pin $\pi = P$. If such a π exists, we say it is a witness to the pinnacle set. If P has a witness, we say it is an *admissible pinnacle set*.

Example: $n = 9$ and $P = \{5, 6, 9\}$ has witness $\pi = 152639478$

 Ω

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

Definition

If $\pi = \pi_1 \dots \pi_n$ is a permutation in the symmetric group S_n then its pinnacle set is

$$
\text{Pin}\,\pi = \{\pi_i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\}.
$$

Example: $n = 9$

 $\pi = 297418356$ So Pin $\pi = \{8, 9\}$

It is also possible to go backwards by first specifying a desired pinnacle set $P \subseteq [n]$ and then asking if there exists any $\pi \in S_n$ such that Pin $\pi = P$. If such a π exists, we say it is a witness to the pinnacle set. If P has a witness, we say it is an *admissible pinnacle set*.

Example: $n = 9$ and $P = \{5, 6, 9\}$ has witness $\pi = 152639478$

However, $P = \{3, 4\}$ is not an admissible pinnacle set because there are not enough small non-pinnacles to surround the 3 and the 4.

 Ω

K ロト K 御 ト K 君 ト K 君 K

 Ω

K ロ ▶ K 何 ▶ K ヨ ▶ K

Example: If $n = 7$ then $P = \{4, 5, 7\}$ has multiple witnesses where the pinnacles appear in the order 457, including $\pi = 1425376$.

 Ω

イロト イ押 トイヨ トイヨ)

Example: If $n = 7$ then $P = \{4, 5, 7\}$ has multiple witnesses where the pinnacles appear in the order 457, including $\pi = 1425376$.

However, there is no witness where the pinnacles appear in the order 475 since this would require four elements less than both 4 and 5 rather than just three.

 Ω

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

Example: If $n = 7$ then $P = \{4, 5, 7\}$ has multiple witnesses where the pinnacles appear in the order 457, including $\pi = 1425376$.

However, there is no witness where the pinnacles appear in the order 475 since this would require four elements less than both 4 and 5 rather than just three.

If a particular ordering of P has a witness, we say that it is an *admissible* ordering of P.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Let ω be an ordering of a set S. Then for any permutation π of a set containing S we say that Ord $\pi = \omega$ if the elements of S in π appear in order ω .

 Ω

イロト イ御 トイミトイ

Let ω be an ordering of a set S. Then for any permutation π of a set containing S we say that Ord $\pi = \omega$ if the elements of S in π appear in order ω.

Example: Let $S = \{a, b, c\}$ and suppose we are considering permutations of the set $\{1, 2, 3, a, b, c\}$, which contains S. One such permutation is $\pi = 13bc2a$ which has Ord $\pi = bca$.

 Ω

イロト イ押ト イヨト イヨ

Let ω be an ordering of a set S. Then for any permutation π of a set containing S we say that Ord $\pi = \omega$ if the elements of S in π appear in order ω.

Example: Let $S = \{a, b, c\}$ and suppose we are considering permutations of the set $\{1, 2, 3, a, b, c\}$, which contains S. One such permutation is $\pi = 13bc2a$ which has Ord $\pi = bca$.

More specifically, given an arbitrary $\pi \in S_n$ such that Pin $\pi = P$, we may say that Ord $\pi = \omega$ where ω is the ordering of the elements of P within π.

 Ω

イロト イ押 トイヨト イヨ

Let ω be an ordering of a set S. Then for any permutation π of a set containing S we say that Ord $\pi = \omega$ if the elements of S in π appear in order ω.

Example: Let $S = \{a, b, c\}$ and suppose we are considering permutations of the set $\{1, 2, 3, a, b, c\}$, which contains S. One such permutation is $\pi = 13bc2a$ which has Ord $\pi = bca$.

More specifically, given an arbitrary $\pi \in S_n$ such that Pin $\pi = P$, we may say that Ord $\pi = \omega$ where ω is the ordering of the elements of P within π.

Example: Suppose $n = 9$, $P = \{5, 7, 8\}$, and $\pi = 386452719$.

 Ω

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

Let ω be an ordering of a set S. Then for any permutation π of a set containing S we say that Ord $\pi = \omega$ if the elements of S in π appear in order ω.

Example: Let $S = \{a, b, c\}$ and suppose we are considering permutations of the set $\{1, 2, 3, a, b, c\}$, which contains S. One such permutation is $\pi = 13bc2a$ which has Ord $\pi = bca$.

More specifically, given an arbitrary $\pi \in S_n$ such that Pin $\pi = P$, we may say that Ord $\pi = \omega$ where ω is the ordering of the elements of P within π.

Example: Suppose $n = 9$, $P = \{5, 7, 8\}$, and $\pi = 386452719$.

Then Ord $\pi = 857$.

 Ω

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

$$
O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \text{Ord } \pi = \omega, \text{ Pin } \pi = P \}.
$$

If we denote the cardinality of a set by $#$, then we also let

 $o(P) = #O(P).$

 QQ

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

$$
O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \text{Ord } \pi = \omega, \text{ Pin } \pi = P \}.
$$

If we denote the cardinality of a set by $#$, then we also let

 $o(P) = #O(P).$

Example: $n = 7$

 QQ

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

$$
O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \text{Ord } \pi = \omega, \text{ Pin } \pi = P \}.
$$

If we denote the cardinality of a set by $#$, then we also let

 $o(P) = #O(P).$

Example: $n = 7$

▶ Out of all orderings of $P = \{4, 5, 7\}$, only 457, 547, 745, and 754 are admissible.

 Ω

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

$$
O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \text{Ord } \pi = \omega, \text{ Pin } \pi = P \}.
$$

If we denote the cardinality of a set by $#$, then we also let

 $o(P) = \#O(P)$.

Example: $n = 7$

▶ Out of all orderings of $P = \{4, 5, 7\}$, only 457, 547, 745, and 754 are admissible. Therefore, $O(P) = \{457, 547, 745, 754\}$ and $o(P) = 4$.

 Ω

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

$$
O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \text{Ord } \pi = \omega, \text{ Pin } \pi = P \}.
$$

If we denote the cardinality of a set by $#$, then we also let

 $o(P) = #O(P).$

Example: $n = 7$

- ▶ Out of all orderings of $P = \{4, 5, 7\}$, only 457, 547, 745, and 754 are admissible. Therefore, $O(P) = \{457, 547, 745, 754\}$ and $o(P) = 4$.
- All orderings of $P = \{5, 6, 7\}$ are admissible, and so $O(P) = \{567, 576, 657, 675, 756, 765\}$ and $o(P) = 6$

 Ω

K ロト K 御 ト K 君 ト K 君 K

Definition

Let ω any ordering of P. Then the set of all admissible orderings of P is

$$
O(P) = \{ \omega \mid \text{there exists } \pi \in S_n \text{ with } \text{Ord } \pi = \omega, \text{ Pin } \pi = P \}.
$$

If we denote the cardinality of a set by $#$, then we also let

 $o(P) = #O(P).$

Example: $n = 7$

- ▶ Out of all orderings of $P = \{4, 5, 7\}$, only 457, 547, 745, and 754 are admissible. Therefore, $O(P) = \{457, 547, 745, 754\}$ and $o(P) = 4$.
- All orderings of $P = \{5, 6, 7\}$ are admissible, and so $O(P) = \{567, 576, 657, 675, 756, 765\}$ and $o(P) = 6$

► No orderings of
$$
P = \{3, 4\}
$$
 are admissible. So $O(P) = \emptyset$ and $o(P) = 0$

 Ω

K ロト K 御 ト K 君 ト K 君 K

This raises several interesting questions:

 299

メロメメ 倒 メメ ミメメ 毛

This raises several interesting questions:

Question

For a fixed *n*, how many admissible pinnacle sets $P \subseteq [n]$ are there?

 299

イロト イ御 トイ ヨ トイ ヨ

This raises several interesting questions:

Question

For a fixed *n*, how many admissible pinnacle sets $P \subseteq [n]$ are there?

Davis et al. showed that the number of admissible pinnacle sets is

$$
\binom{n-1}{\lfloor (n-1)/2 \rfloor}.
$$

 Ω

メロトメ 倒 トメ ミトメ 毛

This raises several interesting questions:

Question

For a fixed *n*, how many admissible pinnacle sets $P \subseteq [n]$ are there?

Davis et al. showed that the number of admissible pinnacle sets is

$$
\binom{n-1}{\lfloor (n-1)/2 \rfloor}.
$$

Question

For a fixed n and desired pinnacle set P, how many permutations in S_n have P as its pinnacle set?

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

This raises several interesting questions:

Question

For a fixed *n*, how many admissible pinnacle sets $P \subseteq [n]$ are there?

Davis et al. showed that the number of admissible pinnacle sets is

$$
\binom{n-1}{\lfloor (n-1)/2 \rfloor}.
$$

Question

For a fixed n and desired pinnacle set P, how many permutations in S_n have P as its pinnacle set?

This question has received a lot of attention. Currently the fastest known algorithms, one of them given by Fang in 2021 and one by myself, have run time $O(k^2 \log n + k^4)$ where k is the number of elements in P.

 Ω

イロメ イ部メ イヨメ イヨメ

For a fixed n and desired pinnacle set P, what is $o(P)$, that is, how many orderings of P are admissible?

 299

メロメメ 倒 メメ ミメメ 毛

For a fixed n and desired pinnacle set P, what is $o(P)$, that is, how many orderings of P are admissible?

In 2020 Rusu and Tenner did some work characterizing admissible pinnacle orderings, but they did not give a function to count them.

 Ω

K ロ ▶ K 御 ▶ K ミ ▶ K 듣

For a fixed n and desired pinnacle set P, what is $o(P)$, that is, how many orderings of P are admissible?

In 2020 Rusu and Tenner did some work characterizing admissible pinnacle orderings, but they did not give a function to count them.

For the rest of the talk, we will suppose that our given set P has k elements. We would like to find a formula or algorithm for computing $o(P)$ which, in principle, would depend on n (the length of π) and k.

 Ω

For a fixed n and desired pinnacle set P, what is $o(P)$, that is, how many orderings of P are admissible?

In 2020 Rusu and Tenner did some work characterizing admissible pinnacle orderings, but they did not give a function to count them.

For the rest of the talk, we will suppose that our given set P has k elements. We would like to find a formula or algorithm for computing $o(P)$ which, in principle, would depend on n (the length of π) and k.

Actually, this problem is independent of n , which is out first result.

 Ω

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

Definition

Let N_i be the set of the *i* smallest elements not in P .

 299

メロメメ 倒 メメ ミメメ 毛

Definition

Let N_i be the set of the *i* smallest elements not in P .

Example: If $n = 9$ and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

 299

イロト イ御 トイミトイ

Definition

Let N_i be the set of the *i* smallest elements not in P .

Example: If $n = 9$ and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

Theorem

Suppose $P \subset [n]$ with $|P| = k$ and let ω be some ordering of the elements in P. Then there exists a permutation π of the elements $[n]$ with Ord $\pi = \omega$ and Pin $\pi = P$ if and only if there exists a permutation π' of the elements $\mathsf{N}_{k+1}\cup\mathsf{P}$ with $\mathsf{Ord}\pi'=\omega$ and $\mathsf{Pin}\,\pi'= \mathsf{P}.$

 Ω

イロト イ押 トイヨ トイヨト

Definition

Let N_i be the set of the *i* smallest elements not in P .

Example: If $n = 9$ and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

Theorem

Suppose $P \subset [n]$ with $|P| = k$ and let ω be some ordering of the elements in P. Then there exists a permutation π of the elements [n] with Ord $\pi = \omega$ and Pin $\pi = P$ if and only if there exists a permutation π' of the elements $\mathsf{N}_{k+1}\cup\mathsf{P}$ with $\mathsf{Ord}\pi'=\omega$ and $\mathsf{Pin}\,\pi'= \mathsf{P}.$

In essence, this says that if we have a witness π to an ordering, then we should be able to find a witness π' to that same ordering where the largest non-pinnacles are removed and the remaining non-pinnacles alternate with the pinnacles.

 Ω

K ロト K 御 ト K 君 ト K 君 K
Definition

Let N_i be the set of the *i* smallest elements not in P .

Example: If $n = 9$ and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

Theorem

Suppose $P \subseteq [n]$ with $|P| = k$ and let ω be some ordering of the elements in P. Then there exists a permutation π of the elements [n] with Ord $\pi = \omega$ and Pin $\pi = P$ if and only if there exists a permutation π' of the elements $\mathsf{N}_{k+1}\cup\mathsf{P}$ with $\mathsf{Ord}\pi'=\omega$ and $\mathsf{Pin}\,\pi'= \mathsf{P}.$

In essence, this says that if we have a witness π to an ordering, then we should be able to find a witness π' to that same ordering where the largest non-pinnacles are removed and the remaining non-pinnacles alternate with the pinnacles.

Example: Suppose $n = 8$ and $P = \{7, 8\}$. Then $\omega = 78$ is admissible because we have $\pi = 43176852$.

 Ω

メロトメ 伊 トメ ミトメ ミト

Definition

Let N_i be the set of the *i* smallest elements not in P .

Example: If $n = 9$ and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

Theorem

Suppose $P \subseteq [n]$ with $|P| = k$ and let ω be some ordering of the elements in P. Then there exists a permutation π of the elements [n] with Ord $\pi = \omega$ and Pin $\pi = P$ if and only if there exists a permutation π' of the elements $\mathsf{N}_{k+1}\cup\mathsf{P}$ with $\mathsf{Ord}\pi'=\omega$ and $\mathsf{Pin}\,\pi'= \mathsf{P}.$

In essence, this says that if we have a witness π to an ordering, then we should be able to find a witness π' to that same ordering where the largest non-pinnacles are removed and the remaining non-pinnacles alternate with the pinnacles.

Example: Suppose $n = 8$ and $P = \{7, 8\}$. Then $\omega = 78$ is admissible because we have $\pi = 43176852$. The theorem states there ought to be a witness using only the non-pinnacles 1, 2, and 3,

 Ω

K ロト K 御 ト K 君 ト K 君 K

Definition

Let N_i be the set of the *i* smallest elements not in P .

Example: If $n = 9$ and $P = \{3, 5\}$, then $N_4 = \{1, 2, 4, 6\}$.

Theorem

Suppose $P \subseteq [n]$ with $|P| = k$ and let ω be some ordering of the elements in P. Then there exists a permutation π of the elements [n] with Ord $\pi = \omega$ and Pin $\pi = P$ if and only if there exists a permutation π' of the elements $\mathsf{N}_{k+1}\cup\mathsf{P}$ with $\mathsf{Ord}\pi'=\omega$ and $\mathsf{Pin}\,\pi'= \mathsf{P}.$

In essence, this says that if we have a witness π to an ordering, then we should be able to find a witness π' to that same ordering where the largest non-pinnacles are removed and the remaining non-pinnacles alternate with the pinnacles.

Example: Suppose $n = 8$ and $P = \{7, 8\}$. Then $\omega = 78$ is admissible because we have $\pi = 43176852$. The theorem states there ought to be a witness using only the non-pinnacles 1, 2, and 3, and there is: $\pi' = 17382.$ K ロト K 御 ト K 君 ト K 君 K

 Ω

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

 Ω

イロト イ押ト イヨト イヨ

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

 Ω

イロト イ押 トイヨ トイヨト

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi'=13274$, we can define $\pi=132745689\in\mathcal{S}_9$

 Ω

イロト イ押 トイヨ トイヨ)

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi'=13274$, we can define $\pi=132745689\in\mathcal{S}_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi'=13274$, we can define $\pi=132745689\in\mathcal{S}_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: $n = 9$, $P = \{5, 7\}$, $\omega = 57$.

 Ω

メロトメ 伊 トメ ミトメ ミト

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi'=13274$, we can define $\pi=132745689\in\mathcal{S}_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: $n = 9$, $P = \{5, 7\}$, $\omega = 57$.

$$
\pi=\textcolor{blue}{\textbf{453127689}}
$$

 Ω

メロトメ 伊 トメ ミトメ ミト

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi'=13274$, we can define $\pi=132745689\in\mathcal{S}_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: $n = 9$, $P = \{5, 7\}$, $\omega = 57$.

$$
\pi = 453127689
$$

$$
\pi' = 453127689
$$

First copy the original permutation, and identify each block of consecutive non-pinnacles.

 Ω

K ロト K 御 ト K 君 ト K 君 K

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi'=13274$, we can define $\pi=132745689\in\mathcal{S}_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: $n = 9$, $P = \{5, 7\}$, $\omega = 57$.

 $\pi = 453127689$ $\pi' = 453127689$

First copy the original permutation, and identify each block of consecutive non-pinnacles.

 Ω

K ロト K 御 ト K 君 ト K 君 K

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi'=13274$, we can define $\pi=132745689\in\mathcal{S}_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: $n = 9$, $P = \{5, 7\}$, $\omega = 57$.

 $\pi = 453127689$ $\pi' = 453127689$

Next, delete all but the smallest non-pinnacle in each block.

 Ω

4 ロ) 4 個) 4 差) 4 差)

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi'=13274$, we can define $\pi=132745689\in\mathcal{S}_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: $n = 9$, $P = \{5, 7\}$, $\omega = 57$.

$$
\pi = 453127689
$$

$$
\pi' = 45176
$$

Next, delete all but the smallest non-pinnacle in each block.

 Ω

メロトメ 伊 トメ ミトメ ミト

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi'=13274$, we can define $\pi=132745689\in\mathcal{S}_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: $n = 9$, $P = \{5, 7\}$, $\omega = 57$.

$$
\pi = 453127689
$$

$$
\pi' = 45176
$$

Finally, within π' standardize just those remaining non-pinnacles to the set N_{k+1} , which in this case is the set $\{1, 2, 3\}$.

 Ω

K ロト K 御 ト K 君 ト K 君 K

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi'=13274$, we can define $\pi=132745689\in\mathcal{S}_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: $n = 9$, $P = \{5, 7\}$, $\omega = 57$.

$$
\pi = 453127689
$$

$$
\pi' = 25173
$$

Finally, within π' standardize just those remaining non-pinnacles to the set N_{k+1} , which in this case is the set $\{1, 2, 3\}$.

 Ω

K ロト K 御 ト K 君 ト K 君 K

The reverse direction of this theorem is easy because given some witness π' on the elements $\mathsf{N}_{k+1}\cup P$ to an ordering, we may simply add on all the missing non-pinnacles to the end of π' in increasing order to get a permutation $\pi \in S_n$ with the same ordering.

Example: $n = 9$, $P = \{3, 7\}$, $N_{k+1} = N_3 = \{1, 2, 4\}$, $\omega = 37$.

Then if $\pi'=13274$, we can define $\pi=132745689\in\mathcal{S}_9$

To prove the other direction, we examine the blocks of elements between pinnacles in π and try to replace them with single elements that are sufficiently small.

Example: $n = 9$, $P = \{5, 7\}$, $\omega = 57$.

 $\pi = 453127689$ $\pi' = 25173$

 Ω

メロトメ 伊 トメ ミトメ ミト

 Ω

メロトメ 倒 トメ ミトメ 毛

Example: when considering the ordering 57 for $P = \{5, 7\}$ and $n = 9$, we may reduce

 Ω

 \leftarrow \leftarrow

Example: when considering the ordering 57 for $P = \{5, 7\}$ and $n = 9$, we may reduce

$$
\pi = 453127689 \longrightarrow \pi' = 25173 \longrightarrow \pi'' = 24153.
$$

 Ω

 \leftarrow \leftarrow

Example: when considering the ordering 57 for $P = \{5, 7\}$ and $n = 9$, we may reduce

$$
\pi = 453127689 \longrightarrow \pi' = 25173 \longrightarrow \pi'' = 24153.
$$

Then π'' is a witness to the ordering 45 of $P' = \{4, 5\}$ where $n = 5$. In π'' we have that 4 in P' plays the role of 5 in P , and 5 in P' plays the role of 7 in P.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Example: when considering the ordering 57 for $P = \{5, 7\}$ and $n = 9$, we may reduce

$$
\pi = 453127689 \longrightarrow \pi' = 25173 \longrightarrow \pi'' = 24153.
$$

Then π'' is a witness to the ordering 45 of $P' = \{4, 5\}$ where $n = 5$. In π'' we have that 4 in P' plays the role of 5 in P , and 5 in P' plays the role of 7 in P.

Therefore, when trying to find $o(P)$, it is enough to find $o(P')$ since there is a bijection between their orderings.

 Ω

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

Example: when considering the ordering 57 for $P = \{5, 7\}$ and $n = 9$, we may reduce

$$
\pi = 453127689 \longrightarrow \pi' = 25173 \longrightarrow \pi'' = 24153.
$$

Then π'' is a witness to the ordering 45 of $P' = \{4, 5\}$ where $n = 5$. In π'' we have that 4 in P' plays the role of 5 in P , and 5 in P' plays the role of 7 in P.

Therefore, when trying to find $o(P)$, it is enough to find $o(P')$ since there is a bijection between their orderings.

In what follows, we will assume the case where $n = 2k + 1$ so that pinnacles and non-pinnacles alternate.

 Ω

メロトメ 伊 トメ ミトメ ミト

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k .

 299

イロト イ御 トイ ヨ トイ ヨ

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k .

Definition

Given some $P = \{p_1 < p_2 < \cdots < p_k\}$ and complement set $N = \{n_1 < n_2 < \cdots < n_{k+1}\}\$ so that $P \cup N = [2k+1]$, we consider the set $P \cup N \setminus \{p_1, n_1\}$ and standardize. We define the reduction operator $r(P) = P'$ to be the set to which $P \setminus \{p_1\}$ standardizes.

 Ω

イロト イ押 トイヨ トイヨト

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k .

Definition

Given some $P = \{p_1 < p_2 < \cdots < p_k\}$ and complement set $N = \{n_1 < n_2 < \cdots < n_{k+1}\}\$ so that $P \cup N = [2k+1]$, we consider the set $P \cup N \setminus \{p_1, n_1\}$ and standardize. We define the *reduction operator* $r(P) = P'$ to be the set to which $P \setminus \{p_1\}$ standardizes.

In other words, $r(P)$ is calculated by removing the smallest element in P and the smallest element not in P , and then shifting the remaining elements in P down.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k .

Definition

Given some $P = \{p_1 < p_2 < \cdots < p_k\}$ and complement set $N = \{n_1 < n_2 < \cdots < n_{k+1}\}\$ so that $P \cup N = [2k+1]$, we consider the set $P \cup N \setminus \{p_1, n_1\}$ and standardize. We define the *reduction operator* $r(P) = P'$ to be the set to which $P \setminus \{p_1\}$ standardizes.

In other words, $r(P)$ is calculated by removing the smallest element in P and the smallest element not in P , and then shifting the remaining elements in P down.

 \blacktriangleright If $P = \{1, 2, 5\}$, then $N = \{3, 4, 6, 7\}$, $p_1 = 1$, $n_1 = 3$, and $P \cup N \setminus \{p_1, n_1\} = \{2, 4, 5, 6, 7\}$. So $r(P) = \{1, 3\}$.

 Ω

イロト イ押 トイヨ トイヨト

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k .

Definition

Given some $P = \{p_1 < p_2 < \cdots < p_k\}$ and complement set $N = \{n_1 < n_2 < \cdots < n_{k+1}\}\$ so that $P \cup N = [2k+1]$, we consider the set $P \cup N \setminus \{p_1, n_1\}$ and standardize. We define the *reduction operator* $r(P) = P'$ to be the set to which $P \setminus \{p_1\}$ standardizes.

In other words, $r(P)$ is calculated by removing the smallest element in P and the smallest element not in P , and then shifting the remaining elements in P down.

 \blacktriangleright If $P = \{1, 2, 5\}$, then $N = \{3, 4, 6, 7\}$, $p_1 = 1$, $n_1 = 3$, and $P \cup N \setminus \{p_1, n_1\} = \{2, 4, 5, 6, 7\}$. So $r(P) = \{1, 3\}$.

 \blacktriangleright If $P = \{3, 5, 7\}$, then $N = \{1, 2, 4, 6\}$, $p_1 = 3$, $n_1 = 1$, and $P \cup N \setminus \{p_1, n_1\} = \{2, 4, 5, 6, 7\}.$ So $r(P) = \{3, 5\}.$

 Ω

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

Since the complexity of the problem ultimately depends on k alone, we would like a way of reducing k .

Definition

Given some $P = \{p_1 < p_2 < \cdots < p_k\}$ and complement set $N = \{n_1 < n_2 < \cdots < n_{k+1}\}\$ so that $P \cup N = [2k+1]$, we consider the set $P \cup N \setminus \{p_1, n_1\}$ and standardize. We define the *reduction operator* $r(P) = P'$ to be the set to which $P \setminus \{p_1\}$ standardizes.

In other words, $r(P)$ is calculated by removing the smallest element in P and the smallest element not in P , and then shifting the remaining elements in P down.

 \blacktriangleright If $P = \{1, 2, 5\}$, then $N = \{3, 4, 6, 7\}$, $p_1 = 1$, $n_1 = 3$, and $P \cup N \setminus \{p_1, n_1\} = \{2, 4, 5, 6, 7\}$. So $r(P) = \{1, 3\}$.

▶ If
$$
P = \{3, 5, 7\}
$$
, then $N = \{1, 2, 4, 6\}$, $p_1 = 3$, $n_1 = 1$, and
\n $P \cup N \setminus \{p_1, n_1\} = \{2, 4, 5, 6, 7\}$. So $r(P) = \{3, 5\}$.

Note that $n_1 < p_1$ implies $r(P) = \{p_2 - 2 < \cdots < p_k - 2\}$

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Recall that N_i is the set of the *i* smallest elements not in P .

 299

イロト イ御 トイミトイ

Recall that N_i is the set of the *i* smallest elements not in P .

Definition

Let ω be an ordering of the elements $P \cup N_i$ for some *i*. Then we let

$$
O_i(P) = \{ \omega \mid \text{there exists } \pi \in S_{2k+1} \text{ with } \text{Ord } \pi = \omega, \text{ Pin } \pi = P \}
$$

and let

$$
o_i(P)=\#O_i(P).
$$

 Ω

イロト イ御 トイ ヨ トイ ヨ

Recall that N_i is the set of the *i* smallest elements not in P .

Definition

Let ω be an ordering of the elements $P \cup N_i$ for some *i*. Then we let

$$
O_i(P) = \{ \omega \mid \text{there exists } \pi \in S_{2k+1} \text{ with } \text{Ord } \pi = \omega, \text{ Pin } \pi = P \}
$$

and let

$$
o_i(P)=\#O_i(P).
$$

In essence, $O_i(P)$ is a set of orderings in which we keep track of not only the desired pinnacle values in P , but also some of the smallest elements not in P.

 Ω

 \leftarrow \leftarrow

 299

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶

▶ $O_0(P) = O(P) = {35,53}$ (with witnesses 13254 and 45231).

 299

メロトメ 伊 トメ ミトメ ミト

- \triangleright $O_0(P) = O(P) = \{35, 53\}$ (with witnesses 13254 and 45231).
- ▶ $O_1(P) = \{135, 153, 315, 513, 351, 531\}$ since each has a witness. For instance, the ordering 135 has witness $\pi = 13254$.

 Ω

メロトメ 倒 トメ ミトメ ミト

- \triangleright $O_0(P) = O(P) = \{35, 53\}$ (with witnesses 13254 and 45231).
- ▶ $O_1(P) = \{135, 153, 315, 513, 351, 531\}$ since each has a witness. For instance, the ordering 135 has witness $\pi = 13254$.
- \triangleright $O_2(P) = \{1325, 2315, 5132, 5231\}$. For instance, 1325 has witness $\pi = 13254$, but the ordering 1352 does not have a witness because there would be no place to insert the 4 to create the necessary pinnacles.

 Ω

K ロト K 御 ト K 君 ト K 君 K

- \triangleright $O_0(P) = O(P) = \{35, 53\}$ (with witnesses 13254 and 45231).
- ▶ $O_1(P) = \{135, 153, 315, 513, 351, 531\}$ since each has a witness. For instance, the ordering 135 has witness $\pi = 13254$.
- \triangleright $O_2(P) = \{1325, 2315, 5132, 5231\}$. For instance, 1325 has witness $\pi = 13254$, but the ordering 1352 does not have a witness because there would be no place to insert the 4 to create the necessary pinnacles.
- \triangleright $O_3(P) = \{13254, 23154, 45132, 45231\}$ which is every permutation that has pinnacle set P . In general however, we will not need to consider $O_i(P)$ where *i* is larger than the smallest element in P.

 Ω

イロメ イ部メ イヨメ イヨメ
We can further refine $O_i(P)$ as follows:

 299

イロト イ御 トイ ヨ トイ ヨ

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{ \omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i \}.$

Also we let

$$
o_i^j(P) = \# O_i^j(P).
$$

 Ω

メロトメ 倒 トメ ミトメ ミト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{ \omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i \}.$

Also we let

$$
o_i^j(P) = \# O_i^j(P).
$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0,1,2\}$.

 Ω

メロトメ 倒 トメ ミトメ ミト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{ \omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i \}.$

Also we let

$$
o_i^j(P) = \# O_i^j(P).
$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0,1,2\}$.

Example: if $P = \{4, 5\}$ and $i = 2$ so that ω is an ordering of $\{1, 2, 4, 5\}$, then. . .

 Ω

メロトメ 御 トメ ミトメ ミト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{ \omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i \}.$

Also we let

$$
o_i^j(P) = \# O_i^j(P).
$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0,1,2\}$.

Example: if $P = \{4, 5\}$ and $i = 2$ so that ω is an ordering of $\{1, 2, 4, 5\}$, then. . .

 Ω

メロメメ 倒 メメ きょくきょう

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{ \omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i \}.$

Also we let j

$$
o_i^j(P) = \# O_i^j(P).
$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0,1,2\}$.

Example: if $P = \{4, 5\}$ and $i = 2$ so that ω is an ordering of $\{1, 2, 4, 5\}$, then. . .

$$
\blacktriangleright \ \ O_2^2(P) = \{1425, 2415, 5241, 5142\}
$$

 Ω

メロトメ 御 トメ ミトメ ミト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{ \omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i \}.$

Also we let j

$$
o_i^j(P) = \# O_i^j(P).
$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0,1,2\}$.

Example: if $P = \{4, 5\}$ and $i = 2$ so that ω is an ordering of $\{1, 2, 4, 5\}$, then. . .

$$
\triangleright \; O_2^2(P) = \{1425, 2415, 5241, 5142\}
$$
\n
$$
\triangleright \; O_2^1(P)
$$

 Ω

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{ \omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i \}.$

Also we let j

$$
o_i^j(P) = \# O_i^j(P).
$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0,1,2\}$.

Example: if $P = \{4, 5\}$ and $i = 2$ so that ω is an ordering of $\{1, 2, 4, 5\}$, then. . .

- \triangleright $O_2^2(P) = \{1425, 2415, 5241, 5142\}$
- \blacktriangleright $O_2^1(P) = \{4251, 4152, 1524, 2514\}$

 Ω

K ロ ト K 個 ト K 差 ト K 差 ト …

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{ \omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i \}.$

Also we let j

$$
o_i^j(P) = \# O_i^j(P).
$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0,1,2\}$.

Example: if $P = \{4, 5\}$ and $i = 2$ so that ω is an ordering of $\{1, 2, 4, 5\}$, then. . .

- \triangleright $O_2^2(P) = \{1425, 2415, 5241, 5142\}$
- \blacktriangleright $O_2^1(P) = \{4251, 4152, 1524, 2514\}$
- \blacktriangleright $O_2^0(P)$

 Ω

イロト イ団ト イミト イヨト

We can further refine $O_i(P)$ as follows:

Definition

Let $j \in \{0, 1, 2\}$ and p_1 be the smallest element in P. Then we define $O_i^j(P) = \{ \omega \in O_i(P) \mid p_1 \text{ is adjacent to exactly } j \text{ elements in } N_i \}.$

Also we let j

$$
o_i^j(P) = \# O_i^j(P).
$$

The $O_i^j(P)$ clearly partition $O_i(P)$ for $j \in \{0,1,2\}$.

Example: if $P = \{4, 5\}$ and $i = 2$ so that ω is an ordering of $\{1, 2, 4, 5\}$, then. . .

- \triangleright $O_2^2(P) = \{1425, 2415, 5241, 5142\}$
- \blacktriangleright $O_2^1(P) = \{4251, 4152, 1524, 2514\}$

▶ $O_2^0(P) = \emptyset$ since in any witness 4 has to be surrounded by two elements in $\{1, 2, 3\}$ to be a pinnacle.

 QQ

メロメメ 倒 メメ きょくきょう

These ideas will allow us to recurse on $k = \#P$ thanks to the following result.

 299

イロト イ御 トイ ヨ トイ ヨ

These ideas will allow us to recurse on $k = \#P$ thanks to the following result.

Theorem

Suppose $i \geq 0$, P is non-empty, and $i < p_1$. Suppose further that for some $j \in \{0,1,2\}$ we have $O_i^j(P) \neq \emptyset$. Then if we let $P' = r(P)$, we have the following

$$
o_i^j(P) = \begin{cases} i(i-1)o_{i-1}(P') & \text{if } j = 2, \\ 2io_i(P') & \text{if } j = 1, \\ o_{i+1}(P') & \text{if } j = 0. \end{cases}
$$

 Ω

メロトメ 倒 トメ ミトメ 毛

These ideas will allow us to recurse on $k = \#P$ thanks to the following result.

Theorem

Suppose $i \geq 0$, P is non-empty, and $i < p_1$. Suppose further that for some $j \in \{0,1,2\}$ we have $O_i^j(P) \neq \emptyset$. Then if we let $P' = r(P)$, we have the following

$$
o_i^j(P) = \begin{cases} i(i-1)o_{i-1}(P') & \text{if } j = 2, \\ 2io_i(P') & \text{if } j = 1, \\ o_{i+1}(P') & \text{if } j = 0. \end{cases}
$$

Basically, this means that every ordering in $O_i(P)$ corresponds to some ordering in one of $O_{i-1}(P'),$ $O_i(P'),$ or $O_{i+1}(P')$ depending on the value of i .

 Ω

K ロト K 御 ト K 君 ト K 君 K

These ideas will allow us to recurse on $k = \#P$ thanks to the following result.

Theorem

Suppose $i \geq 0$, P is non-empty, and $i < p_1$. Suppose further that for some $j \in \{0,1,2\}$ we have $O_i^j(P) \neq \emptyset$. Then if we let $P' = r(P)$, we have the following

$$
o_i^j(P) = \begin{cases} i(i-1)o_{i-1}(P') & \text{if } j = 2, \\ 2io_i(P') & \text{if } j = 1, \\ o_{i+1}(P') & \text{if } j = 0. \end{cases}
$$

Basically, this means that every ordering in $O_i(P)$ corresponds to some ordering in one of $O_{i-1}(P'),$ $O_i(P'),$ or $O_{i+1}(P')$ depending on the value of i .

The proof effectively deletes the smallest element in P together with some element smaller than all elements in P , and then standardizes the remaining elements of P to be in P' .

 Ω

メロトメ 伊 トメ ミトメ ミト

We'll illustrate one case of the proof by example.

メロト メタト メミトメ

We'll illustrate one case of the proof by example.

Suppose that $j = 2$ and $i = 3$; we must show that $o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

K ロ ▶ K 何 ▶ K ヨ ▶ K

We'll illustrate one case of the proof by example.

Suppose that
$$
j = 2
$$
 and $i = 3$; we must show that
\n $o_3^2(P) = 3(3 - 1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

K ロ ▶ K 何 ▶ K ヨ ▶ K

We'll illustrate one case of the proof by example.

Suppose that
$$
j = 2
$$
 and $i = 3$; we must show that
\n $o_3^2(P) = 3(3 - 1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

To get the ordering in $O_2(P')$, we replace ρ_1 and its adjacent elements with the element 0 and standardize to the set $P' \cup [i-1]$.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

We'll illustrate one case of the proof by example.

Suppose that
$$
j = 2
$$
 and $i = 3$; we must show that
 $o_3^2(P) = 3(3 - 1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

To get the ordering in $O_2(P')$, we replace ρ_1 and its adjacent elements with the element 0 and standardize to the set $P' \cup [i-1]$.

 $3416829 \longrightarrow 06829 \longrightarrow 14627$

 Ω

イロト イ押 トイヨ トイヨト

We'll illustrate one case of the proof by example.

Suppose that
$$
j = 2
$$
 and $i = 3$; we must show that
 $o_3^2(P) = 3(3 - 1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

To get the ordering in $O_2(P')$, we replace ρ_1 and its adjacent elements with the element 0 and standardize to the set $P' \cup [i-1]$.

$$
3416829 \longrightarrow 06829 \longrightarrow 14627
$$

The swap has effectively lost us one element in N_i along with the smallest pinnacle.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

We'll illustrate one case of the proof by example.

Suppose that
$$
j = 2
$$
 and $i = 3$; we must show that
 $o_3^2(P) = 3(3 - 1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

To get the ordering in $O_2(P')$, we replace ρ_1 and its adjacent elements with the element 0 and standardize to the set $P' \cup [i-1]$.

 $3416829 \longrightarrow 06829 \longrightarrow 14627$

The swap has effectively lost us one element in N_i along with the smallest pinnacle.

We must now show the result is admissible. Take any witness to ω and preform the same process as above to get a witness to the new ordering, except now we standardize to $[2k - 1]$.

 Ω

メロメメ 倒 メメ きょくきょう

We'll illustrate one case of the proof by example.

Suppose that
$$
j = 2
$$
 and $i = 3$; we must show that
 $o_3^2(P) = 3(3 - 1)o_{3-1}(P') = 3 \cdot 2o_2(P').$

Consider $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$, and $\omega = 3416829 \in O_3^2(P)$.

To get the ordering in $O_2(P')$, we replace ρ_1 and its adjacent elements with the element 0 and standardize to the set $P' \cup [i-1]$.

 $3416829 \longrightarrow 06829 \longrightarrow 14627$

The swap has effectively lost us one element in N_i along with the smallest pinnacle.

We must now show the result is admissible. Take any witness to ω and preform the same process as above to get a witness to the new ordering, except now we standardize to $[2k - 1]$.

 $\pi = 341658397 \longrightarrow 0658397 \longrightarrow 1436275$

 Ω

4 ロ > 4 個 > 4 ミ > 4 ミ >

Want to show:

$$
o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')
$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

 299

メロメメ 倒 メメ ミメメ 毛

Want to show:

$$
o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')
$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

To reverse this process, we first choose an ordered pair of distinct elements $x, y \in N_i$ which gives us $i(i-1)$ choices. We then form the factor $x p_1 y$. For this example, to get back to the original ordering we will use 341.

 Ω

イロト イ押ト イヨト イヨ

Want to show:

$$
o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')
$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

To reverse this process, we first choose an ordered pair of distinct elements $x, y \in N_i$ which gives us $i(i-1)$ choices. We then form the factor $x p_1 y$. For this example, to get back to the original ordering we will use 341.

Next, we start with our ordering in $O_{2}(P^{\prime})$ and standardize it to the set $(P \setminus \{p_1\}) \cup (N_i \setminus \{x, y\}) \cup \{0\}$. Then we replace the 0 with the factor we formed.

 Ω

イロト イ押 トイヨ トイヨト

Want to show:

$$
o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')
$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

To reverse this process, we first choose an ordered pair of distinct elements $x, y \in N_i$ which gives us $i(i-1)$ choices. We then form the factor $x p_1 y$. For this example, to get back to the original ordering we will use 341.

Next, we start with our ordering in $O_{2}(P^{\prime})$ and standardize it to the set $(P \setminus \{p_1\}) \cup (N_i \setminus \{x, y\}) \cup \{0\}$. Then we replace the 0 with the factor we formed.

 $14627 \longrightarrow 06829 \longrightarrow 3416829$

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Want to show:

$$
o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')
$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

To reverse this process, we first choose an ordered pair of distinct elements $x, y \in N_i$ which gives us $i(i-1)$ choices. We then form the factor $x p_1 y$. For this example, to get back to the original ordering we will use 341.

Next, we start with our ordering in $O_{2}(P^{\prime})$ and standardize it to the set $(P \setminus \{p_1\}) \cup (N_i \setminus \{x, y\}) \cup \{0\}$. Then we replace the 0 with the factor we formed.

 $14627 \longrightarrow 06829 \longrightarrow 3416829$

The witness that shows this ordering is admissible is gotten by doing these same steps on some original witness, except now we standardize to $[2k+1] \setminus \{p_1, x, y\} \cup \{0\}.$

 Ω

K ロト K 御 ト K 君 ト K 君 K

Want to show:

$$
o_3^2(P) = 3(3-1)o_{3-1}(P') = 3 \cdot 2o_2(P')
$$

where $P = \{4, 6, 8, 9\}$ so that $P' = \{4, 6, 7\}$

To reverse this process, we first choose an ordered pair of distinct elements $x, y \in N_i$ which gives us $i(i-1)$ choices. We then form the factor $x p_1 y$. For this example, to get back to the original ordering we will use 341.

Next, we start with our ordering in $O_{2}(P^{\prime})$ and standardize it to the set $(P \setminus \{p_1\}) \cup (N_i \setminus \{x, y\}) \cup \{0\}$. Then we replace the 0 with the factor we formed.

 $14627 \longrightarrow 06829 \longrightarrow 3416829$

The witness that shows this ordering is admissible is gotten by doing these same steps on some original witness, except now we standardize to $[2k+1] \setminus \{p_1, x, y\} \cup \{0\}.$

$$
\pi=1436275\longrightarrow 0658297\longrightarrow 341658297
$$

 Ω

K ロト K 御 ト K 君 ト K 君 K

Suppose $i \geq 0$, P is non-empty, and $i < p_1$. Suppose further that for some $j \in \{0,1,2\}$ we have $O_i^j(P) \neq \emptyset$. Then if we let $P' = r(P)$, we have the following

$$
o_i^j(P) = \begin{cases} i(i-1)o_{i-1}(P') & \text{if } j = 2, \\ 2io_i(P') & \text{if } j = 1, \\ o_{i+1}(P') & \text{if } j = 0. \end{cases}
$$

 Ω

メロトメ 倒 トメ ミトメ 毛

Definition

Given some set P with smallest element p_1 , we make the following definition:

 δ

$$
j = \begin{cases} 1 & \text{if } p_1 > j, \\ 0 & \text{otherwise.} \end{cases}
$$

 299

メロトメ 倒 トメ 差 トメ 差

Definition

Given some set P with smallest element p_1 , we make the following definition:

$$
\delta_j = \begin{cases} 1 & \text{if } p_1 > j, \\ 0 & \text{otherwise.} \end{cases}
$$

Theorem

Let $|P| \geq 1$, $P' = r(P)$ and $0 \leq i < p_1$. Then we have the following recursion.

$$
o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').
$$

 298

K ロ > K @ > K 경 > K 경 > 시 경

Compare

Theorem

Suppose $i \geq 0$, P is non-empty, and $i < p_1$. Suppose further that for some $j \in \{0,1,2\}$ we have $O_i^j(P) \neq \emptyset$. Then if we let $P' = r(P)$, we have the following

$$
o_i^j(P) = \begin{cases} i(i-1)o_{i-1}(P') & \text{if } j = 2, \\ 2io_i(P') & \text{if } j = 1, \\ o_{i+1}(P') & \text{if } j = 0. \end{cases}
$$

Theorem

Let $|P| \geq 1$, $P' = r(P)$ and $0 \leq i < p_1$. Then we have the following recursion.

$$
o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').
$$

 Ω

メロトメ 倒 トメ ミトメ ミト

Let $|P|\geq 1$, $P'=r(P)$ and $0\leq i< p_1$. Then we have the following recursion.

$$
o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').
$$

Why do we need the δ_i 's?

 299

メロトメ 伊 トメ ミトメ ミト

Let $|P|\geq 1$, $P'=r(P)$ and $0\leq i< p_1$. Then we have the following recursion.

$$
o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').
$$

Why do we need the δ_i 's?

Consider the case $P = \{3, 5\}$ and $i = 2$. Then $O_2(P) = O_2^2(P) = \{1325, 2315, 5132, 5231\}.$

 Ω

メロトメ 倒 トメ ミトメ ミト

Let $|P|\geq 1$, $P'=r(P)$ and $0\leq i< p_1$. Then we have the following recursion.

$$
o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').
$$

Why do we need the δ_i 's?

Consider the case $P = \{3, 5\}$ and $i = 2$. Then $O_2(P) = O_2^2(P) = \{1325, 2315, 5132, 5231\}.$

Therefore only the first term in the recursion, which corresponds to $j = 2$, should contribute to the sum.

 Ω

メロトメ 倒 トメ ミトメ ミト

Let $|P|\geq 1$, $P'=r(P)$ and $0\leq i< p_1$. Then we have the following recursion.

$$
o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').
$$

Why do we need the δ_i 's?

Consider the case $P = \{3, 5\}$ and $i = 2$. Then $O_2(P) = O_2^2(P) = \{1325, 2315, 5132, 5231\}.$

Therefore only the first term in the recursion, which corresponds to $j = 2$, should contribute to the sum.

But $P' = \{3\}$ and $O_2(P') = \{132, 231\}$ is nonempty, and therefore will contribute to the sum if the $\delta_{i+1} = \delta_3$ didn't kill it.

 Ω

イロメ イ部メ イ君メ イ君メー
Theorem

Let $|P| \geq 1$, $P' = r(P)$ and $0 \leq i < p_1$. Then we have the following recursion.

$$
o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').
$$

So we're done!

 299

メロトメ 御 トメ ミトメ ミト

Theorem

Let $|P| \geq 1$, $P' = r(P)$ and $0 \leq i < p_1$. Then we have the following recursion.

$$
o_i(P) = i(i-1)o_{i-1}(P') + (2i)\delta_{i+1}o_i(P') + \delta_{i+2}o_{i+1}(P').
$$

So we're done!

We can find the number of admissible orderings by starting with $o_0(P) = o(P)$. Each time we apply the recursion the number of elements in P goes down by one until we hit our base case when $P = \emptyset$, where we will always have only one ordering.

 Ω

イロト イ押 トイヨ トイヨト

Let us denote m applications of the reduction operator by P^m .

 299

イロト イ御 トイ ヨ トイ ヨ

Let us denote m applications of the reduction operator by P^m . For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

 Ω

メロトメ 伊 トメ ミトメ ミト

Let us denote m applications of the reduction operator by P^m . For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

All calculated terms are of the form $o_i(P^m)$.

 Ω

メロトメ 倒 トメ ミトメ ミト

Let us denote m applications of the reduction operator by P^m . For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- \blacktriangleright *i* and *m* start at zero.

 Ω

メロトメ 倒 トメ ミトメ ミト

Let us denote m applications of the reduction operator by P^m . For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- \blacktriangleright *i* and *m* start at zero.
- \triangleright *i* and *m* can increase by at most one each time the recursion is applied.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- \blacktriangleright *i* and *m* start at zero.
- \triangleright *i* and *m* can increase by at most one each time the recursion is applied.
- \blacktriangleright m can be at most k.

 Ω

メロトメ 倒 トメ ミトメ ミト

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- \blacktriangleright *i* and *m* start at zero.
- \triangleright *i* and *m* can increase by at most one each time the recursion is applied.
- \blacktriangleright m can be at most k.
- ▶ We always have $i \leq k+1-m$, which is the number of elements not in P after m applications of the recursion.

 Ω

イロト イ押 トイヨ トイヨト

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- \blacktriangleright *i* and *m* start at zero.
- \triangleright *i* and *m* can increase by at most one each time the recursion is applied.
- \blacktriangleright m can be at most k.
- ▶ We always have $i \leq k+1-m$, which is the number of elements not in P after m applications of the recursion.

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- \blacktriangleright *i* and *m* start at zero.
- \triangleright *i* and *m* can increase by at most one each time the recursion is applied.
- \blacktriangleright m can be at most k.
- ▶ We always have $i \leq k+1-m$, which is the number of elements not in P after m applications of the recursion.

 m must increase whenever *i* increases, *i* can never exceed m .

 Ω

イロメ イ部メ イヨメ イヨメ

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- \blacktriangleright *i* and *m* start at zero.
- \triangleright *i* and *m* can increase by at most one each time the recursion is applied.
- \blacktriangleright m can be at most k.
- ▶ We always have $i \leq k+1-m$, which is the number of elements not in P after m applications of the recursion.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Let us denote m applications of the reduction operator by P^m .

For instance, $r(P) = P' = P^1$ and $r(r(r(P))) = P^3$.

- All calculated terms are of the form $o_i(P^m)$.
- \blacktriangleright *i* and *m* start at zero.
- \triangleright *i* and *m* can increase by at most one each time the recursion is applied.
- \blacktriangleright m can be at most k.
- ▶ We always have $i \leq k+1-m$, which is the number of elements not in P after m applications of the recursion.

 Ω

 299

イロト イ御 トイ ヨ トイ ヨ

Question

Is there a faster way of computing $o(P)$, or a closed formula that can give the number of admissible orderings of P without having to keep track of elements not in P?

 Ω

イロト イ押ト イヨト イヨ

Additional work

There are still some open questions about pinnacle sets.

Question

Is there a faster way of computing $o(P)$, or a closed formula that can give the number of admissible orderings of P without having to keep track of elements not in P?

Let $p_n(P)$ be the number of permutations $\pi \in S_n$ with pinnacle set P.

 Ω

イロト イ押ト イヨト イヨ

Question

Is there a faster way of computing $o(P)$, or a closed formula that can give the number of admissible orderings of P without having to keep track of elements not in P?

Let $p_n(P)$ be the number of permutations $\pi \in S_n$ with pinnacle set P.

In addition to this recursion, I was also able to give a combinatorial proof of a weighted sum of $p_n(Q)$ over all $Q \subset P$ originally proven by Fang in 2021, and I was also able to come up with a recursion to compute $p_n(P)$ directly.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Question

Is there a faster way of computing $o(P)$, or a closed formula that can give the number of admissible orderings of P without having to keep track of elements not in P?

Let $p_n(P)$ be the number of permutations $\pi \in S_n$ with pinnacle set P.

In addition to this recursion, I was also able to give a combinatorial proof of a weighted sum of $p_n(Q)$ over all $Q \subset P$ originally proven by Fang in 2021, and I was also able to come up with a recursion to compute $p_n(P)$ directly.

Question

Does there exist a way of computing $p_n(P)$ that has a faster run time than $O(k^2 \log(n) + k^4)?$

 Ω

イロト イ御 トイ ヨ トイ ヨ)

Thank you! $P \cup N \in [10]$ -ded (pun intended)

 299

イロト イ御 トイ ヨ トイ ヨ

Robert Davis, Sarah A. Nelson, T. Kyle Petersen, and Bridget E. Tenner. The pinnacle set of a permutation. Discrete Mathematics, 341(11):3249–3270, 2018.

Irena Rusu and Bridget Tenner. Admissible pinnacle orderings. Graphs and Combinatorics, 37:1205–1214, 2021.

Diaz-Lopez, Alexander and Harris, Pamela E. and Huang, Isabella and Insko, Erik and Nilsen,Lars. A formula for enumerating permutations with a fixed pinnacle set. Discrete Mathematics, 344(6):112375, 2021

Justice Falque, Jean-Christophe Novelli, and Jean-Yves Thibon. Pinnacle Sets Revisited. arXiv:2106.05248v1. 2021

Wenjie Fang. Efficient recurrence for the enumeration of permutations with a fixed pinnacle set. arXiv:2106.09147v1. 2021

 Ω

K ロト K 御 ト K 君 ト K 君 K