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toric ideals and varieties
ALGEBRA. Take I ⊆ R = C[x1, . . . , xn] an ideal. I is a binomial ideal if its has a gen. set of
binomials f = xu11 · · · xunn − xv11 · · · xvn1 . I is prime if for fg ∈ I one has f ∈ I or g ∈ I.

Ideal I ⊆ R is toric if one of the equivalent properties holds:
▶ I is a prime binomial ideal, or
▶ I is the kernel of a monomial map R[x1, . . . , xn] → R[θ±1

1 , . . . , θ±1
m ].

ψ : C[x1, x2, x3] → C[θ1, θ2], x1 7→ θ21 , x2 7→ θ1θ2, x3 7→ θ22

ker ψ = ⟨x1x3 − x22 ⟩

GEOMETRY. V (I) = {x ∈ Cn | f1(x) = . . . = fn(x) = 0} the variety of I. Toric varieties are
isomorphic to solutions set to toric ideals.

An ideal I may not be toric and its V (I) may be toric. In this case, a linear change of
variables is useful for reveling the toric structure of V (I).

Take I = ⟨x1x3 − x22 − x1x2⟩ and x1 = p1, x2 = p2 − p1, x3 = p3 − p2. Then,

I = ⟨p1(p3 − p2)− (p2 − p1)
2 − p1(p2 − p1)⟩ = ⟨p1p3 − p2

2⟩ is toric

Question 1: Why do we prefer toric structures? optimization over a toric model

Question 2: Given I not a toric ideal, when can we tell that there is a linear change of
variables under which I is toric? symmetry Lie groups
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Brownian motion tree models
T = a phylogenetic tree with root 0 and other leaves labeled 1, 2, . . . ,n.

lca(i, j) = the least common ancestor of leaves i and j.

tv parameter for non-root node v .

The Brownian motion tree model for T is the set MT = {Nn(0,Σ) | Σ ∈ LT ∩ PDn},
where

LT = {Σ ∈ Symn | σij = σkl if lca(i, j) = lca(k, l)}.

L−1
T ∩ PDn is the set of concentration matrices for MT .

0

21 3

4

5

LT = {Σ =

t1 t4 t5
t4 t2 t5
t5 t5 t3

 | t1 · · · , t5 ∈ R}

L−1
T ={K ∈ Symn|K−1 ∈ LT }

={
k11 k12 k13
k12 k22 k23
k13 k23 k33

 ∈ R3×3 such that

k12k23 − k13k22 = −(k11k23 − k12k13)}

IT = ⟨k11k23 − k12k13 + k12k23 − k13k22⟩ is the vanishing ideal of MT .

IT toric under the reduced graph Laplacian.
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Genetic Drift

Brownian motion models the evolution of continuous traits under genetic drift, which means
totally random, non-selective pressure.
→ provide evidence for your model by showing it performs better than a genetic drift
model.

’Apapane
(short beak)

’I’iwi
(long beak)

Photos by Daniel Murphy, Macaulay Library at the Cornell Lab of Ornithology (’Apapane) and Jim Denny,
ABC’s Bird Library (’I’iwi).



Brownian Motion along a tree
* A Brownian motion is a random process that models the movement of a particle subject
to a large number of small forces. At each time step, the particle moves according to
N (0, σ2).
Each branch has an independent Brownian motion.

x z

v Yx ∼Yv + Bdist(x ,v)

Yz ∼Yv + Bdist(z,v)

The Brownian motion at time t is Bt ∼ N (0, tσ2).

The random variables at the leaves represent averaged continuous trait values (average
beak length, gene expression data) for present day species.

Covariance is constrained by common ancestry in the tree:

lcaT (i, j) = lcaT (k, l) implies cov(Yi ,Yj ) = cov(Yk ,Yl )

*Felsenstein “Maximum-likelihood estimation of evolutionary trees from continuous
characters” (1973).



BMT models are toric and a monomial parametrization
0

21 3

4

5

θ0

θ4

θ1 θ2

θ3

L−1
T = {

k11 k12 k13
k12 k22 k23
k13 k23 k33

 ∈ R3×3 s.t. k11k23 − k12k13 + k12k23 − k13k22 = 0}

Applying the reduced graph Laplacian over Kn+1 transform:

K =

p01 + p12 + p13 −p12 −p13
−p12 p02 + p12 + p23 −p23
−p13 −p23 p03 + p13 + p23


gives k11k23 − k12k13 + k12k23 − k13k22 = (p01 + p12 + p13)(−p23)− . . . = p01p23 − p02p13

Theorem [Sturmfels-Uhler-Zwiernik, 2020] I is toric under the reduced Laplacian

pij = −kij for i, j > 0, and
p0i = ∑n

j=1 kij for 1 ≤ i ≤ n.

It is generated by pikpjℓ − piℓpjk , where {i, j} and {k, ℓ} are cherries in the induced
4-leaf subtree on any quadruple i, j, k, ℓ ∈ {0, . . . ,n}.

▶ θe parameter to (undirected) edge e in T
▶ i↭ j set of edges in T in the path from vertex i to vertex j
monomial (path) map φT : C[pij | 0 ≤ i < j ≤ n] → C[θe | e ∈ Edge(T )], pij 7→ ∏

e∈i↭j
θe.

Theorem [Boege-Coons-Eur-M-Rottger, 2021] ker φT = IT in the variables pij .
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in the θ-s

0
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θ0

θ4

θ1 θ2

θ3

pij = ∏
e∈i⇝j

θe

K =

p01 + p12 + p13 −p12 −p13
−p12 p02 + p12 + p23 −p23
−p13 −p23 p03 + p13 + p23



=

θ0θ4θ1 + θ1θ2 + θ1θ4θ3 −θ1θ2 −θ1θ4θ3
−θ1θ2 θ4(θ0θ2 + θ2θ3) + θ1θ2 −θ4θ2θ3
−θ4θ1θ3 −θ4θ2θ3 θ4(θ1θ3 + θ2θ3) + θ0θ3



So the model MT and any optimization problem on MT can be written in terms of the θ-s.



maximum likelihood estimate

Fix T . Given i.i.d. samples U1, . . . ,Um in Rn, find K ∈ L−1
T (or Σ ∈ LT ) that best fit data U.

The maximum likelihood estimate (MLE) for data U1, . . . ,Um in MT is the maximizer
of the log-likelihood function

ℓ(K |S) = log det(K )− trace(SK ), where S =
1
m

m
∑
i=1

UiUT
i (in variables kij or pij , or θe)

the MLE is found among solutions to ∂ℓ

∂θe
= 0 for e ∈ E(T ) in L−1

T with det(K (θ)) ̸= 0

the nr. of solutions measures the complexity of finding MLE

The ML degree of MT is the number of complex critical points K ∈ L−1
T of ℓ(K |S)

with det(K ) ̸= 0, counted with multiplicity, for generic S.
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equivalence up to undirected tree topology and star trees

Theorem 1 [Coons, Cox, M, Nometa, 2024]: The ML degree of a BMT
model depends only on the undirected tree topology.

0
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7

1

43 0 2

6

7

5
max
K (θ)

log detK (θ)− tr(SK (θ))

s.t. detK (θ) ̸= 0.

Proof ingredients: path parametrization, ML degree is invariant under generic S,

ℓT (θ|S) = ℓT ′ (θ|S ′) for S ′ = A · S where A is some invertible matrix

MLE can be recovered: mle(MT , S) = mle(MT ′ , S ′) for S and S ′ = A · S





ML degree of the star tree

0

· · ·1 n

n + 1

θ1 θn

Theorem 2 [Coons, Cox, M, Nometa, 2024]: The
ML degree of the BMTM with star tree structure
on n+ 1 leaves is 2n+1 − 2n− 3.

Previously conjectured by Améndola and Zwiernik (2020)

Sketch of the proof.
1. ℓ(θ | S) = log(θ0 · · · θn

(
θ0 + · · ·+ θn

)n−1)− ∑
i<j

cij θi θj and θ0 , . . . , θn ,
n
∑
i=0

θi ̸= 0

2. Take partial derivatives

∂ℓ(θ | S)
∂θi

=
1
θi

+
n− 1

θ0 + θ1 + · · ·+ θn
−

n
∑
j=0
j ̸=i

cij θj , for i = 0, . . . ,n,

3. Set ψ = (θ0 + · · ·+ θn)−1, clear denominators, and homogenize:

˜∂ℓS
∂θi

= z2 + θi

(n− 1)ψ − ∑
j ̸=i

cij θj

 for i = 0, . . . ,n, and f̃ψ = z2 − ψ

( n
∑
i=0

θi

)

Bezout: 2n+2 solutions - points at infinity = 2n+2 − (4n+ 6) solutions in θ.

4. Solutions in pij (or kij ) are
2n+2 − (4n+ 6)

21
= 2n+1 − 2n− 3.



Questions: ML degree of non-star trees? How many of the critical points are real?
Compute MLE, potentially asymptotically? Other optimization tasks on a BMT model...

Theorem 3 [Boege-Coons-Eur-M-Rottger, 2021]: The reciprocal (dual) ML-degree is

rmldeg(MT ) = ∏
v∈Int(T )

(2deg(v)−1 − deg(v)− 2).

tree topology deg rmldeg mldeg tree topology deg rmldeg mldeg

93 44 259 95 26 53

90 16 221 51 4 83

77 16 181 47 11 81

61 4 115 42 4 63

60 11 101 42 1 61

61 4 99 53 1 61



Polyhedral geometry and generalizations of BMT models

PT = conv{ci↔j | i, j ∈ Lv(T )} ⊆ RE(T ), where ci↔j is the edge indicator vector of i ↔ j.

Theorem 4 [Goel, M, Ribot, 2025]: Given a tree T = (V , E) with |V | > 3 and no
internal nodes of degree 2, PT has dimension |E |−1andaminimalH-representation

x{u,v} ≥ 0 for all {u, v} ∈ E,with deg(u), deg(v) ̸= 3,
−x{u,v} + ∑

w∈N(u)\{v}
x{u,w} ≥ 0 for all u ∈ (T ) and all v ∈ Neighb(u),

∑
{u,v}∈E(T )

x{u,v} = 2.

0

21 3 4

5

6

7 t1 t5 0 t7
t5 t1 0 t7
0 0 t3 t7
t7 t7 t7 t4


1

2

3 4

Theorem 4 [Cardwell, M, Ribot, 2024]: Let T be a tree with BMT derived graph G.
If G is a vertex-regular block graph, then L−1

T is toric under the derived Laplacian
transformation with vanishing of IT + IG + IΛ. Monomial parametrization provided.



detecting non-toricness and an algorithm

Let C[x ] = C[x1, . . . , xn]. Determine the group action of GLn(C) ↷ C[x ] by

for g =


g1
...
gn

 ∈ GLn(C),p ∈ C[x ], g · f (x1, . . . , xn) = f (g1 · x , . . . ,gn · x).

GI = {g ∈ GLn(C) | g · f ∈ I, ∀f ∈ I} is the symmetry Lie group of I.

Let gI be its Lie algebra.

Theorem [M-Pal, 2023]: Let I ⊆ C[x ] be a prime homogeneous ideal with symmetry
Lie group GI . If dim(V (I)) > dim(GI ) = dim(gI ), then I is not toric under any linear
change of variables.

Algorithm computing the symmetry Lie algebra of a prime homogeneous ideal provided.

We use it to provide first cases of non-toric one-staged tree models and colored Gaussian
graphical models.

Follow up work with a better algorithm: Thomas Kahle and Julian Vill. Efficiently deciding if
an ideal is toric after a linear coordinate change. 2024.

Thank you!
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