The Quantum k-Bruhat Order

by

Nick Mayers

Kennesaw State University

(Joint work with L. Colmenarejo)

$\underline{\mathbf{Outline}}$

$\underline{\mathbf{Outline}}$

- Classical
 - Schubert polynomials
 - \bullet k-Bruhat order
 - Monoid structure

Outline

- Classical
 - Schubert polynomials
 - k-Bruhat order
 - Monoid structure
- Quantum
 - Quantum Schubert polynomials
 - \bullet Quantum k-Bruhat order
 - Monoid structure

Outline

- Classical
 - Schubert polynomials
 - k-Bruhat order
 - Monoid structure
- Quantum
 - Quantum Schubert polynomials
 - \bullet Quantum k-Bruhat order
 - Monoid structure
- 6 Future work

Permutations

Permutations

$$[n] = \{1, 2, \dots, n\}$$

A **permutation** $w \in S_n$ is a bijection $w : [n] \to [n]$.

Permutations

$$[n] = \{1, 2, \dots, n\}$$

A **permutation** $w \in S_n$ is a bijection $w : [n] \to [n]$.

We write permutations $w \in S_n$ in one-line notation

$$[w(1), w(2), \cdots, w(n)]$$

Permutations

$$[n] = \{1, 2, \dots, n\}$$

A **permutation** $w \in S_n$ is a bijection $w : [n] \to [n]$.

We write permutations $w \in S_n$ in one-line notation

$$[w(1), w(2), \dots, w(n)] \rightarrow [5, 2, 4, 1, 3] \text{ or } 52413.$$

Permutations

$$[n] = \{1, 2, \dots, n\}$$

A **permutation** $w \in S_n$ is a bijection $w : [n] \to [n]$.

We write permutations $w \in S_n$ in one-line notation

$$[w(1), w(2), \dots, w(n)] \rightarrow [5, 2, 4, 1, 3] \text{ or } 52413.$$

Given a permutation $w \in S_n$, we define the **length** as

$$\ell(w) = |\{(i,j) \mid i < j, \ w(i) > w(j)\}|$$

Permutations

$$[n] = \{1, 2, \dots, n\}$$

A **permutation** $w \in S_n$ is a bijection $w : [n] \to [n]$.

We write permutations $w \in S_n$ in one-line notation

$$[w(1), w(2), \dots, w(n)] \rightarrow [5, 2, 4, 1, 3] \text{ or } 52413.$$

Given a permutation $w \in S_n$, we define the **length** as

$$\ell(w) = |\{(i, j) \mid i < j, \ w(i) > w(j)\}| \rightarrow \ell(52413) = 7.$$

Permutations

 $s_{a,b}$ for $a \neq b \in \mathbb{N}$ denotes the permutation fixing all but a and b. We refer to such permutations as **transpositions**.

<u>Permutations</u>

 $s_{a,b}$ for $a \neq b \in \mathbb{N}$ denotes the permutation fixing all but a and b. We refer to such permutations as **transpositions**.

Notation: $s_a = s_{a,a+1}$.

Permutations

 $s_{a,b}$ for $a \neq b \in \mathbb{N}$ denotes the permutation fixing all but a and b. We refer to such permutations as **transpositions**.

Notation: $s_a = s_{a,a+1}$.

Left Action: $s_{a,b}w$

Right Action: $ws_{a,b}$

Permutations

 $s_{a,b}$ for $a \neq b \in \mathbb{N}$ denotes the permutation fixing all but a and b. We refer to such permutations as **transpositions**.

Notation:
$$s_a = s_{a,a+1}$$
.

Left Action:
$$s_{a,b}w$$

Right Action: $ws_{a,b}$

swaps values a and b

Permutations

 $s_{a,b}$ for $a \neq b \in \mathbb{N}$ denotes the permutation fixing all but a and b. We refer to such permutations as **transpositions**.

Notation:
$$s_a = s_{a,a+1}$$
.

Left Action:
$$s_{a,b}w$$

Right Action: $ws_{a,b}$

swaps values a and b

$$s_{2,4}[5,3,2,1,4] = [5,3,4,1,2]$$

Permutations

 $s_{a,b}$ for $a \neq b \in \mathbb{N}$ denotes the permutation fixing all but a and b. We refer to such permutations as **transpositions**.

Notation:
$$s_a = s_{a,a+1}$$
.

Left Action:
$$s_{a,b}w$$

swaps values a and b

$$s_{2,4}[5,3,2,1,4] = [5,3,4,1,2]$$

Right Action:
$$ws_{a,b}$$

swaps positions a and b

Permutations

 $s_{a,b}$ for $a \neq b \in \mathbb{N}$ denotes the permutation fixing all but a and b. We refer to such permutations as **transpositions**.

Notation:
$$s_a = s_{a,a+1}$$
.

Left Action:
$$s_{a,b}w$$

swaps values a and b

$$s_{2,4}[5,3,2,1,4] = [5,3,4,1,2]$$

Right Action:
$$ws_{a,b}$$

swaps positions a and b

$$[5,3,2,1,4]s_{2,4} = [5,1,2,3,4]$$

Poset

 (\mathcal{P}, \preceq)

- (Reflexive) $x \le x$
- (Antisymmetric) $x \le y$ and $y \le x$, implies x = y
- (Transitive) $x \le y$, $y \le z$ implies $x \le z$

Poset

 (\mathcal{P}, \preceq)

- (Reflexive) $x \le x$
- (Antisymmetric) $x \le y$ and $y \le x$, implies x = y
- (Transitive) $x \le y$, $y \le z$ implies $x \le z$

Example:
$$P = [4], 1 < 2 < 3, 4$$

$\underline{\mathbf{Poset}}$

$$\mathcal{P} = [4], \ 1 < 2 < 3, 4$$

Poset

$$P = [4], 1 < 2 < 3, 4$$

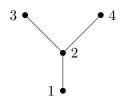
Poset

$$\mathcal{P} = [4], \ 1 \lessdot 2 \lessdot 3, 4$$

$$\mathcal{P} = [4], \ 1 \lessdot 2 \lessdot 3, 4$$

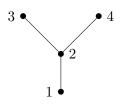
- lacktriangledown Covering Relation \prec
- 4 Hasse Diagram

$$\mathcal{P}$$
 = [4], $1 \lessdot 2 \lessdot 3, 4$



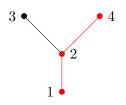
- **○** Covering Relation <
- 4 Hasse Diagram

$$\mathcal{P} = [4], \ 1 \lessdot 2 \lessdot 3, 4$$



- lacktriangledown Covering Relation \prec
- 4 Hasse Diagram
- \bullet Interval [u, v]

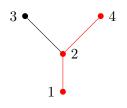
$$\mathcal{P} = [4], \ 1 \lessdot 2 \lessdot 3, 4$$



- \bullet Covering Relation \prec
- Hasse Diagram
- \bullet Interval [u, v]

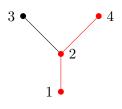
$\underline{\mathbf{Poset}}$

$$\mathcal{P} = [4], \ 1 \lessdot 2 \lessdot 3, 4$$



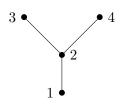
- lacktriangledown Covering Relation \prec
- 4 Hasse Diagram
- \bullet Interval [u, v]
- 4 Chain

$$\mathcal{P} = [4], \ 1 \lessdot 2 \lessdot 3, 4$$



- lacktriangledown Covering Relation \prec
- 4 Hasse Diagram
- \bullet Interval [u, v]
- Chain
- Maximal Chain

$$\mathcal{P} = [4], \ 1 \lessdot 2 \lessdot 3, 4$$



- **○** Covering Relation <
- Hasse Diagram
- \bullet Interval [u, v]
- Chain
- 6 Maximal Chain
- Isomorphic

Schubert Polynomials

Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u \in \mathbb{Z}_{\geq 0}[x_1, \dots, x_n].$$

Schubert Polynomials

Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u \in \mathbb{Z}_{\geq 0}[x_1, \dots, x_n].$$

Definitions in terms of

- divided difference operators
- reduced pipe dreams
- bumpless pipe dreams
- compatible sequences
- :

Schubert Polynomials

Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u \in \mathbb{Z}_{\geq 0}[x_1, \dots, x_n].$$

Schubert Polynomials

Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u \in \mathbb{Z}_{\geq 0}[x_1, \dots, x_n].$$

Example:

$$\mathfrak{S}_{s_k} = x_1 + x_2 + \dots + x_k$$

Schubert Polynomials

Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u \in \mathbb{Z}_{\geq 0}[x_1, \dots, x_n].$$

Example:

$$\mathfrak{S}_{s_k} = x_1 + x_2 + \dots + x_k$$

Example: For each Schur polynomial $s_{\lambda}(x_1, \dots, x_k)$, there exists $v(\lambda, k) \in S_n$ such that

$$\mathfrak{S}_{v(\lambda,k)} = s_{\lambda}(x_1, \dots, x_k).$$

Schubert Polynomials

Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u \in \mathbb{Z}_{\geq 0}[x_1, \dots, x_n].$$

Example:

$$\mathfrak{S}_{s_k} = x_1 + x_2 + \dots + x_k$$

Example:

$$\mathfrak{S}_{2413} = s_{2,1}(x_1, x_2) = x_1^2 x_2 + x_1 x_2^2$$

Schubert Polynomials

Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u \in \mathbb{Z}_{\geq 0}[x_1, \dots, x_n].$$

Schubert Polynomials

Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u \in \mathbb{Z}_{\geq 0}[x_1, \dots, x_n].$$

For geometric reasons, the expansion $\mathfrak{S}_u\mathfrak{S}_v = \sum_w c_{uv}^w\mathfrak{S}_w$ has coefficients $c_{uv}^w \in \mathbb{Z}_{\geq 0}$.

Schubert Polynomials

Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u \in \mathbb{Z}_{\geq 0}[x_1, \dots, x_n].$$

For geometric reasons, the expansion $\mathfrak{S}_u\mathfrak{S}_v = \sum_w c_{uv}^w\mathfrak{S}_w$ has coefficients $c_{uv}^w \in \mathbb{Z}_{\geq 0}$.

Open Problem: Find a combinatorial construction for the c_{uv}^w .

Monk's Formula

Monk's Formula: For $u \in S_n$ and $k \in [n-1]$,

$$\mathfrak{S}_u\mathfrak{S}_{s_k} = \sum_{\stackrel{1 \leq a \leq k < b \leq n}{\ell(us_{a,b}) = \ell(u) + 1}} \mathfrak{S}_{us_{a,b}}.$$

Monk's Formula

Monk's Formula: For $u \in S_n$ and $k \in [n-1]$,

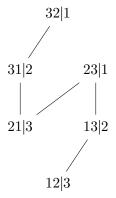
$$\mathfrak{S}_u\mathfrak{S}_{s_k} = \sum_{\stackrel{1 \leq a \leq k < b \leq n}{\ell(us_{a,b}) = \ell(u) + 1}} \mathfrak{S}_{us_{a,b}}.$$

k-Bruhat Order

Poset on S_n defined by covering relations:

$$u \leq_k w$$
 if $\ell(w) = \ell(u) + 1$ and $w = us_{a,b}$ where $1 \leq a \leq k < b \leq n$.

2-Bruhat Order on S_3



<u>k-Bruhat Order</u>

Poset on S_n defined by covering relations:

$$u \leq_k w$$
 if $\ell(w) = \ell(u) + 1$ and $w = us_{a,b}$ where $1 \leq a \leq k < b \leq n$.

<u>k-Bruhat Order</u>

Poset on S_n defined by covering relations:

$$u \leq_k w$$
 if $\ell(w) = \ell(u) + 1$ and $w = us_{a,b}$ where $1 \leq a \leq k < b \leq n$.

Iterating Monk's rule, one finds that $c_{uv(\lambda,k)}^w = 0$ when $u \nleq_k w$

<u>k-Bruhat Order</u>

Poset on S_n defined by covering relations:

$$u \leq_k w$$
 if $\ell(w) = \ell(u) + 1$ and $w = us_{a,b}$ where $1 \leq a \leq k < b \leq n$.

Iterating Monk's rule, one finds that $c_{uv(\lambda,k)}^w = 0$ when $u \nleq_k w$ and

$$c_{uv(\lambda,k)}^{w} = \left| \left\{ \begin{aligned} & \text{maximal chains in } [u,w]_k \text{ satisfying} \\ & some \ condition \text{ imposed by } v(\lambda,k) \end{aligned} \right|.$$

<u>k-Bruhat Order</u>

Poset on S_n defined by covering relations:

$$u \leq_k w$$
 if $\ell(w) = \ell(u) + 1$ and $w = us_{a,b}$ where $1 \leq a \leq k < b \leq n$.

<u>k-Bruhat Order</u>

Poset on S_n defined by covering relations: $u \lessdot_k w$ if $\ell(w) = \ell(u) + 1$ and $w = us_{a,b}$ where $1 \le a \le k < b \le n$.

Proposition (Bergeron-Sottile, 1998)

Let $u, w \in S_n$. Then $u \leq_k w$ if and only if

- (i) $a \le k \le b$ implies $u(a) \le w(a)$ and $u(b) \ge w(b)$.
- (ii) if a < b, u(a) < u(b), and w(a) > w(b), then $a \le k < b$.

<u>k-Bruhat Order</u>

Poset on S_n defined by covering relations: $u \leq_k w$ if $\ell(w) = \ell(u) + 1$ and $w = us_{a,b}$ where $1 \leq a \leq k < b \leq n$.

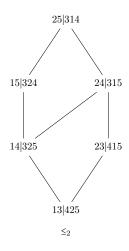
Proposition (Bergeron-Sottile, 1998)

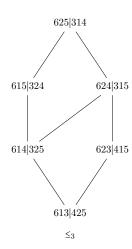
Let $u, w \in S_n$. Then $u \leq_k w$ if and only if

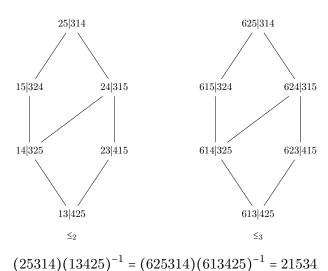
- (i) $a \le k \le b$ implies $u(a) \le w(a)$ and $u(b) \ge w(b)$.
- (ii) if a < b, u(a) < u(b), and w(a) > w(b), then $a \le k < b$.

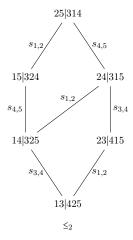
Theorem (Bergeron-Sottile, 1998)

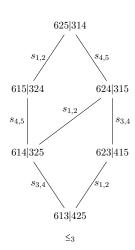
Suppose that $u \leq_k w$, $x \leq_l z$, and $wu^{-1} = zx^{-1}$. Then $v \to vu^{-1}x$ induces an isomorphism between $[u, w]_k$ and $[x, z]_l$.











$$(25314)(13425)^{-1} = (625314)(613425)^{-1} = 21534$$

k-Bruhat Order

Theorem (Bergeron-Sottile, 1998)

Suppose that $u \leq_k w$, $x \leq_l z$, and $wu^{-1} = zx^{-1}$. Then $v \to vu^{-1}x$ induces an isomorphism between $[u, w]_k$ and $[x, z]_l$.

k-Bruhat Order

Theorem (Bergeron-Sottile, 1998)

Suppose that $u \leq_k w$, $x \leq_l z$, and $wu^{-1} = zx^{-1}$. Then $v \to vu^{-1}x$ induces an isomorphism between $[u, w]_k$ and $[x, z]_l$.

Grassmannian Bruhat Order

For $\xi, \eta \in S_n$, let $\eta \leq \xi$ if there exists $u \in S_n$ and $k \in [n-1]$ such that $u \leq_k \eta u \leq_k \xi u$.

Grassmanian Bruhat Order

Grassmanian Bruhat Order

For $\xi, \eta \in S_n$, let $\eta \leq \xi$ if there exists $u \in S_n$ and $k \in [n-1]$ such that $u \leq_k \eta u \leq_k \xi u$.

Grassmanian Bruhat Order

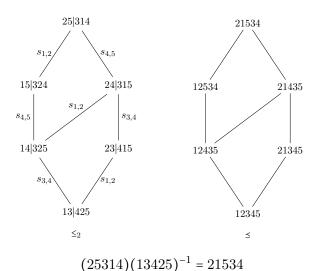
Grassmanian Bruhat Order

For $\xi, \eta \in S_n$, let $\eta \leq \xi$ if there exists $u \in S_n$ and $k \in [n-1]$ such that $u \leq_k \eta u \leq_k \xi u$.

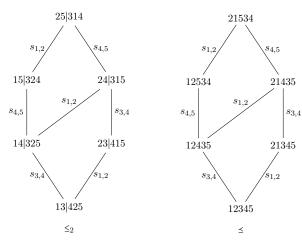
Theorem (Bergeron-Sottile, 1998)

Suppose $u, \zeta \in S_n$. If $u \leq_k \zeta u$, then $\nu \to \nu u$ induces an isomorphism between $[e, \zeta]_{\leq}$ and $[u, \zeta u]_k$.

Grassmannian Bruhat Order



Grassmannian Bruhat Order



 $(25314)(13425)^{-1} = 21534$

Monoid Structure

Let \mathcal{F}_n be the free monoid generated by the symbols

$$\{ \mathbf{v}_{a,b} \mid a < b \text{ with } a,b \in [n] \} \cup \{ \mathbf{0} \}.$$

Monoid Structure

Let \mathcal{F}_n be the free monoid generated by the symbols

$$\{\mathbf{v}_{a,b} \mid a < b \text{ with } a,b \in [n]\} \cup \{\mathbf{0}\}.$$

Define an action of \mathcal{F}_n on $S_n \cup \{0\}$ by

$$\mathbf{0} \cdot u = \mathbf{v}_{a,b} \cdot 0 = 0$$

and

$$\mathbf{v}_{a,b} \cdot u = \begin{cases} s_{a,b}u, & \text{if } u \lessdot s_{a,b}u \\ 0, & \text{otherwise.} \end{cases}$$

Monoid Structure

Let \mathcal{F}_n be the free monoid generated by the symbols

$$\{\mathbf{v}_{a,b} \mid a < b \text{ with } a,b \in [n]\} \cup \{\mathbf{0}\}.$$

Define an action of \mathcal{F}_n on $S_n \cup \{0\}$ by

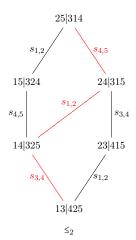
$$\mathbf{0} \bullet_k u = \mathbf{v}_{a,b} \bullet_k 0 = 0$$

and

$$\mathbf{v}_{a,b} \bullet_k u = \begin{cases} s_{a,b}u, & \text{if } u <_k s_{a,b}u \\ 0, & \text{otherwise.} \end{cases}$$

$$\mathbf{v}_{4,5}\mathbf{v}_{1,2}\mathbf{v}_{3,4} \bullet_2 13425 = 25314$$

$$\mathbf{v}_{4,5}\mathbf{v}_{1,2}\mathbf{v}_{3,4} \bullet_2 13425 = 25314$$



Grassmannian Bruhat Monoid

 $\mathbf{v}_1 \equiv \mathbf{v}_2 \in \mathcal{M}_n$ if and only if $\mathbf{v}_1 \cdot w = \mathbf{v}_2 \cdot w$ for all $w \in S_n$ if and only if $\mathbf{v}_1 \bullet_k w = \mathbf{v}_2 \bullet_k w$ for all $w \in S_n$ and $k \in [n-1]$.

Grassmannian Bruhat Monoid

 $\mathbf{v}_1 \equiv \mathbf{v}_2 \in \mathcal{M}_n$ if and only if $\mathbf{v}_1 \cdot w = \mathbf{v}_2 \cdot w$ for all $w \in S_n$ if and only if $\mathbf{v}_1 \bullet_k w = \mathbf{v}_2 \bullet_k w$ for all $w \in S_n$ and $k \in [n-1]$.

- (1) $\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{v}_{\beta,\delta}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma}$ if $\alpha < \beta < \gamma < \delta$,
- (2) $\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\delta} \text{ if } \alpha < \beta < \gamma < \delta,$
- (3) $\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\gamma,\delta} \equiv \mathbf{v}_{\gamma}\mathbf{v}_{\delta}$, if $\beta < \gamma$ or $\alpha < \gamma < \delta < \beta$,
- (4) $\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\beta,\delta} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{0}$, if $\alpha \leq \beta < \gamma \leq \delta$,
- (5) $\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta} \equiv \mathbf{0} \text{ if } \alpha < \beta < \gamma.$

Grassmannian Bruhat Monoid

(1)
$$\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{v}_{\beta,\delta}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma}$$
 if $\alpha < \beta < \gamma < \delta$,

(2)
$$\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\delta} \text{ if } \alpha < \beta < \gamma < \delta,$$

(3)
$$\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\gamma,\delta} \equiv \mathbf{v}_{\gamma}\mathbf{v}_{\delta}$$
, if $\beta < \gamma$ or $\alpha < \gamma < \delta < \beta$,

(4)
$$\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\beta,\delta} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{0}$$
, if $\alpha \leq \beta < \gamma \leq \delta$,

(5)
$$\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta} \equiv \mathbf{0} \text{ if } \alpha < \beta < \gamma.$$

Grassmannian Bruhat Monoid

- (1) $\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{v}_{\beta,\delta}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma}$ if $\alpha < \beta < \gamma < \delta$,
- (2) $\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\delta} \text{ if } \alpha < \beta < \gamma < \delta,$
- (3) $\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\gamma,\delta} \equiv \mathbf{v}_{\gamma}\mathbf{v}_{\delta}$, if $\beta < \gamma$ or $\alpha < \gamma < \delta < \beta$,
- (4) $\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\beta,\delta} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{0}$, if $\alpha \leq \beta < \gamma \leq \delta$,
- (5) $\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta} \equiv \mathbf{0} \text{ if } \alpha < \beta < \gamma.$

$$v_{1,3}v_{2,4}v_{1,4}$$

Grassmannian Bruhat Monoid

(1)
$$\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{v}_{\beta,\delta}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma} \text{ if } \alpha < \beta < \gamma < \delta,$$

(2)
$$\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\delta} \text{ if } \alpha < \beta < \gamma < \delta,$$

(3)
$$\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\gamma,\delta} \equiv \mathbf{v}_{\gamma}\mathbf{v}_{\delta}$$
, if $\beta < \gamma$ or $\alpha < \gamma < \delta < \beta$,

(4)
$$\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\beta,\delta} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{0}$$
, if $\alpha \leq \beta < \gamma \leq \delta$,

(5)
$$\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta} \equiv \mathbf{0} \text{ if } \alpha < \beta < \gamma.$$

Grassmannian Bruhat Monoid

(1)
$$\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{v}_{\beta,\delta}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma} \text{ if } \alpha < \beta < \gamma < \delta,$$

(2)
$$\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\delta} \text{ if } \alpha < \beta < \gamma < \delta,$$

(3)
$$\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\gamma,\delta} \equiv \mathbf{v}_{\gamma}\mathbf{v}_{\delta}$$
, if $\beta < \gamma$ or $\alpha < \gamma < \delta < \beta$,

(4)
$$\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\beta,\delta} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{0}$$
, if $\alpha \leq \beta < \gamma \leq \delta$,

(5)
$$\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta} \equiv \mathbf{0} \text{ if } \alpha < \beta < \gamma.$$

Grassmannian Bruhat Monoid

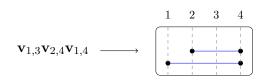
(1)
$$\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{v}_{\beta,\delta}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma} \text{ if } \alpha < \beta < \gamma < \delta,$$

(2)
$$\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\delta} \text{ if } \alpha < \beta < \gamma < \delta,$$

(3)
$$\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\gamma,\delta} \equiv \mathbf{v}_{\gamma}\mathbf{v}_{\delta}$$
, if $\beta < \gamma$ or $\alpha < \gamma < \delta < \beta$,

(4)
$$\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\beta,\delta} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{0}$$
, if $\alpha \leq \beta < \gamma \leq \delta$,

(5)
$$\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta} \equiv \mathbf{0} \text{ if } \alpha < \beta < \gamma.$$



Grassmannian Bruhat Monoid

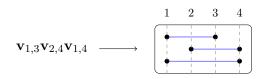
(1)
$$\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{v}_{\beta,\delta}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma}$$
 if $\alpha < \beta < \gamma < \delta$,

(2)
$$\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\gamma,\delta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\delta} \text{ if } \alpha < \beta < \gamma < \delta,$$

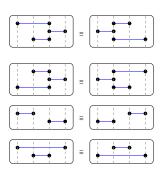
(3)
$$\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\gamma,\delta} \equiv \mathbf{v}_{\gamma}\mathbf{v}_{\delta}$$
, if $\beta < \gamma$ or $\alpha < \gamma < \delta < \beta$,

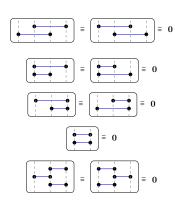
(4)
$$\mathbf{v}_{\alpha,\gamma}\mathbf{v}_{\beta,\delta} \equiv \mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\gamma} \equiv \mathbf{0}$$
, if $\alpha \leq \beta < \gamma \leq \delta$,

(5)
$$\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma} \equiv \mathbf{v}_{\alpha,\beta}\mathbf{v}_{\beta,\gamma}\mathbf{v}_{\alpha,\beta} \equiv \mathbf{0} \text{ if } \alpha < \beta < \gamma.$$



Grassmannian Bruhat Monoid





Grassmannian Bruhat Monoid

 $\mathbf{v}_1 \equiv \mathbf{v}_2 \in \mathcal{M}_n$ if and only if $\mathbf{v}_1 \cdot w = \mathbf{v}_2 \cdot w$ for all $w \in S_n$ if and only if $\mathbf{v}_1 \bullet_k w = \mathbf{v}_2 \bullet_k w$ for all $w \in S_n$ and $k \in [n-1]$.

Grassmannian Bruhat Monoid

 $\mathbf{v}_1 \equiv \mathbf{v}_2 \in \mathcal{M}_n$ if and only if $\mathbf{v}_1 \cdot w = \mathbf{v}_2 \cdot w$ for all $w \in S_n$ if and only if $\mathbf{v}_1 \bullet_k w = \mathbf{v}_2 \bullet_k w$ for all $w \in S_n$ and $k \in [n-1]$.

Grassmannian Bruhat Monoid

 $\mathbf{v}_1 \equiv \mathbf{v}_2 \in \mathcal{M}_n$ if and only if $\mathbf{v}_1 \cdot w = \mathbf{v}_2 \cdot w$ for all $w \in S_n$ if and only if $\mathbf{v}_1 \bullet_k w = \mathbf{v}_2 \bullet_k w$ for all $w \in S_n$ and $k \in [n-1]$.

Grassmannian Bruhat Monoid

 $\mathbf{v}_1 \equiv \mathbf{v}_2 \in \mathcal{M}_n$ if and only if $\mathbf{v}_1 \cdot w = \mathbf{v}_2 \cdot w$ for all $w \in S_n$ if and only if $\mathbf{v}_1 \bullet_k w = \mathbf{v}_2 \bullet_k w$ for all $w \in S_n$ and $k \in [n-1]$.

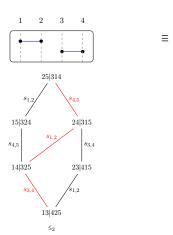
Grassmannian Bruhat Monoid

Grassmannian Bruhat Monoid

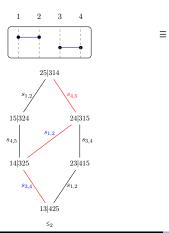
Poset Level:

≡

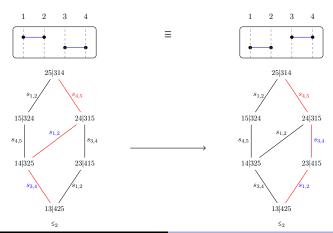
Grassmannian Bruhat Monoid



Grassmannian Bruhat Monoid



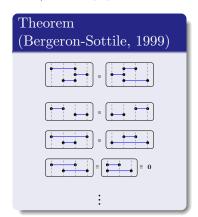
Grassmannian Bruhat Monoid



Classical to Quantum

Classical

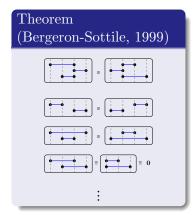
$$\{ \mathbf{v}_{a,b} \mid a, b \in [n], \ a < b \} \cup \{ \mathbf{0} \}$$



Classical to Quantum

Classical

$$\{ \mathbf{v}_{a,b} \mid a, b \in [n], \ a < b \} \cup \{ \mathbf{0} \}$$



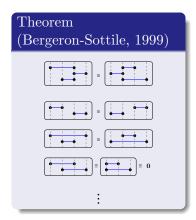
Quantum

$$\{\mathbf{v}_{a,b} \mid a,b \in [n], \ a \neq b\} \cup \{\mathbf{0}\}$$

Classical to Quantum

Classical

$$\{ \mathbf{v}_{a,b} \mid a, b \in [n], \ a < b \} \cup \{ \mathbf{0} \}$$



Quantum

$$\{\mathbf{v}_{a,b} \mid a,b \in [n], a \neq b\} \cup \{\mathbf{0}\}$$

The Quantum Case

Quantum Schubert Polynomials

Quantum Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u^q \in \mathbb{Z}[q_1, \dots, q_{n-1}][x_1, \dots, x_n].$$

Quantum Schubert Polynomials

Quantum Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u^q \in \mathbb{Z}[q_1, \dots, q_{n-1}][x_1, \dots, x_n].$$

Plugging in 0's for q's results in \mathfrak{S}_u .

Quantum Schubert Polynomials

Quantum Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u^q \in \mathbb{Z}[q_1, \dots, q_{n-1}][x_1, \dots, x_n].$$

Plugging in 0's for q's results in \mathfrak{S}_u .

Definitions in terms of

- Schubert polynomials (SEM basis)
- Quantum bumpless pipe dreams (2024)

Quantum Schubert Polynomials

Quantum Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u^q \in \mathbb{Z}[q_1, \dots, q_{n-1}][x_1, \dots, x_n].$$

Quantum Schubert Polynomials

Quantum Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u^q \in \mathbb{Z}[q_1, \dots, q_{n-1}][x_1, \dots, x_n].$$

Example:

$$\mathfrak{S}^q_{s_k} = x_1 + x_2 + \dots + x_k$$

Quantum Schubert Polynomials

Quantum Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u^q \in \mathbb{Z}[q_1, \dots, q_{n-1}][x_1, \dots, x_n].$$

Example:

$$\mathfrak{S}^q_{s_k} = x_1 + x_2 + \dots + x_k$$

Example: Quantum Schur polynomials $s_{\lambda}^{q}(x_{1}, \dots, x_{k}) = \mathfrak{S}_{v(\lambda, k)}^{q}$.

Quantum Schubert Polynomials

Quantum Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u^q \in \mathbb{Z}[q_1, \dots, q_{n-1}][x_1, \dots, x_n].$$

Example:

$$\mathfrak{S}_{s_k}^q = x_1 + x_2 + \dots + x_k$$

Example:

$$\mathfrak{S}^q_{2413} = s^q_{2,1}(x_1,x_2) = x^2_1x_2 + x_1x^2_2 + q_1x_1 + q_1x_2 - q_2x_1$$

Quantum Schubert Polynomials

Quantum Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u^q \in \mathbb{Z}[q_1, \dots, q_{n-1}][x_1, \dots, x_n].$$

Quantum Schubert Polynomials

Quantum Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u^q \in \mathbb{Z}[q_1, \dots, q_{n-1}][x_1, \dots, x_n].$$

For geometric reasons, the expansion $\mathfrak{S}_u^q \star \mathfrak{S}_v^q = \sum_w c_{uv}^{w\mathbf{d}} q^{\mathbf{d}} \mathfrak{S}_w^q$ has coefficients $c_{uv}^{w\mathbf{d}} \in \mathbb{Z}_{>0}$.

Quantum Schubert Polynomials

Quantum Schubert polynomials are indexed by permutations:

$$u \in S_n \to \mathfrak{S}_u^q \in \mathbb{Z}[q_1, \dots, q_{n-1}][x_1, \dots, x_n].$$

For geometric reasons, the expansion $\mathfrak{S}_u^q \star \mathfrak{S}_v^q = \sum_w c_{uv}^{w\mathbf{d}} q^{\mathbf{d}} \mathfrak{S}_w^q$ has coefficients $c_{uv}^{w\mathbf{d}} \in \mathbb{Z}_{>0}$.

Open Problem: Find a combinatorial construction for the $c_{nn}^{w\mathbf{d}}$.

Quantum Monk's Formula

Quantum Monk's Formula: For $u \in S_n$ and $k \in [n-1]$,

$$\mathfrak{S}^q_u * \mathfrak{S}^q_{s_k} = \sum_{1 \leq a \leq k < b \leq n \atop \ell(us_{a,b}) = \ell(u) + 1} \mathfrak{S}^q_{us_{a,b}} + \sum_{1 \leq a \leq k < b \leq n \atop \ell(us_{a,b}) + 2(b-a) = \ell(u) + 1} \mathbf{q}_{\mathbf{a},\mathbf{b}} \mathfrak{S}^q_{us_{a,b}}$$

Quantum Monk's Formula

Quantum Monk's Formula: For $u \in S_n$ and $k \in [n-1]$,

$$\mathfrak{S}_{u}^{q} * \mathfrak{S}_{s_{k}}^{q} = \underbrace{\sum_{\substack{1 \leq a \leq k < b \leq n \\ \ell(us_{a,b}) = \ell(u) + 1}} \mathfrak{S}_{us_{a,b}}^{q} + \underbrace{\sum_{\substack{1 \leq a \leq k < b \leq n \\ \ell(us_{a,b}) + 2(b-a) = \ell(u) + 1}} \mathbf{q_{a,b}} \mathfrak{S}_{us_{a,b}}^{q}$$

Quantum Monk's Formula

Quantum Monk's Formula: For $u \in S_n$ and $k \in [n-1]$,

$$\mathfrak{S}_{u}^{q} * \mathfrak{S}_{s_{k}}^{q} = \underbrace{\sum_{\substack{1 \leq a \leq k < b \leq n \\ \ell(us_{a,b}) = \ell(u) + 1}} \mathfrak{S}_{us_{a,b}}^{q} + \underbrace{\sum_{\substack{1 \leq a \leq k < b \leq n \\ \ell(us_{a,b}) + 2(b-a) = \ell(u) + 1}} \mathbf{q_{a,b}} \mathfrak{S}_{us_{a,b}}^{q}$$

where
$$\mathbf{q_{a,b}} = q_a q_{a+1} \cdots q_{b-1}$$
.

Quantum k-Bruhat Order

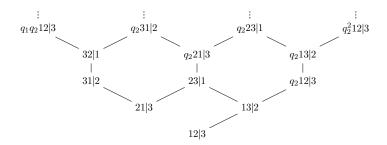
Quantum k-Bruhat Order

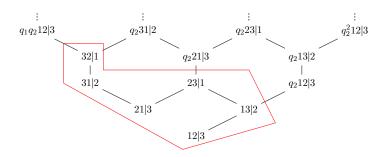
Quantum k-Bruhat Order: Poset on

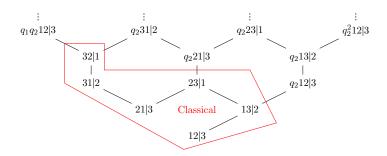
$$S_n[\mathbf{q}] = {\mathbf{q}^{\alpha} w \mid w \in S_n, \ \alpha \in \mathbb{N}^{n-1}}$$

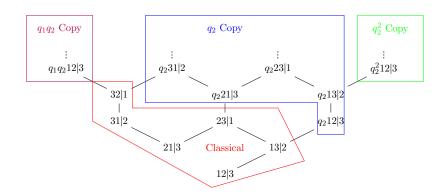
with relation \leq_k^q defined by covering relations:

- **1** $w \leq_k^q w s_{a,b}$ if $a \leq k < b$ and $\ell(w) + 1 = \ell(w s_{a,b})$;
- $w \leqslant_k^q \mathbf{q_{ab}} w s_{a,b}$ if $a \le k < b$ and $\ell(w) + 1 = \ell(w s_{a,b}) + 2(b-a)$;
- **3** extend q-multiplicatively: $u \leq_k^q v$ if and only if $\mathbf{q}^{\alpha} u \leq_k^q \mathbf{q}^{\alpha} v$ for $u, v \in S_n[\mathbf{q}]$ and any $\alpha \in \mathbb{N}^{n-1}$.









Structure Constants

Quantum Structure Constant Result

Structure Constants

Quantum Structure Constant Result

Theorem (Benedetti et al., 2024)

Let $u \in S_n$, $a \le k$, and $b \le n - k$. Then

$$\mathfrak{S}_{u}^{q} * s_{(b,1^{a-1})}^{q}(x_{1}, \dots, x_{k}) = \sum \binom{s(wu^{-1}) - 1}{ht(wu^{-1}) - a} q^{\alpha} \mathfrak{S}_{w}^{q}$$

where the sum is over all minimal intervals $[u, q^{\alpha}w]_k^q$ such that $l(q^{\alpha}w) - l(u) = a + b - 1$.

Structure Constants

Quantum Structure Constant Result

Theorem (Benedetti et al., 2024)

Let $u \in S_n$. Then

$$\mathfrak{S}_{u}^{q} * p_{r}^{q}(x_{1}, \dots, x_{k}) = \sum_{n} (-1)^{ht(wu^{-1})+1} q^{\alpha} \mathfrak{S}_{w}^{q}$$

where the sum is over all minimal intervals $[u, q^{\alpha}w]_k^q$ with $l(q^{\alpha}w) - l(u) = r$ such that wu^{-1} is a cycle.

Quantum k-Bruhat Order

Quantum k-Bruhat Order

Problem: Given $\mathbf{q}^{\alpha}u, \mathbf{q}^{\beta}w \in S_n[\mathbf{q}]$, establish a method to verify whether or not $\mathbf{q}^{\alpha}u <_k^q \mathbf{q}^{\beta}w$ utilizing only α, β, u, w , and no other elements of $S_n[\mathbf{q}]$.

Quantum k-Bruhat Order

Problem: Given $\mathbf{q}^{\alpha}u, \mathbf{q}^{\beta}w \in S_n[\mathbf{q}]$, establish a method to verify whether or not $\mathbf{q}^{\alpha}u <_k^q \mathbf{q}^{\beta}w$ utilizing only α, β, u, w , and no other elements of $S_n[\mathbf{q}]$.

Problem: Determine whether there exists a quantum Grassmannian Bruhat order.

Quantum k-Bruhat Order

Problem: Given $\mathbf{q}^{\alpha}u, \mathbf{q}^{\beta}w \in S_n[\mathbf{q}]$, establish a method to verify whether or not $\mathbf{q}^{\alpha}u <_k^q \mathbf{q}^{\beta}w$ utilizing only α, β, u, w , and no other elements of $S_n[\mathbf{q}]$.

Problem: Determine whether there exists a quantum Grassmannian Bruhat order.

Problem: Determine relations of quantum version of \mathcal{M}_n .

Quantum k-Bruhat Order

Problem: Given $\mathbf{q}^{\alpha}u, \mathbf{q}^{\beta}w \in S_n[\mathbf{q}]$, establish a method to verify whether or not $\mathbf{q}^{\alpha}u < q \mathbf{q}^{\beta}w$ utilizing only α, β, u, w , and no other elements of $S_n[\mathbf{q}]$.

Problem: Determine whether there exists a quantum Grassmannian Bruhat order.

Problem: Determine relations of quantum version of \mathcal{M}_n .

Quantum k-Bruhat Order

Problem: Given $\mathbf{q}^{\alpha}u, \mathbf{q}^{\beta}w \in S_n[\mathbf{q}]$, establish a method to verify whether or not $\mathbf{q}^{\alpha}u < q \mathbf{q}^{\beta}w$ utilizing only α, β, u, w , and no other elements of $S_n[\mathbf{q}]$.

Problem: Determine whether there exists a quantum Grassmannian Bruhat order.

Problem: Determine relations of quantum version of \mathcal{M}_n .

Monoid Structure

Let \mathcal{F}_n^q be the free monoid generated by the symbols

$$\{\mathbf{v}_{a,b} \mid a \neq b \text{ with } a,b \in [n]\} \cup \{\mathbf{0}\}.$$

Monoid Structure

Let \mathcal{F}_n^q be the free monoid generated by the symbols

$$\{\mathbf{v}_{a,b} \mid a \neq b \text{ with } a,b \in [n]\} \cup \{\mathbf{0}\}.$$

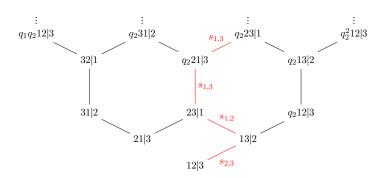
Define an action of \mathcal{F}_n^q on $S_n[\mathbf{q}] \cup \{0\}$ by $\mathbf{0} \bullet_k w = \mathbf{v}_{a,b} \bullet_k 0 = 0$,

$$\mathbf{v}_{a,b} \bullet_k w = \begin{cases} s_{a,b}w, & a < b, \ w \leqslant_k^q s_{a,b}w \\ \mathbf{q}_{\mathbf{ij}}s_{a,b}w, & a > b, \ w \leqslant_k^q \mathbf{q}_{\mathbf{ij}}s_{a,b}w \ (w(i) = a, u(j) = b) \\ 0, & otherwise, \end{cases}$$

and extend to $S_n[\mathbf{q}] \cup \{\mathbf{0}\}$ by setting $\mathbf{v}_{a,b} \bullet_k (\mathbf{q}^{\alpha} u) = \mathbf{q}^{\alpha} \mathbf{v}_{a,b} \bullet_k u$.

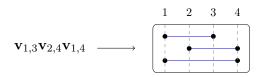
$$\mathbf{v}_{1,3}\mathbf{v}_{3,1}\mathbf{v}_{1,2}\mathbf{v}_{2,3} \bullet_2 123 = q_2 231$$

$$\mathbf{v}_{1,3}\mathbf{v}_{3,1}\mathbf{v}_{1,2}\mathbf{v}_{2,3} \bullet_2 123 = q_2 231$$

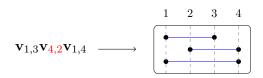


Monoid Structure

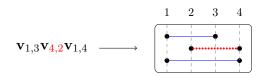
Monoid Structure



Monoid Structure

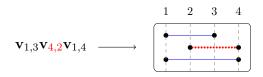


Monoid Structure



Monoid Structure

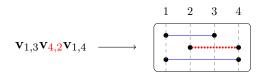
We refer to generators $\mathbf{v}_{a,b}$ with a < b as classical, and those with a > b as quantum.



Elements $\mathbf{u}, \mathbf{v} \in \mathcal{F}_n^q$ are *equivalent*, denoted $\mathbf{v} \equiv \mathbf{u}$, if and only if $\mathbf{v} \bullet_k w = \mathbf{u} \bullet_k w$ for all $w \in S_n$ and all $k \in [n-1]$.

Monoid Structure

We refer to generators $\mathbf{v}_{a,b}$ with a < b as classical, and those with a > b as quantum.



Elements $\mathbf{u}, \mathbf{v} \in \mathcal{F}_n^q$ are *equivalent*, denoted $\mathbf{v} \equiv \mathbf{u}$, if and only if $\mathbf{v} \bullet_k w = \mathbf{u} \bullet_k w$ for all $w \in S_n$ and all $k \in [n-1]$.

Problem: Characterize the set of equivalences $\mathbf{u} \equiv \mathbf{v}$ and $\mathbf{u} \equiv \mathbf{0}$ satisfied by the elements of \mathcal{F}_n^q .

Monoid Relations

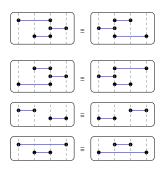
Classical Equivalences

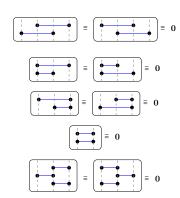
Equivalences from classical case carry over.

Monoid Relations

Classical Equivalences

Equivalences from classical case carry over.





Flattening

Flattening

Define
$$Supp(\mathbf{v}_{a_1,b_1}\cdots\mathbf{v}_{a_n,b_n})=\{a_1,b_1,\cdots,a_n,b_n\}.$$

Flattening

Define
$$Supp(\mathbf{v}_{a_1,b_1}\cdots\mathbf{v}_{a_n,b_n}) = \{a_1,b_1,\cdots,a_n,b_n\}.$$

Lemma (Colmenarejo-M., 2025+)

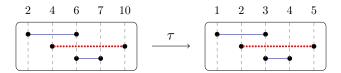
$$\mathbf{v}_1 \equiv \mathbf{v}_2 \not\equiv 0 \text{ implies } Supp(\mathbf{v}_1) = Supp(\mathbf{v}_2).$$

Flattening

Define
$$Supp(\mathbf{v}_{a_1,b_1}\cdots\mathbf{v}_{a_n,b_n})=\{a_1,b_1,\cdots,a_n,b_n\}.$$

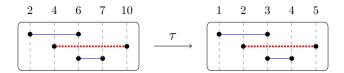
Flattening

Define $Supp(\mathbf{v}_{a_1,b_1} \cdots \mathbf{v}_{a_n,b_n}) = \{a_1, b_1, \cdots, a_n, b_n\}.$



Flattening

Define $Supp(\mathbf{v}_{a_1,b_1}\cdots\mathbf{v}_{a_n,b_n}) = \{a_1,b_1,\cdots,a_n,b_n\}.$



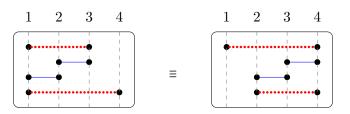
- $\mathbf{0} \ \mathbf{v}_1 \equiv \mathbf{v}_2 \ if \ and \ only \ if \ \tau(\mathbf{v}_1) \equiv \tau(\mathbf{v}_2).$
- $\mathbf{v}_1 \equiv \mathbf{0}$ if and only if $\tau(\mathbf{v}_1) \equiv \mathbf{0}$.

Flattening

- $\mathbf{v}_1 \equiv \mathbf{v}_2$ if and only if $\tau(\mathbf{v}_1) \equiv \tau(\mathbf{v}_2)$.
- $\mathbf{v}_1 \equiv 0 \text{ if and only if } \tau(\mathbf{v}_1) \equiv 0.$

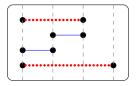
Flattening

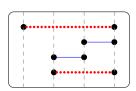
- $\mathbf{0}$ $\mathbf{v}_1 \equiv \mathbf{v}_2$ if and only if $\tau(\mathbf{v}_1) \equiv \tau(\mathbf{v}_2)$.
- $\mathbf{v}_1 \equiv 0$ if and only if $\tau(\mathbf{v}_1) \equiv 0$.



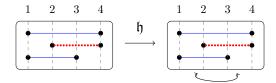
Flattening

- $\mathbf{0}$ $\mathbf{v}_1 \equiv \mathbf{v}_2$ if and only if $\tau(\mathbf{v}_1) \equiv \tau(\mathbf{v}_2)$.
- $\mathbf{v}_1 \equiv 0 \text{ if and only if } \tau(\mathbf{v}_1) \equiv 0.$

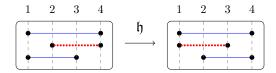




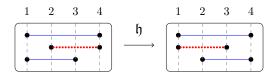
Horizontal Flip



Horizontal Flip

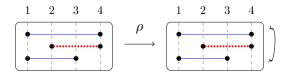


Horizontal Flip

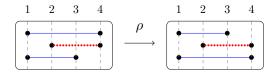


- $\mathbf{v}_1 \equiv \mathbf{v}_2$ if and only if $\mathfrak{h}(\mathbf{v}_1) \equiv \mathfrak{h}(\mathbf{v}_2)$.
- $\mathbf{v}_1 \equiv \mathbf{0}$ if and only if $\mathfrak{h}(\mathbf{v}_1) \equiv \mathbf{0}$.

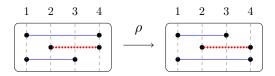
Vertical Flip



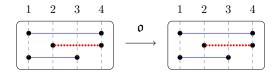
Vertical Flip

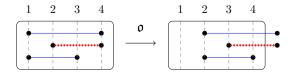


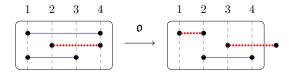
Vertical Flip

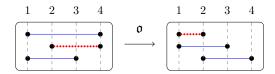


- **1** $\mathbf{v}_1 \equiv \mathbf{v}_2$ if and only if $\rho(\mathbf{v}_1) \equiv \rho(\mathbf{v}_2)$.
- $\mathbf{v}_1 \equiv \mathbf{0}$ if and only if $\rho(\mathbf{v}_1) \equiv \mathbf{0}$.

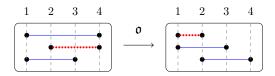








Cyclic Shift



- $\mathbf{0}$ $\mathbf{v}_1 \equiv \mathbf{v}_2$ if and only if $\mathfrak{o}(\mathbf{v}_1) \equiv \mathfrak{o}(\mathbf{v}_2)$.
- $\mathbf{v}_1 \equiv \mathbf{0}$ if and only if $\mathfrak{o}(\mathbf{v}_1) \equiv \mathbf{0}$.

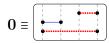
Characterizing Low Order Zero Equivalences

• Consider only elements with first generator quantum and indices as small as possible.

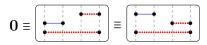
- Consider only elements with first generator quantum and indices as small as possible.
- Determine which are equivalent to **0**.

- Consider only elements with first generator quantum and indices as small as possible.
- Determine which are equivalent to **0**.
- Throw out any resulting from a lower order zero equivalence.

- Consider only elements with first generator quantum and indices as small as possible.
- Determine which are equivalent to **0**.
- Throw out any resulting from a lower order zero equivalence.



- Consider only elements with first generator quantum and indices as small as possible.
- Determine which are equivalent to **0**.
- Throw out any resulting from a lower order zero equivalence.

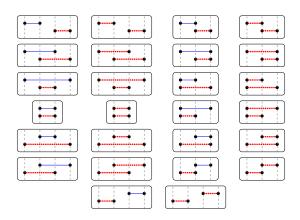


- Consider only elements with first generator quantum and indices as small as possible.
- Determine which are equivalent to **0**.
- Throw out any resulting from a lower order zero equivalence.

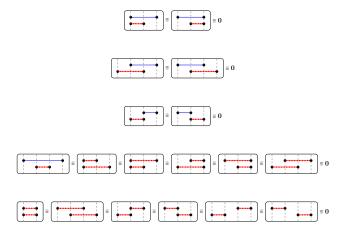
- Consider only elements with first generator quantum and indices as small as possible.
- Determine which are equivalent to **0**.
- Throw out any resulting from a lower order zero equivalence.

- Consider only elements with first generator quantum and indices as small as possible.
- Determine which are equivalent to **0**.
- Throw out any resulting from a lower order zero equivalence.
- Apply equivalence preserving transformations to those found to generate all of fixed order.

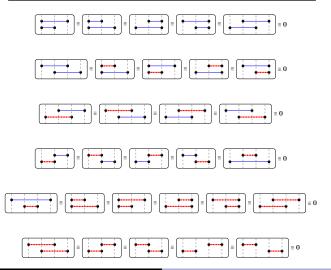
Order 2 Zero



Order 2 Zero



Order 2 Zero



Characterizing Low Order Nonzero Equivalences

• Group up all nonzero elements based on support and number of quantum generators.

- Group up all nonzero elements based on support and number of quantum generators.
- Within each group, determine which pairs of elements are equivalent.

Characterizing Low Order Nonzero Equivalences

- Group up all nonzero elements based on support and number of quantum generators.
- Within each group, determine which pairs of elements are equivalent.

Theorem (Colmenarejo-M., 2025+)

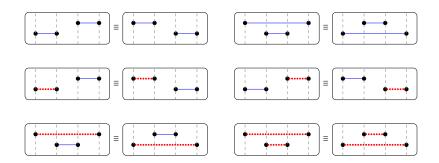
Suppose that \mathbf{v}_1 and \mathbf{v}_2 satisfy $S = Supp(\mathbf{v}_1) = Supp(\mathbf{v}_2)$ with N = |S|. Then $\mathbf{v}_1 \equiv \mathbf{v}_2$ if and only if $flat(\mathbf{v}_1) \bullet_k u = flat(\mathbf{v}_2) \bullet_k u$ for all $u \in S_N$ and $k \in [N-1]$.

- Group up all nonzero elements based on support and number of quantum generators.
- Within each group, determine which pairs of elements are equivalent.

- Group up all nonzero elements based on support and number of quantum generators.
- Within each group, determine which pairs of elements are equivalent.
- Throw out any which are a consequence of an equivalence of smaller order.

Order 2 Nonzero

Order 2 Nonzero Equivalences



Order 2 Equivalences

Order 2 Equivalences

Theorem (Colmenarejo-M., 2025+)

All order 2 equivalences can be formed from the classical ones by applying sequences of equivalence preserving transformations.

Order 2 Equivalences

Order 2 Equivalences

Theorem (Colmenarejo-M., 2025+)

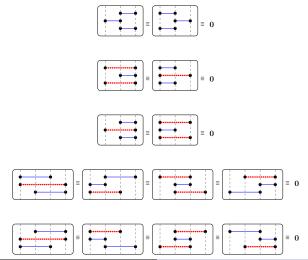
All order 2 equivalences can be formed from the classical ones by applying sequences of equivalence preserving transformations.

Theorem (Colmenarejo-M., 2025+)

Suppose $\mathbf{v} = \mathbf{v}_{a_1,b_1} \cdots \mathbf{v}_{a_n,b_n}$ with $|Supp(\mathbf{v})| = 2n-1$ or 2n. If $\mathbf{v} \equiv \mathbf{0}$, then the equivalence is a result of an order 2 zero equivalence.

Order 3 Zero

Order 3 Zero Equivalences



Order 3 Zero

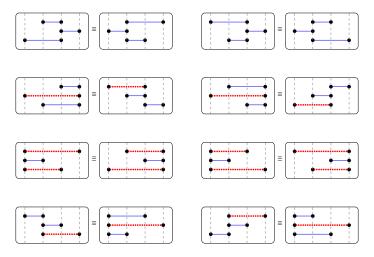
Order 3 Zero Equivalences

Theorem (Colmenarejo-M., 2025+)

All order 3 zero equivalences can be formed from the classical ones by applying sequences of equivalence preserving transformations.

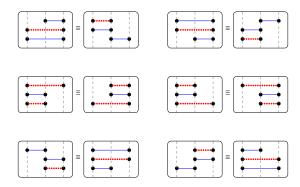
Order 3 Nonzero

Order 3 Nonzero Equivalences



Order 3 Nonzero

Order 3 Nonzero Equivalences



Order 4 Zero

Order 4 Zero Equivalences

Order 4 Zero

Order 4 Zero Equivalences

Theorem (Colmenarejo-M., 2025+)

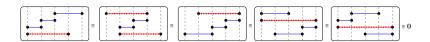
Suppose $\mathbf{v} = \mathbf{v}_{a_1,b_1} \cdots \mathbf{v}_{a_n,b_n}$ with $|Supp(\mathbf{v})| = 2n - 2$, 2n - 1, or 2n. If $\mathbf{v} \equiv \mathbf{0}$, then the equivalence is a result of an order 2 or 3 zero equivalence.

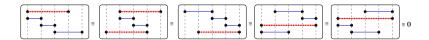
Order 4 Zero

Order 4 Zero Equivalences

Theorem (Colmenarejo-M., 2025+)

Suppose $\mathbf{v} = \mathbf{v}_{a_1,b_1} \cdots \mathbf{v}_{a_n,b_n}$ with $|Supp(\mathbf{v})| = 2n - 2$, 2n - 1, or 2n. If $\mathbf{v} \equiv \mathbf{0}$, then the equivalence is a result of an order 2 or 3 zero equivalence.



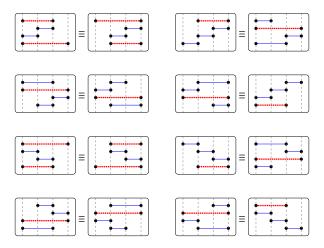


Order 4 Nonzero

Order 4 Nonzero Equivalences

Order 4 Nonzero

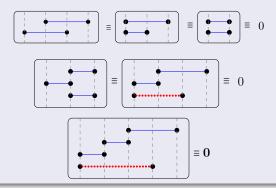
Order 4 Nonzero Equivalences



Low Order

Theorem (Colmenarejo-M., 2025+)

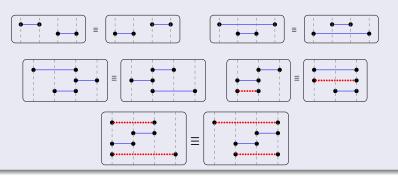
The order 2, 3, and 4 zero equivalences are those of the following forms along with those related to them by sequences of equivalence preserving operators.



Low Order

Theorem (Colmenarejo-M., 2025+)

The order 2, 3, and 4 nonzero equivalences are those of the following forms along with those related to them by sequences of equivalence preserving transformations.

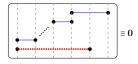


Arbitrary Order Equivalences

Equivalences of Arbitrary Order

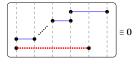
Arbitrary Order Equivalences

Equivalences of Arbitrary Order



Arbitrary Order Equivalences

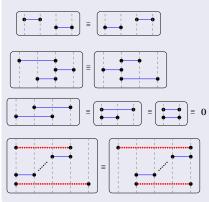
Equivalences of Arbitrary Order

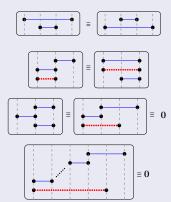


Results

Theorem (Colmenarejo-M., 2025+)

The quantum monoid satisfies the following equivalences along along with those related to them by sequences of equivalence preserving transformations.

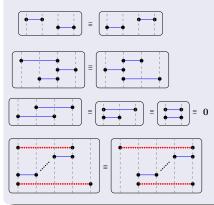


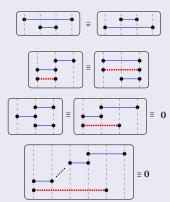


Results

Conjecture (Colmenarejo-M., 2025+)

The quantum monoid is defined by the following equivalences along with those related to them by sequences of equivalence preserving transformations.





Future Work

Future Work

Problem: Given $\mathbf{q}^{\alpha}u, \mathbf{q}^{\beta}w \in S_n[\mathbf{q}]$, establish a method to verify whether or not $\mathbf{q}^{\alpha}u <_k^q \mathbf{q}^{\beta}w$ utilizing only α, β, u, w , and no other elements of $S_n[\mathbf{q}]$.

Future Work

Problem: Given $\mathbf{q}^{\alpha}u, \mathbf{q}^{\beta}w \in S_n[\mathbf{q}]$, establish a method to verify whether or not $\mathbf{q}^{\alpha}u <_k^q \mathbf{q}^{\beta}w$ utilizing only α, β, u, w , and no other elements of $S_n[\mathbf{q}]$.

Problem: Determine whether there exists a quantum Grassmannian Bruhat order.

Future Work

Problem: Given $\mathbf{q}^{\alpha}u, \mathbf{q}^{\beta}w \in S_n[\mathbf{q}]$, establish a method to verify whether or not $\mathbf{q}^{\alpha}u <_k^q \mathbf{q}^{\beta}w$ utilizing only α, β, u, w , and no other elements of $S_n[\mathbf{q}]$.

Problem: Determine whether there exists a quantum Grassmannian Bruhat order.

Problem: Complete characterization of equivalences defining the quantum version of \mathcal{M}_n .

Future Work

Problem: Given $\mathbf{q}^{\alpha}u, \mathbf{q}^{\beta}w \in S_n[\mathbf{q}]$, establish a method to verify whether or not $\mathbf{q}^{\alpha}u <_k^q \mathbf{q}^{\beta}w$ utilizing only α, β, u, w , and no other elements of $S_n[\mathbf{q}]$.

Problem: Determine whether there exists a quantum Grassmannian Bruhat order.

Problem: Complete characterization of equivalences defining the quantum version of \mathcal{M}_n .

Problem: Determine structure constant consequences.