Enriched toric $[\vec{D}]$ -partitions

Jinting Liang

Michigan State University

December 7, 2022

Overview

1 Background

- Permutations and permutation statistics: Linear vs Cyclic
- (Cyclic) Quasi-symmetric functions: QSym vs cQSym
- 2 P-partitions
- 3 Enriched *P*-partitions
- 4 Toric $[\vec{D}]$ -partitions
 - DAGs
 - Toric DAGs
 - Toric $[\vec{D}]$ -partitions
- 5 Enriched toric $[\vec{D}]$ -partitions
 - Enriched toric $[\vec{D}]$ -partitions
 - Cyclic peak functions and algebra of cyclic peaks

Outline

Cyclic Permutations

• Let \mathfrak{S}_n denote the symmetric group of linear permutations $\pi = \pi_1 \pi_2 \dots \pi_n$ on the set $\{1, 2, \dots, n\}$. The corresponding cyclic permutation is an equivalence class of linear permutations under rotation.

$$[\pi] = \{\pi_1 \pi_2 \dots \pi_n, \ \pi_2 \dots \pi_n \pi_1, \ \dots, \ \pi_n \pi_1 \dots \pi_{n-1}\}.$$

Cyclic Permutations

• Let \mathfrak{S}_n denote the symmetric group of linear permutations $\pi = \pi_1 \pi_2 \dots \pi_n$ on the set $\{1, 2, \dots, n\}$. The corresponding cyclic permutation is an equivalence class of linear permutations under rotation.

$$[\pi] = \{\pi_1 \pi_2 \ldots \pi_n, \ \pi_2 \ldots \pi_n \pi_1, \ \ldots, \ \pi_n \pi_1 \ldots \pi_{n-1}\}.$$

• Ex: For example, $[1423] = \{1423, 4231, 2314, 3142\} = [3142].$

Linear permutation statistics: Des and Pk

Define the descent set of $\pi \in \mathfrak{S}_n$

$$\mathsf{Des}\,\pi = \{i \mid \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

and the descent number des $\pi = |\text{Des }\pi|$. The peak set Pk is defined by

$$\mathsf{Pk}\,\pi = \{i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\} \subseteq [2, n-1].$$

The peak number is $pk \pi := |Pk \pi|$.

- Des $\pi = \{1, 3\}$
- $Pk \pi = \{3\}$

Two more linear permutation statistics: cDes and cPk

The cyclic descent set cDes of a linear permutation π is defined by

cDes $\pi = \{i \mid \pi_i > \pi_{i+1} \text{ where the subscripts are taken modulo } n\} \subseteq [n],$

and the cyclic descent number cdes $\pi = | cDes \pi |$. The cyclic peak set cPk is defined by

 $cPk \pi = \{i \mid \pi_{i-1} < \pi_i > \pi_{i+1} \text{ where the subscripts are taken modulo } n\} \subseteq [n],$

The cyclic peak number is $cpk \pi := |cPk \pi|$.

• cDes $\pi = \{1, 3, 5\}$, cdes $\pi = 3$

• cPk
$$\pi = \{3, 5\}, \, cpk \, \pi = 2$$

Cyclic permutation statistics: cDes and cPk

Define the cyclic descent set of a cyclic permutation

$$\mathsf{cDes}[\pi] = \{\{\mathsf{cDes}\,\sigma \mid \sigma \in [\pi]\}\},\$$

where the double curly brackets denote a multiset. And the cyclic descent number $cdes[\pi] = cdes \sigma$ for any $\sigma \in [\pi]$. The cyclic peak set cPk is defined by

 $\mathsf{cPk}[\pi] = \{\{\mathsf{cPk}\,\sigma \mid \sigma \in [\pi]\}\}.$

The cyclic peak number is $cpk[\pi] := cpk\sigma$ for any $\sigma \in [\pi]$.

• [21534] = {21534, 42153, 34215, 53421, 15342}

• cDes[
$$\pi$$
] = {{ {1,3,5}, {1,2,4}, {2,3,5}, {1,3,4}, {2,4,5} }}

• $cdes[\pi] = 3$

Jinting Liang (MSU)

Enriched toric $[\vec{D}]$ -partitions

QSym: Quasi-symmetric Functions

For a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]]$, we use $[x_{i_1}^{a_1} x_{i_2}^{a_2} \ldots x_{i_s}^{a_s}] f$ to denote the coefficient of monomial $x_{i_1}^{a_1} x_{i_2}^{a_2} \ldots x_{i_s}^{a_s}$ in the expression of f. And the degree of a monomial $x_{i_1}^{a_1} x_{i_2}^{a_2} \ldots x_{i_s}^{a_s}$ is defined by $a_1 + a_2 + \cdots + a_s$.

QSym: Quasi-symmetric Functions

Definition

A quasi-symmetric function is a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]]$ such that for any sequence of positive integers $a = (a_1, a_2, \ldots, a_s)$, and two increasing sequences $i_1 < i_2 < \cdots < i_s$ and $j_1 < j_2 < \cdots < j_s$ of positive integers,

$$[x_{i_1}^{a_1}x_{i_2}^{a_2}\ldots x_{i_s}^{a_s}]f = [x_{j_1}^{a_1}x_{j_2}^{a_2}\ldots x_{j_s}^{a_s}]f.$$

Let $QSym_n$ be the set of all quasi-symmetric functions which are homogeneous of degree n, and $QSym = \bigoplus_{n \ge 0} QSym_n$.

QSym: Quasi-symmetric Functions

Definition

A quasi-symmetric function is a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]]$ such that for any sequence of positive integers $a = (a_1, a_2, \ldots, a_s)$, and two increasing sequences $i_1 < i_2 < \cdots < i_s$ and $j_1 < j_2 < \cdots < j_s$ of positive integers,

$$[x_{i_1}^{a_1}x_{i_2}^{a_2}\ldots x_{i_s}^{a_s}]f = [x_{j_1}^{a_1}x_{j_2}^{a_2}\ldots x_{j_s}^{a_s}]f.$$

Let $QSym_n$ be the set of all quasi-symmetric functions which are homogeneous of degree n, and $QSym = \bigoplus_{n \ge 0} QSym_n$.

- **Ex:** $5x_1^7x_2 + 5x_1^7x_3 + 5x_2^7x_3 + \cdots$
- Note that a symmetric function must be quasi-symmetric, but the converse is false, i.e.,

$$\mathsf{Sym} \subsetneq \mathsf{QSym}$$
 .

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \vDash n$, the associated monomial quasi-symmetric function indexed by α is

$$M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_s} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_s}^{\alpha_s}.$$

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \vDash n$, the associated monomial quasi-symmetric function indexed by α is

$$M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_s} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_s}^{\alpha_s}.$$

• $\{M_{\alpha}\}_{\alpha \vDash n}$ form a basis of $QSym_n$

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \vDash n$, the associated monomial quasi-symmetric function indexed by α is

$$M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_s} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_s}^{\alpha_s}.$$

- $\{M_{\alpha}\}_{\alpha \models n}$ form a basis of $QSym_n$
- There is a natural bijection between subsets of [n-1] and compositions of n.

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \vDash n$, the associated monomial quasi-symmetric function indexed by α is

$$\mathcal{M}_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_s} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_s}^{\alpha_s}.$$

- $\{M_{\alpha}\}_{\alpha \vDash n}$ form a basis of $QSym_n$
- There is a natural bijection between subsets of [n-1] and compositions of n. The map $\Phi: 2^{[n-1]} \to \text{Comp}_n$ is defined by

$$\Phi(E) := (e_1 - e_0, e_2 - e_1, \dots, e_k - e_{k-1}, e_{k+1} - e_k)$$

for any given $E = \{e_1 < e_2 < \cdots < e_k\} \subseteq [n-1]$ with $e_0 = 0$ and $e_{k+1} = n$.

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \vDash n$, the associated monomial quasi-symmetric function indexed by α is

$$M_{\alpha} = \sum_{i_1 < i_2 < \cdots < i_s} x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_s}^{\alpha_s}.$$

- $\{M_{\alpha}\}_{\alpha \models n}$ form a basis of $QSym_n$
- There is a natural bijection between subsets of [n-1] and compositions of n. We can also index monomials by subsets of [n-1].

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \vDash n$, the associated monomial quasi-symmetric function indexed by α is _____

$$\mathcal{M}_{lpha} = \sum_{i_1 < i_2 < \cdots < i_s} x_{i_1}^{lpha_1} x_{i_2}^{lpha_2} \dots x_{i_s}^{lpha_s}.$$

- $\{M_{\alpha}\}_{\alpha \vDash n}$ form a basis of $QSym_n$
- There is a natural bijection between subsets of [n-1] and compositions of n. We can also index monomials by subsets of [n-1].

Another important basis of QSym: fundamental quasi-symmetric functions. The relation between monomials and fundamentals is simple:

$$F_{n,E} = \sum_{E \subseteq L \subseteq [n-1]} M_{n,L}.$$

cQSym: Cyclic Quasi-symmetric Functions

Definition

A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]]$ such that for any sequence of positive integers $a = (a_1, a_2, \ldots, a_s)$, a cyclic shift $(a'_1, a'_2, \ldots, a'_s)$ of a, and two increasing sequences $i_1 < i_2 < \cdots < i_s$ and $j_1 < j_2 < \cdots < j_s$ of positive integers,

$$[x_{i_1}^{a_1}x_{i_2}^{a_2}\ldots x_{i_s}^{a_s}]f = [x_{j_1}^{a_1'}x_{j_2}^{a_2'}\ldots x_{j_s}^{a_s'}]f.$$

Let $cQSym_n$ be the set of all cyclic quasi-symmetric functions which are homogeneous of degree *n*, and $cQSym = \bigoplus_{n\geq 0} cQSym_n$.

cQSym: Cyclic Quasi-symmetric Functions

Definition

A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]]$ such that for any sequence of positive integers $a = (a_1, a_2, \ldots, a_s)$, a cyclic shift $(a'_1, a'_2, \ldots, a'_s)$ of a, and two increasing sequences $i_1 < i_2 < \cdots < i_s$ and $j_1 < j_2 < \cdots < j_s$ of positive integers,

$$[x_{i_1}^{a_1}x_{i_2}^{a_2}\ldots x_{i_s}^{a_s}]f = [x_{j_1}^{a_1'}x_{j_2}^{a_2'}\ldots x_{j_s}^{a_s'}]f.$$

Let $cQSym_n$ be the set of all cyclic quasi-symmetric functions which are homogeneous of degree *n*, and $cQSym = \bigoplus_{n\geq 0} cQSym_n$.

• Ex: $5x_1^4x_2x_3^3 + 5x_1^4x_2x_4^3 + \dots + 5x_1x_2^3x_3^4 + 5x_1x_2^3x_4^4 + \dots + 5x_1^3x_2^4x_3 + 5x_1^3x_2^4x_4 + \dots$

cQSym: Cyclic Quasi-symmetric Functions

Definition

A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]]$ such that for any sequence of positive integers $a = (a_1, a_2, \ldots, a_s)$, a cyclic shift $(a'_1, a'_2, \ldots, a'_s)$ of a, and two increasing sequences $i_1 < i_2 < \cdots < i_s$ and $j_1 < j_2 < \cdots < j_s$ of positive integers,

$$[x_{i_1}^{a_1}x_{i_2}^{a_2}\ldots x_{i_s}^{a_s}]f = [x_{j_1}^{a_1'}x_{j_2}^{a_2'}\ldots x_{j_s}^{a_s'}]f.$$

Let $cQSym_n$ be the set of all cyclic quasi-symmetric functions which are homogeneous of degree *n*, and $cQSym = \bigoplus_{n \ge 0} cQSym_n$.

- Ex: $5x_1^4x_2x_3^3 + 5x_1^4x_2x_4^3 + \dots + 5x_1x_2^3x_3^4 + 5x_1x_2^3x_4^4 + \dots + 5x_1^3x_2^4x_3 + 5x_1^3x_2^4x_4 + \dots$
- Note that a cyclic quasi-symmetric function must be quasi-symmetric, but the converse is **false**, i.e.,

$$\mathsf{cQSym} \subsetneq \mathsf{QSym}$$
 .

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \vDash n$, the associated monomial cyclic quasisymmetric function indexed by α is

$$\mathcal{M}^{\mathsf{cyc}}_{lpha} = \sum_{i=1}^{\infty} \mathcal{M}_{(lpha_i, lpha_{i+1}, \dots, lpha_{i-1})},$$

where the indices are interpreted modulo s, meaning $\alpha_{j+s} = \alpha_j$.

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \vDash n$, the associated monomial cyclic quasisymmetric function indexed by α is

$$M_{\alpha}^{\mathsf{cyc}} = \sum_{i=1}^{s} M_{(\alpha_i, \alpha_{i+1}, \dots, \alpha_{i-1})},$$

where the indices are interpreted modulo s, meaning $\alpha_{j+s} = \alpha_j$.

If α and $\tilde{\alpha}$ differ by cyclic shifts, then $M_{\alpha}^{\text{cyc}} = M_{\tilde{\alpha}}^{\text{cyc}}$ — indexed by cyclic compositions, or correspondingly, equivalence classes of subsets under cyclic shifts.

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \vDash n$, the associated monomial cyclic quasisymmetric function indexed by α is

$$\mathcal{M}^{\mathsf{cyc}}_{lpha} = \sum_{i=1}^{5} \mathcal{M}_{(lpha_i, lpha_{i+1}, \dots, lpha_{i-1})},$$

where the indices are interpreted modulo s, meaning $\alpha_{j+s} = \alpha_j$.

If α and $\tilde{\alpha}$ differ by cyclic shifts, then $M_{\alpha}^{\text{cyc}} = M_{\tilde{\alpha}}^{\text{cyc}}$ — indexed by cyclic compositions, or correspondingly, equivalence classes of subsets under cyclic shifts. A cyclic shift of a subset $E \subseteq [n]$ in [n] is a set of the form

 $i + E = \{i + e \pmod{n} \mid e \in E\}.$

Note that sometimes we will use E + i as well for the same concept.

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \vDash n$, the associated monomial cyclic quasisymmetric function indexed by α is

$$\mathcal{M}^{\mathsf{cyc}}_{lpha} = \sum_{i=1}^{\infty} \mathcal{M}_{(lpha_i, lpha_{i+1}, \dots, lpha_{i-1})},$$

where the indices are interpreted modulo s, meaning $\alpha_{j+s} = \alpha_j$.

If α and $\tilde{\alpha}$ differ by cyclic shifts, then $M_{\alpha}^{\text{cyc}} = M_{\tilde{\alpha}}^{\text{cyc}}$ — indexed by cyclic compositions, or correspondingly, equivalence classes of subsets under cyclic shifts. Another important basis of cQSym, the fundamental cyclic quasi-symmetric function indexed

by $E \subseteq [n]$, is defined by

$$F_{n,E}^{\mathsf{cyc}} := \sum_{E \subseteq L \subseteq [n]} M_{n,L}^{\mathsf{cyc}}.$$

Definition

Given a poset *P* on [n], a *P*-partition is a function $f : [n] \rightarrow \mathbb{P}$ such that

- (a) $i \leq_P j$ implies $f(i) \leq f(j)$,
- (b) $i \leq_P j$ and i > j implies f(i) < f(j).

Denote by $\mathcal{A}(P)$ the set of all *P*-partitions.

Definition

Given a poset *P* on [*n*], a *P*-partition is a function $f : [n] \rightarrow \mathbb{P}$ such that

(a) $i \leq_P j$ implies $f(i) \leq f(j)$,

(b) $i \leq_P j$ and i > j implies f(i) < f(j).

Denote by $\mathcal{A}(P)$ the set of all *P*-partitions.

Associate any $f : [n] \to \mathbb{P}$ with a monomial

$$\mathbf{x}^f = x_{f(1)} x_{f(2)} \dots x_{f(n)}.$$

One can define the generating function

$$\Gamma_P = \sum_{f \in \mathcal{A}(P)} \mathbf{x}^f.$$

Definition

Given a poset *P* on [n], a *P*-partition is a function $f : [n] \rightarrow \mathbb{P}$ such that

(a) $i \leq_P j$ implies $f(i) \leq f(j)$,

(b) $i \leq_P j$ and i > j implies f(i) < f(j).

Denote by $\mathcal{A}(P)$ the set of all *P*-partitions.

Ex: *P* is defined on the vertex set $V = \{1, 2, 3\}$ by the Hasse diagram

Definition

Given a poset *P* on [n], a *P*-partition is a function $f : [n] \rightarrow \mathbb{P}$ such that

(a) $i \leq_P j$ implies $f(i) \leq f(j)$,

(b) $i \leq_P j$ and i > j implies f(i) < f(j).

Denote by $\mathcal{A}(P)$ the set of all *P*-partitions.

Ex: *P* is defined on the vertex set $V = \{1, 2, 3\}$ by the Hasse diagram

$$\begin{array}{ccccc} 1 & & & & & (a) \ f(2) \leq f(1), & & & \\ & & & f(2) \leq f(3); & \\ & & & & f(2) < f(3); & \\ & & & & (b) \ f(2) < f(1). & \\ \end{array} \qquad \begin{pmatrix} f(2) = f(3) < f(1) & & \\ f(2) < f(3) < f(1) & & \\ f(2) < f(3) = f(1) & & \\ & & f(2) < f(1) < f(3) & \\ \end{pmatrix} \qquad \Longrightarrow \qquad \begin{cases} M_{(2,1)} & & \\ M_{(1,1,1)} & & \\ M_{(1,2)} & & \\ M_{(1,1,1)} & & \\ M_{(1,1,1)} & & \\ \end{pmatrix}$$

$$\Gamma_P = M_{(2,1)} + M_{(1,2)} + 2M_{(1,1,1)}$$

For a given P on V = [n], define a linear extension of P to be a total ordering $\pi = \pi_1 \pi_2 \cdots \pi_n$ of V such that $\pi_i <_P \pi_j$ implies i < j. Let $\mathcal{L}(P)$ be the set of linear extensions of P.

For a given P on V = [n], define a linear extension of P to be a total ordering $\pi = \pi_1 \pi_2 \cdots \pi_n$ of V such that $\pi_i <_P \pi_j$ implies i < j. Let $\mathcal{L}(P)$ be the set of linear extensions of P.

• In particular, π is also a poset on [n]. The structure of π -partitions is simple to describe:

 $\mathcal{A}(\pi) = \{ f : [n] \to \mathbb{P} \mid f(\pi_1) \leq \cdots \leq f(\pi_n), i \in \text{Des } \pi \text{ implies } f(\pi_i) < f(\pi_{i+1}) \}.$

For a given P on V = [n], define a linear extension of P to be a total ordering $\pi = \pi_1 \pi_2 \cdots \pi_n$ of V such that $\pi_i <_P \pi_j$ implies i < j. Let $\mathcal{L}(P)$ be the set of linear extensions of P.

• In particular, π is also a poset on [n]. The structure of π -partitions is simple to describe:

 $\mathcal{A}(\pi) = \{ f : [n] \to \mathbb{P} \mid f(\pi_1) \leq \cdots \leq f(\pi_n), i \in \text{Des } \pi \text{ implies } f(\pi_i) < f(\pi_{i+1}) \}.$

• It turns out that $\Gamma_{\pi} = F_{n, \text{Des } \pi} \in \text{QSym}.$

For a given P on V = [n], define a linear extension of P to be a total ordering $\pi = \pi_1 \pi_2 \cdots \pi_n$ of V such that $\pi_i <_P \pi_j$ implies i < j. Let $\mathcal{L}(P)$ be the set of linear extensions of P.

• In particular, π is also a poset on [n]. The structure of π -partitions is simple to describe:

$$\mathcal{A}(\pi) = \{ f : [n] \to \mathbb{P} \mid f(\pi_1) \leq \cdots \leq f(\pi_n), i \in \mathsf{Des}\,\pi \text{ implies } f(\pi_i) < f(\pi_{i+1}) \}.$$

• It turns out that
$$\Gamma_{\pi} = F_{n, \text{Des } \pi} \in \operatorname{\mathsf{QSym}}.$$

Fundamental Lemma

For any poset P on [n], $\mathcal{A}(P)$ can be decomposed as the disjoint union:

$$\mathcal{A}(P) = \bigsqcup_{\pi \in \mathcal{L}(P)} \mathcal{A}(\pi).$$

One can regard total orderings, or equivalently, linear permutations, as the building blocks!

Enriched *P*-partitions

Stembridge defines \mathbb{P}' to be the set of nonzero integers, totally ordered as

 $-1 \prec 1 \prec -2 \prec 2 \prec -3 \prec 3 \prec \cdots$.

Definition

An enriched *P*-partition is a function $f : [n] \to \mathbb{P}'$ such that for all $i \leq_P j$ in *P*,

(a)
$$f(i) \leq f(j)$$
,
(b) $f(i) = f(j) > 0$ implies $i < j$,
(c) $f(i) = f(j) < 0$ implies $i > j$.

Denote by $\mathcal{E}(P)$ the set of all enriched *P*-partitions *f*.

Enriched *P*-partitions

Stembridge defines \mathbb{P}' to be the set of nonzero integers, totally ordered as

 $-1 \prec 1 \prec -2 \prec 2 \prec -3 \prec 3 \prec \cdots$.

Definition

An enriched *P*-partition is a function $f : [n] \to \mathbb{P}'$ such that for all $i \leq_P j$ in *P*,

(a)
$$f(i) \preceq f(j)$$
,

(b)
$$f(i) = f(j) > 0$$
 implies $i < j$,

(c) f(i) = f(j) < 0 implies i > j.

Denote by $\mathcal{E}(P)$ the set of all enriched *P*-partitions *f*.

(a) $f(2) \leq f(1), f(2) \leq f(3);$ (b) f(2) = f(1) = L implies L < 0;

(c)
$$f(2) = f(3) = L$$
 implies $L > 0$.

Jinting Liang (MSU)

Enriched toric [\vec{D}]-partitions

Weight enumerator and peak set

Define the weight enumerator for enriched *P*-partitions by the formal series

$$\Delta_P := \sum_{f \in \mathcal{E}(P)} \prod_{i \in [n]} x_{|f(i)|}.$$

By the Fundamental Lemma of enriched *P*-partitions:

$$\Delta_P = \sum_{\pi \in \mathcal{L}(P)} \Delta_{\pi}.$$

Weight enumerator and peak set

Define the weight enumerator for enriched *P*-partitions by the formal series

$$\Delta_P := \sum_{f \in \mathcal{E}(P)} \prod_{i \in [n]} x_{|f(i)|}.$$

By the Fundamental Lemma of enriched *P*-partitions:

$$\Delta_P = \sum_{\pi \in \mathcal{L}(P)} \Delta_{\pi}.$$

Proposition (Stembridge, 1997)

As a quasi-symmetric function, Δ_{π} has the following expansion of monomial quasi-symmetric functions

$$\Delta_{\pi} = \sum_{E \subseteq [n-1]: \operatorname{Pk} \pi \subseteq E \cup (E+1)} 2^{|E|+1} M_{n,E}.$$

Weight enumerator and peak set

Define the weight enumerator for enriched *P*-partitions by the formal series

$$\Delta_P := \sum_{f \in \mathcal{E}(P)} \prod_{i \in [n]} x_{|f(i)|}.$$

By the Fundamental Lemma of enriched *P*-partitions:

$$\Delta_P = \sum_{\pi \in \mathcal{L}(P)} \Delta_{\pi}.$$

Proposition (Stembridge, 1997)

As a quasi-symmetric function, Δ_{π} has the following expansion of monomial quasi-symmetric functions

$$\Delta_{\pi} = \sum_{E \subseteq [n-1]: \operatorname{Pk} \pi \subseteq E \cup (E+1)} 2^{|E|+1} M_{n,E}.$$

Takeaway: Δ_{π} depends on Pk π .

Every DAG, abbreviation for directed acyclic graph, has a unique transitive closure; transitive \vec{D} induces a poset on the vertex set V by if $i \to j$ in \vec{D} then $i <_{\vec{D}} j$.

Every DAG, abbreviation for directed acyclic graph, has a unique transitive closure; transitive \vec{D} induces a poset on the vertex set V by if $i \to j$ in \vec{D} then $i <_{\vec{D}} j$.

Ex: \vec{D} has vertex set $V = \{1, 2, 3, 4\}$.

Every DAG, abbreviation for directed acyclic graph, has a unique transitive closure; transitive \vec{D} induces a poset on the vertex set V by if $i \to j$ in \vec{D} then $i <_{\vec{D}} j$.

Ex: \vec{D} has vertex set $V = \{1, 2, 3, 4\}$.

Observation: Both \vec{D}_1 and \vec{D}_2 extend \vec{D} , so 2431 and 2413 linearly extend \vec{D} .

Every DAG, abbreviation for directed acyclic graph, has a unique transitive closure; transitive \vec{D} induces a poset on the vertex set V by if $i \to j$ in \vec{D} then $i <_{\vec{D}} j$.

Ex: \vec{D} has vertex set $V = \{1, 2, 3, 4\}$.

Observation: Both \vec{D}_1 and \vec{D}_2 extend \vec{D} , so 2431 and 2413 linearly extend \vec{D} . Equivalently, one can define a linear extension of \vec{D} as being a DAG \vec{D}' on the same vertex set whose arc set contains that of \vec{D} .

Definition (Flip)

Suppose *i* is a source (all arrows out) or a sink (all arrows in) in \vec{D} , we say \vec{D}' is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}' \equiv \vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} .

Definition (Flip)

Suppose *i* is a source (all arrows out) or a sink (all arrows in) in \vec{D} , we say \vec{D}' is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}' \equiv \vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} .

Definition (Flip)

Suppose *i* is a source (all arrows out) or a sink (all arrows in) in \vec{D} , we say \vec{D}' is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}' \equiv \vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} . **Question:** If $\vec{D} = \pi$ is a total linear order, what's the corresponding $[\vec{D}]$?

Definition (Flip)

Suppose *i* is a source (all arrows out) or a sink (all arrows in) in \vec{D} , we say \vec{D}' is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}' \equiv \vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} . **Question:** If $\vec{D} = \pi$ is a total linear order, what's the corresponding $[\vec{D}]$?

The cyclic permutation $[\pi]!$

Definition (Flip)

Suppose *i* is a source (all arrows out) or a sink (all arrows in) in \vec{D} , we say \vec{D}' is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}' \equiv \vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} . **Question:** If $\vec{D} = \pi$ is a total linear order, what's the corresponding $[\vec{D}]$? The cyclic permutation $[\pi]$!

Proposition (Develin-Macauley-Reiner, 2016)

If $\vec{D} = \pi$ is a total linear order with $\pi = \pi_1 \dots \pi_n$, then there is a bijection between toric DAG $[\vec{D}]$ and cyclic permutation $[\pi]$.

Definition (Flip)

Suppose *i* is a source (all arrows out) or a sink (all arrows in) in \vec{D} , we say \vec{D}' is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}' \equiv \vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} . **Question:** If $\vec{D} = \pi$ is a total linear order, what's the corresponding $[\vec{D}]$?

The cyclic permutation $[\pi]!$

For a general toric DAG $[\vec{D}]$, define

 $\mathcal{L}^{\mathsf{tor}}([\vec{D}]) := \{ [\pi] : [\pi] \text{ torically extends } [\vec{D}] \}.$

Toric $[\vec{D}]$ -partitions

Definition

A toric $[\vec{D}]$ -partition is a function $f : [n] \to \mathbb{P}$ which is a \vec{D}' -partition for at least one DAG $\vec{D}' \in [\vec{D}]$. Denote by $\mathcal{A}^{\text{tor}}([\vec{D}])$ the set of all toric $[\vec{D}]$ -partitions f.

Toric $[\vec{D}]$ -partitions

Definition

A toric $[\vec{D}]$ -partition is a function $f : [n] \to \mathbb{P}$ which is a \vec{D}' -partition for at least one DAG $\vec{D}' \in [\vec{D}]$. Denote by $\mathcal{A}^{\text{tor}}([\vec{D}])$ the set of all toric $[\vec{D}]$ -partitions f.

● Fundamental Lemma ✓

Toric $[\vec{D}]$ -partitions

Definition

A toric $[\vec{D}]$ -partition is a function $f : [n] \to \mathbb{P}$ which is a \vec{D}' -partition for at least one DAG $\vec{D}' \in [\vec{D}]$. Denote by $\mathcal{A}^{\text{tor}}([\vec{D}])$ the set of all toric $[\vec{D}]$ -partitions f.

- $\bullet\,$ Fundamental Lemma $\checkmark\,$
- Similarly define the generating function

$$\Gamma^{\operatorname{cyc}}_{[\vec{D}]} = \sum_{f \in \mathcal{A}^{\operatorname{tor}}([\vec{D}])} \mathbf{x}^f.$$

It turns out that

$$\Gamma^{cyc}_{[\pi]} = F^{cyc}_{n,cDes \,\pi} \in cQSym.$$

Definition (Enriched toric $[\vec{D}]$ -partition)

An enriched toric $[\vec{D}]$ -partition is a function $f : [n] \to \mathbb{P}'$ which is an enriched $\vec{D'}$ -partition for at least one DAG $\vec{D'}$ in $[\vec{D}]$. Let $\mathcal{E}^{\text{tor}}([\vec{D}])$ denote the set of all enriched toric $[\vec{D}]$ -partitions.

Definition (Enriched toric $[\vec{D}]$ -partition)

An enriched toric $[\vec{D}]$ -partition is a function $f : [n] \to \mathbb{P}'$ which is an enriched $\vec{D'}$ -partition for at least one DAG $\vec{D'}$ in $[\vec{D}]$. Let $\mathcal{E}^{\text{tor}}([\vec{D}])$ denote the set of all enriched toric $[\vec{D}]$ -partitions.

By definition,

$$\mathcal{E}^{\mathsf{tor}}([ec{D}]) = igcup_{ec{D}' \in [ec{D}]} \mathcal{E}(ec{D}'), \qquad \left(\mathcal{E}^{\mathsf{tor}}([\pi]) = igcup_{\pi' \in [\pi]} \mathcal{E}(\pi')
ight).$$

1

`

Definition (Enriched toric $[\vec{D}]$ -partition)

An enriched toric $[\vec{D}]$ -partition is a function $f : [n] \to \mathbb{P}'$ which is an enriched $\vec{D'}$ -partition for at least one DAG $\vec{D'}$ in $[\vec{D}]$. Let $\mathcal{E}^{\text{tor}}([\vec{D}])$ denote the set of all enriched toric $[\vec{D}]$ -partitions.

By definition,

$$\mathcal{E}^{ ext{tor}}(ec{D} ec{l})) = igcup_{ec{D}' \in ec{D} ec{l}} \mathcal{E}(ec{D}'), \qquad \left(\mathcal{E}^{ ext{tor}}(ec{\pi} ec{l}) = igcup_{\pi' \in ec{\pi} ec{l}} \mathcal{E}(\pi')
ight).$$

Lemma (Fundamental Lemma of enriched toric $[\vec{D}]$ -partitions, L, 2022)

For a DAG \vec{D} , the set of all enriched toric $[\vec{D}]$ -partitions is a disjoint union of the set of enriched toric $[\pi]$ -partitions of all toric extensions $[\pi]$ of $[\vec{D}]$:

$$\mathcal{E}^{\operatorname{tor}}([\vec{D}]) = \bigsqcup_{[\pi] \in \mathcal{L}^{\operatorname{tor}}([\vec{D}])} \mathcal{E}^{\operatorname{tor}}([\pi]).$$

Definition (Enriched toric $[\vec{D}]$ -partition)

An enriched toric $[\vec{D}]$ -partition is a function $f : [n] \to \mathbb{P}'$ which is an enriched $\vec{D'}$ -partition for at least one DAG $\vec{D'}$ in $[\vec{D}]$. Let $\mathcal{E}^{\text{tor}}([\vec{D}])$ denote the set of all enriched toric $[\vec{D}]$ -partitions.

By definition,

$$\mathcal{E}^{\mathsf{tor}}([ec{D}]) = igcup_{ec{D}' \in [ec{D}]} \mathcal{E}(ec{D}'), \qquad \left(\mathcal{E}^{\mathsf{tor}}([\pi]) = igcup_{\pi' \in [\pi]} \mathcal{E}(\pi')
ight).$$

● Fundamental Lemma ✓

Definition (Enriched toric $[\vec{D}]$ -partition)

An enriched toric $[\vec{D}]$ -partition is a function $f : [n] \to \mathbb{P}'$ which is an enriched $\vec{D'}$ -partition for at least one DAG $\vec{D'}$ in $[\vec{D}]$. Let $\mathcal{E}^{\text{tor}}([\vec{D}])$ denote the set of all enriched toric $[\vec{D}]$ -partitions.

By definition,

$$\mathcal{E}^{\mathsf{tor}}([\vec{D}]) = \bigcup_{\vec{D}' \in [\vec{D}]} \mathcal{E}(\vec{D}'), \qquad \left(\mathcal{E}^{\mathsf{tor}}([\pi]) = \bigcup_{\pi' \in [\pi]} \mathcal{E}(\pi')\right).$$

- Fundamental Lemma ✓
- Denote the weight enumerator for enriched toric $[\vec{D}]$ -partitions by $\Delta^{cyc}_{[\vec{D}]}$. The Fundamental Lemma implies,

$$\Delta^{\mathsf{cyc}}_{[ec{D}]} = \sum_{[\pi] \in \mathcal{L}^{\mathsf{tor}}([ec{D}])} \Delta^{\mathsf{cyc}}_{[\pi]}$$

Cyclic Peak Functions

Proposition (L, 2022)

() For any given cyclic permutation $[\pi]$ of length *n*, we have

$$\Delta_{[\pi]}^{\mathsf{cyc}} = \sum_{E \subseteq [n]: \, \mathsf{cPk}(\pi) \subseteq E \cup (E+1)} 2^{|E|} M_{n,E}^{\mathsf{cyc}}$$

The sum is independent of the choice of representative π of $[\pi]$.

Cyclic Peak Functions

Proposition (L, 2022)

• For any given cyclic permutation $[\pi]$ of length n, we have

$$\Delta_{[\pi]}^{\mathsf{cyc}} = \sum_{E \subseteq [n]: \, \mathsf{cPk}(\pi) \subseteq E \cup (E+1)} 2^{|E|} M_{n,E}^{\mathsf{cyc}}$$

The sum is independent of the choice of representative π of $[\pi]$. **Takeaway:** $\Delta_{[\pi]}^{\text{cyc}}$ depends on cPk π , or equivalently, cPk $[\pi]$; one can associate to every cyclic peak set S a cyclic quasi-symmetric function $K_{S}^{\text{cyc}} := \Delta_{[\pi]}^{\text{cyc}}$ for any permutation π with peak cPk $\pi = S$. That is our cyclic peak function.

Cyclic Peak Functions

Proposition (L, 2022)

• For any given cyclic permutation $[\pi]$ of length n, we have

$$\Delta_{[\pi]}^{\mathsf{cyc}} = \sum_{E \subseteq [n]: \, \mathsf{cPk}(\pi) \subseteq E \cup (E+1)} 2^{|E|} M_{n,E}^{\mathsf{cyc}}$$

The sum is independent of the choice of representative π of $[\pi]$. **Takeaway:** $\Delta_{[\pi]}^{\text{cyc}}$ depends on cPk π , or equivalently, cPk $[\pi]$; one can associate to every cyclic peak set S a cyclic quasi-symmetric function $K_S^{\text{cyc}} := \Delta_{[\pi]}^{\text{cyc}}$ for any permutation π with peak cPk $\pi = S$. That is our cyclic peak function.

2 For any cyclic peak set S in [n], we have

$$2^{-|S|} \mathcal{K}_{S}^{\mathsf{cyc}} = \sum_{E \subseteq [n]: \ S \subseteq E \triangle (E+1)} \mathcal{F}_{n,E}^{\mathsf{cyc}},$$

where \bigtriangleup denotes symmetric difference.

Algebra of cyclic peaks

Let Λ_n be the space of cyclic quasi-symmetric functions spanned by cyclic peak function K_S^{cyc} , where S ranges over cyclic peak sets in [n]. Also let

$$\Lambda := \oplus_{n \ge 0} \Lambda_n.$$

Proposition (L, 2022) Λ is a graded subring of cQSym, with K_S^{cyc} form a basis of Λ . We call Λ the algebra of cyclic peaks.

Algebra of cyclic peaks

Let Λ_n be the space of cyclic quasi-symmetric functions spanned by cyclic peak function K_S^{cyc} , where S ranges over cyclic peak sets in [n]. Also let

$$\Lambda := \oplus_{n \ge 0} \Lambda_n.$$

Proposition (L, 2022) Λ is a graded subring of cQSym, with K_S^{cyc} form a basis of Λ . We call Λ the algebra of cyclic peaks.

More interesting stuff:

- Order polynomial
- Cyclic shuffle-compatibility (a joint work with Bruce Sagan and Yan Zhuang in preparation)

References

```
    Ron M. Adin, Ira M. Gessel, Victor Reiner, and Yuval Roichman.
Cyclic quasi-symmetric functions.
Sém. Lothar. Combin., 82B:Art. 67, 12, 2020.
```

 Mike Develin, Matthew Macauley, and Victor Reiner. Toric partial orders. Trans. Amer. Math. Soc., 368(4):2263–2287, 2016.

Jinting Liang.
 Enriched toric [D]-partitions.
 Preprint, https://arxiv.org/abs/2209.00051, 2022.

John R. Stembridge. Enriched P-partitions. Trans. Amer. Math. Soc., 349(2):763–788, 1997.

Thank You!

