Enriched toric $[\vec{D}]$ -partitions

Jinting Liang

Michigan State University

December 7, 2022

Overview

[Background](#page-3-0)

- [Permutations and permutation statistics: Linear vs Cyclic](#page-3-0)
- [\(Cyclic\) Quasi-symmetric functions:](#page-8-0) QSym vs cQSym

P[-partitions](#page-24-0)

- Enriched P[-partitions](#page-32-0)
- 4 Toric [\vec{D} [\]-partitions](#page-37-0)
	- [DAGs](#page-37-0)
	- **[Toric DAGs](#page-41-0)**
	- \bullet Toric $[\vec{D}]$ -partitions
- 5 [Enriched toric](#page-50-0) [\vec{D}]-partitions
	- [Enriched toric](#page-50-0) [*D*]-partitions
	- [Cyclic peak functions and algebra of cyclic peaks](#page-55-0)

Outline

Cyclic Permutations

• Let \mathfrak{S}_n denote the symmetric group of linear permutations $\pi = \pi_1 \pi_2 \dots \pi_n$ on the set $\{1, 2, \ldots, n\}$. The corresponding cyclic permutation is an equivalence class of linear permutations under rotation.

$$
[\pi]=\{\pi_1\pi_2\ldots\pi_n, \pi_2\ldots\pi_n\pi_1, \ldots, \pi_n\pi_1\ldots\pi_{n-1}\}.
$$

Cyclic Permutations

• Let \mathfrak{S}_n denote the symmetric group of linear permutations $\pi = \pi_1 \pi_2 \dots \pi_n$ on the set {1*,* 2*, . . . ,* n}. The corresponding cyclic permutation is an equivalence class of linear permutations under rotation.

$$
[\pi]=\{\pi_1\pi_2\ldots\pi_n, \ \pi_2\ldots\pi_n\pi_1, \ \ldots, \ \pi_n\pi_1\ldots\pi_{n-1}\}.
$$

Ex: For example, [1423] = {1423*,* 4231*,* 2314*,* 3142} = [3142]*.*

Linear permutation statistics: Des and Pk

Define the descent set of $\pi \in \mathfrak{S}_n$

$$
\operatorname{Des}\pi=\{i\mid \pi_i>\pi_{i+1}\}\subseteq[n-1],
$$

and the descent number des $\pi = |\text{Des }\pi|$. The peak set Pk is defined by

$$
Pk \pi = \{i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\} \subseteq [2, n-1].
$$

The peak number is $pk \pi := | Pk \pi |$.

• Des $\pi = \{1, 3\}$ • $Pk \pi = \{3\}$

Two more linear permutation statistics: cDes and cPk

The cyclic descent set cDes of a linear permutation *π* is defined by

cDes $\pi = \{i \mid \pi_i > \pi_{i+1}$ where the subscripts are taken modulo $n\} \subseteq [n]$,

and the cyclic descent number cdes $\pi = |\text{cDes }\pi|$. The cyclic peak set cPk is defined by

cPk $\pi = \{i \mid \pi_{i-1} < \pi_i > \pi_{i+1}$ where the subscripts are taken modulo $n\} \subseteq [n]$,

The cyclic peak number is cpk $\pi := |\text{cPk }\pi|$.

c cDes $\pi = \{1, 3, 5\}$, cdes $\pi = 3$

$$
\bullet \ \mathsf{cPk}\,\pi = \{3,5\},\, \mathsf{cpk}\,\pi = 2
$$

Cyclic permutation statistics: cDes and cPk

Define the cyclic descent set of a cyclic permutation

$$
\mathsf{cDes}[\pi] = \{ \{ \mathsf{cDes}\,\sigma \mid \sigma \in [\pi] \} \},
$$

where the double curly brackets denote a multiset. And the cyclic descent number cdes[π] = cdes σ for any $\sigma \in [\pi]$. The cyclic peak set cPk is defined by

 $cPk[\pi] = \{ \{ cPk \sigma \mid \sigma \in [\pi] \} \}.$

The cyclic peak number is cpk[π] := cpk σ for any $\sigma \in [\pi]$.

[21534] = {21534*,* 42153*,* 34215*,* 53421*,* 15342}

$$
\bullet \ cDes[\pi] = \{ \{ \{1, 3, 5\}, \{1, 2, 4\}, \\ \{2, 3, 5\}, \{1, 3, 4\}, \{2, 4, 5\} \} \}
$$

c cdes[π] = 3

QSym: Quasi-symmetric Functions

For a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]],$ we use $[x_i]$ $i_1^{a_1}x_{i_2}^{a_2}$ $\mathbf{X}_{i_2}^{a_2} \ldots \mathbf{X}_{i_s}^{a_s}$ *f* to denote the coefficient of monomial $x_{i}^{a_1}$ $i_1^{a_1}x_{i_2}^{a_2}$ $\lambda^{a_2}_{i_2} \ldots \lambda^{a_s}_{i_s}$ in the expression of f . And the degree of a monomial $\lambda^{a_1}_{i_1}$ $x_{i_1}^{a_1}x_{i_2}^{a_2}$ $x_{i_2}^{a_2} \ldots x_{i_s}^{a_s}$ is defined by $a_1 + a_2 + \cdots + a_s$.

QSym: Quasi-symmetric Functions

Definition

A quasi-symmetric function is a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]]$ such that for any sequence of positive integers $a = (a_1, a_2, \ldots, a_s)$, and two increasing sequences $i_1 < i_2 < \cdots < i_s$ and $i_1 < i_2 < \cdots < i_s$ of positive integers,

$$
[x_{i_1}^{a_1}x_{i_2}^{a_2}\ldots x_{i_s}^{a_s}]f=[x_{j_1}^{a_1}x_{j_2}^{a_2}\ldots x_{j_s}^{a_s}]f.
$$

Let $QSym_n$ be the set of all quasi-symmetric functions which are homogeneous of degree n, and QSym $= \bigoplus_{n \geq 0} \text{QSym}_n$.

QSym: Quasi-symmetric Functions

Definition

A quasi-symmetric function is a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]]$ such that for any sequence of positive integers $a = (a_1, a_2, \ldots, a_s)$, and two increasing sequences $i_1 < i_2 < \cdots < i_s$ and $i_1 < i_2 < \cdots < i_s$ of positive integers,

$$
[x_{i_1}^{a_1}x_{i_2}^{a_2}\ldots x_{i_s}^{a_s}]f=[x_{j_1}^{a_1}x_{j_2}^{a_2}\ldots x_{j_s}^{a_s}]f.
$$

Let $QSym_n$, be the set of all quasi-symmetric functions which are homogeneous of degree n, and QSym $= \bigoplus_{n \geq 0} \text{QSym}_n$.

- **Ex:** $5x_1^7x_2 + 5x_1^7x_3 + 5x_2^7x_3 + \cdots$
- Note that a symmetric function must be quasi-symmetric, but the converse is **false**, i.e.,

$$
\mathsf{Sym} \subsetneq \mathsf{QSym}\,.
$$

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \models n$, the associated monomial quasi-symmetric function indexed by *α* is

$$
M_{\alpha}=\sum_{i_1
$$

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \models n$, the associated monomial quasi-symmetric function indexed by *α* is

$$
M_{\alpha}=\sum_{i_1
$$

 \bullet $\{M_\alpha\}_{\alpha \vDash n}$ form a basis of QSym_n

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \models n$, the associated monomial quasi-symmetric function indexed by *α* is

$$
M_{\alpha}=\sum_{i_1
$$

- \bullet { M_α }_{$\alpha \vDash n$} form a basis of QSym_n
- There is a natural bijection between subsets of $[n-1]$ and compositions of n.

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \models n$, the associated monomial quasi-symmetric function indexed by *α* is

$$
M_{\alpha}=\sum_{i_1
$$

- \bullet $\{M_\alpha\}_{\alpha \vDash n}$ form a basis of QSym_n
- There is a natural bijection between subsets of $[n-1]$ and compositions of n. The map $\Phi: 2^{[n-1]} \rightarrow \mathsf{Comp}_n$ is defined by

$$
\Phi(E):=(e_1-e_0, e_2-e_1, \ldots, e_k-e_{k-1}, e_{k+1}-e_k)
$$

for any given $E = \{e_1 < e_2 < \cdots < e_k\} \subseteq [n-1]$ with $e_0 = 0$ and $e_{k+1} = n$.

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \models n$, the associated monomial quasi-symmetric function indexed by *α* is

$$
M_{\alpha}=\sum_{i_1
$$

- \bullet { M_{α} }_{$\alpha \vDash n$} form a basis of QSym_n
- There is a natural bijection between subsets of $[n-1]$ and compositions of n. We can also index monomials by subsets of $[n-1]$.

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \models n$, the associated monomial quasi-symmetric function indexed by *α* is

$$
M_{\alpha}=\sum_{i_1
$$

- \bullet $\{M_\alpha\}_{\alpha \vDash n}$ form a basis of QSym_n
- There is a natural bijection between subsets of $[n-1]$ and compositions of n. We can also index monomials by subsets of $[n-1]$.

Another important basis of QSym: fundamental quasi-symmetric functions. The relation between monomials and fundamentals is simple:

$$
F_{n,E}=\sum_{E\subseteq L\subseteq [n-1]}M_{n,L}.
$$

cQSym: Cyclic Quasi-symmetric Functions

Definition

A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]]$ such that for any sequence of positive integers $a=(a_1,a_2,\ldots,a_s)$, a cyclic shift (a'_1,a'_2,\ldots,a'_s) of a , and two increasing sequences $i_1 < i_2 < \cdots < i_s$ and $i_1 < i_2 < \cdots < i_s$ of positive integers,

$$
[x_{i_1}^{a_1}x_{i_2}^{a_2}\ldots x_{i_s}^{a_s}]f=[x_{j_1}^{a'_1}x_{j_2}^{a'_2}\ldots x_{j_s}^{a'_s}]f.
$$

Let cQSym_n be the set of all cyclic quasi-symmetric functions which are homogeneous of degree *n*, and cQSym $= \oplus_{n\geq 0}$ cQSym_n.

cQSym: Cyclic Quasi-symmetric Functions

Definition

A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]]$ such that for any sequence of positive integers $a=(a_1,a_2,\ldots,a_s)$, a cyclic shift (a'_1,a'_2,\ldots,a'_s) of a , and two increasing sequences $i_1 < i_2 < \cdots < i_s$ and $i_1 < i_2 < \cdots < i_s$ of positive integers,

$$
[x_{i_1}^{a_1}x_{i_2}^{a_2}\ldots x_{i_s}^{a_s}]f=[x_{j_1}^{a'_1}x_{j_2}^{a'_2}\ldots x_{j_s}^{a'_s}]f.
$$

Let cQSym_n be the set of all cyclic quasi-symmetric functions which are homogeneous of degree *n*, and cQSym $= \oplus_{n\geq 0}$ cQSym_n.

Ex: $5x_1^4x_2x_3^3 + 5x_1^4x_2x_4^3 + \cdots + 5x_1x_2^3x_3^4 + 5x_1x_2^3x_4^4 + \cdots + 5x_1^3x_2^4x_3 + 5x_1^3x_2^4x_4 + \cdots$

cQSym: Cyclic Quasi-symmetric Functions

Definition

A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Q}[[x_1, x_2, \ldots]]$ such that for any sequence of positive integers $a=(a_1,a_2,\ldots,a_s)$, a cyclic shift (a'_1,a'_2,\ldots,a'_s) of a , and two increasing sequences $i_1 < i_2 < \cdots < i_s$ and $i_1 < i_2 < \cdots < i_s$ of positive integers,

$$
[x_{i_1}^{a_1}x_{i_2}^{a_2}\ldots x_{i_s}^{a_s}]f=[x_{j_1}^{a'_1}x_{j_2}^{a'_2}\ldots x_{j_s}^{a'_s}]f.
$$

Let cQSym_n be the set of all cyclic quasi-symmetric functions which are homogeneous of degree *n*, and cQSym $= \oplus_{n\geq 0}$ cQSym_n.

- **Ex:** $5x_1^4x_2x_3^3 + 5x_1^4x_2x_4^3 + \cdots + 5x_1x_2^3x_3^4 + 5x_1x_2^3x_4^4 + \cdots + 5x_1^3x_2^4x_3 + 5x_1^3x_2^4x_4 + \cdots$
- Note that a cyclic quasi-symmetric function must be quasi-symmetric, but the converse is **false**, i.e.,

$$
\mathsf{cQSym}\subsetneq \mathsf{QSym}\,.
$$

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \models n$, the associated monomial cyclic quasisymmetric function indexed by *α* is

$$
M_{\alpha}^{cyc} = \sum_{i=1}^{s} M_{(\alpha_i, \alpha_{i+1}, \dots, \alpha_{i-1})},
$$

where the indices are interpreted modulo s , meaning $\alpha_{j+s}=\alpha_j.$

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_s) \models n$, the associated monomial cyclic quasisymmetric function indexed by *α* is

$$
M_{\alpha}^{cyc} = \sum_{i=1}^{s} M_{(\alpha_i, \alpha_{i+1}, \ldots, \alpha_{i-1})},
$$

where the indices are interpreted modulo s , meaning $\alpha_{j+s}=\alpha_j.$

If α and $\tilde{\alpha}$ differ by cyclic shifts, then $M_\alpha^{\rm cyc}=M_{\tilde{\alpha}}^{\rm cyc}$ — indexed by cyclic compositions, or correspondingly, equivalence classes of subsets under cyclic shifts.

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_s) \models n$, the associated monomial cyclic quasisymmetric function indexed by *α* is

$$
M_{\alpha}^{cyc} = \sum_{i=1}^{s} M_{(\alpha_i, \alpha_{i+1}, \dots, \alpha_{i-1})},
$$

where the indices are interpreted modulo s , meaning $\alpha_{j+s}=\alpha_j.$

If α and $\tilde{\alpha}$ differ by cyclic shifts, then $M_\alpha^{\rm cyc}=M_{\tilde{\alpha}}^{\rm cyc}$ — indexed by cyclic compositions, or correspondingly, equivalence classes of subsets under cyclic shifts.

A cyclic shift of a subset $E \subseteq [n]$ in $[n]$ is a set of the form

 $i + E = \{i + e \pmod{n} \mid e \in E\}.$

Note that sometimes we will use $E + i$ as well for the same concept.

Definition

Given a composition $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_s) \models n$, the associated monomial cyclic quasisymmetric function indexed by *α* is

$$
M_{\alpha}^{cyc} = \sum_{i=1}^{s} M_{(\alpha_i, \alpha_{i+1}, \dots, \alpha_{i-1})},
$$

where the indices are interpreted modulo s , meaning $\alpha_{j+s}=\alpha_j.$

If α and $\tilde{\alpha}$ differ by cyclic shifts, then $M_\alpha^{\rm cyc}=M_{\tilde{\alpha}}^{\rm cyc}$ — indexed by cyclic compositions, or correspondingly, equivalence classes of subsets under cyclic shifts. Another important basis of cQSym, the fundamental cyclic quasi-symmetric function indexed

by $E \subseteq [n]$, is defined by

$$
\mathcal{F}_{n,E}^{\mathrm{cyc}}:=\sum_{E\subseteq L\subseteq [n]}M_{n,L}^{\mathrm{cyc}}.
$$

Definition

Given a poset P on $[n]$, a P-partition is a function $f : [n] \rightarrow \mathbb{P}$ such that

- (a) $i \leq p$ *j* implies $f(i) \leq f(j)$,
- (b) $i \leq p$ *j* and $i > j$ implies $f(i) < f(j)$.

Denote by $A(P)$ the set of all P-partitions.

Definition

Given a poset P on $[n]$, a P-partition is a function $f : [n] \to \mathbb{P}$ such that

- (a) $i \leq p$ *i* implies $f(i) \leq f(j)$,
- (b) $i \leq p$ *i* and $i > j$ implies $f(i) < f(j)$.

Denote by $A(P)$ the set of all P-partitions.

Associate any $f : [n] \rightarrow \mathbb{P}$ with a monomial

$$
\mathbf{x}^f = x_{f(1)}x_{f(2)}\ldots x_{f(n)}.
$$

One can define the generating function

$$
\Gamma_P = \sum_{f \in \mathcal{A}(P)} \mathbf{x}^f.
$$

Definition

Given a poset P on $[n]$, a P-partition is a function $f : [n] \to \mathbb{P}$ such that

(a) $i \leq p$ *j* implies $f(i) \leq f(j)$,

(b) $i \leq p$ *i* and $i > j$ implies $f(i) < f(j)$.

Denote by $A(P)$ the set of all P-partitions.

Ex: P is defined on the vertex set $V = \{1, 2, 3\}$ by the Hasse diagram

$$
\begin{array}{ccccc}\n1 & & & & (a) & f(2) \le f(1), \\
 & & & & f(2) \le f(3); \\
 & & & & (b) & f(2) < f(1).\n\end{array}
$$

Definition

Given a poset P on $[n]$, a P-partition is a function $f : [n] \to \mathbb{P}$ such that

(a) $i \leq p$ *j* implies $f(i) \leq f(j)$,

(b) $i \leq p$ *i* and $i > j$ implies $f(i) < f(j)$.

Denote by $A(P)$ the set of all P-partitions.

Ex: P is defined on the vertex set $V = \{1, 2, 3\}$ by the Hasse diagram

2 1 3 (a) f (2) ≤ f (1), f (2) ≤ f (3); (b) f (2) *<* f (1). f (2) = f (3) *<* f (1) f (2) *<* f (3) *<* f (1) f (2) *<* f (3) = f (1) f (2) *<* f (1) *<* f (3) =⇒ M(2*,*1) M(1*,*1*,*1) M(1*,*2) M(1*,*1*,*1)

$$
\Gamma_P = M_{(2,1)} + M_{(1,2)} + 2M_{(1,1,1)}.
$$

For a given P on $V = [n]$, define a linear extension of P to be a total ordering $\pi = \pi_1 \pi_2 \cdots \pi_n$ of V such that *π*ⁱ *<*^P *π*^j implies i *<* j. Let L(P) be the set of linear extensions of P.

For a given P on $V = [n]$, define a linear extension of P to be a total ordering $\pi = \pi_1 \pi_2 \cdots \pi_n$ of V such that *π*ⁱ *<*^P *π*^j implies i *<* j. Let L(P) be the set of linear extensions of P.

In particular, π **is also a poset on [n]. The structure of** π **-partitions is simple to describe:**

 $\mathcal{A}(\pi) = \{f : [n] \to \mathbb{P} \mid f(\pi_1) \leq \cdots \leq f(\pi_n), i \in \text{Des } \pi \text{ implies } f(\pi_i) < f(\pi_{i+1})\}.$

For a given P on $V = [n]$, define a linear extension of P to be a total ordering $\pi = \pi_1 \pi_2 \cdots \pi_n$ of V such that *π*ⁱ *<*^P *π*^j implies i *<* j. Let L(P) be the set of linear extensions of P.

In particular, π **is also a poset on [n]. The structure of** π **-partitions is simple to describe:**

 $\mathcal{A}(\pi) = \{f : [n] \to \mathbb{P} \mid f(\pi_1) \leq \cdots \leq f(\pi_n), i \in \text{Des } \pi \text{ implies } f(\pi_i) < f(\pi_{i+1})\}.$

• It turns out that $\Gamma_{\pi} = F_{n,\text{Des } \pi} \in \text{QSym}.$

For a given P on $V = [n]$, define a linear extension of P to be a total ordering $\pi = \pi_1 \pi_2 \cdots \pi_n$ of V such that *π*ⁱ *<*^P *π*^j implies i *<* j. Let L(P) be the set of linear extensions of P.

In particular, π **is also a poset on [n]. The structure of** π **-partitions is simple to describe:**

$$
\mathcal{A}(\pi) = \{f : [n] \to \mathbb{P} \mid f(\pi_1) \leq \cdots \leq f(\pi_n), i \in \text{Des } \pi \text{ implies } f(\pi_i) < f(\pi_{i+1})\}.
$$

It turns out that $\Gamma_{\pi} = F_{n \text{Des } \pi} \in \text{QSym}.$

Fundamental Lemma

For any poset P on $[n]$, $A(P)$ can be decomposed as the disjoint union:

$$
\mathcal{A}(P)=\bigsqcup_{\pi\in\mathcal{L}(P)}\mathcal{A}(\pi).
$$

One can regard total orderings, or equivalently, linear permutations, as the building blocks!

Enriched P-partitions

Stembridge defines \mathbb{P}' to be the set of nonzero integers, totally ordered as

−1 ≺ 1 ≺ −2 ≺ 2 ≺ −3 ≺ 3 ≺ · · · *.*

Definition

An enriched P -partition is a function $f:[n] \to \mathbb{P}'$ such that for all $i \leq_P j$ in $P,$

\n- (a)
$$
f(i) \leq f(j)
$$
,
\n- (b) $f(i) = f(j) > 0$ implies $i < j$,
\n- (c) $f(i) = f(j) < 0$ implies $i > j$.
\n

Denote by $\mathcal{E}(P)$ the set of all enriched P-partitions f.

Enriched P-partitions

Stembridge defines \mathbb{P}' to be the set of nonzero integers, totally ordered as

−1 ≺ 1 ≺ −2 ≺ 2 ≺ −3 ≺ 3 ≺ · · · *.*

Definition

An enriched P -partition is a function $f:[n] \to \mathbb{P}'$ such that for all $i \leq_P j$ in $P,$

(a)
$$
f(i) \preceq f(j)
$$
,

(b)
$$
f(i) = f(j) > 0
$$
 implies $i < j$,

(c) $f(i) = f(j) < 0$ implies $i > j$.

Denote by $\mathcal{E}(P)$ the set of all enriched P-partitions f.

(a) $f(2) \preceq f(1)$, $f(2) \preceq f(3)$; (b) $f(2) = f(1) = L$ implies $L < 0$;

(c)
$$
f(2) = f(3) = L
$$
 implies $L > 0$.

Jinting Liang (MSU) **[Enriched toric](#page-0-0) [D**]-partitions **December 7, 2022** 14/23

Weight enumerator and peak set

Define the weight enumerator for enriched P-partitions by the formal series

$$
\Delta_P := \sum_{f \in \mathcal{E}(P)} \prod_{i \in [n]} x_{|f(i)|}.
$$

By the Fundamental Lemma of enriched P-partitions:

$$
\Delta_P = \sum_{\pi \in \mathcal{L}(P)} \Delta_{\pi}.
$$

Weight enumerator and peak set

Define the weight enumerator for enriched P-partitions by the formal series

$$
\Delta_P := \sum_{f \in \mathcal{E}(P)} \prod_{i \in [n]} x_{|f(i)|}.
$$

By the Fundamental Lemma of enriched P-partitions:

$$
\Delta_P = \sum_{\pi \in \mathcal{L}(P)} \Delta_{\pi}.
$$

Proposition (Stembridge, 1997)

As a quasi-symmetric function, ∆*^π* has the following expansion of monomial quasi-symmetric functions

$$
\Delta_{\pi} = \sum_{E \subseteq [n-1]: \; \mathsf{Pk} \pi \subseteq E \cup (E+1)} 2^{|E|+1} M_{n,E}.
$$

Weight enumerator and peak set

Define the weight enumerator for enriched P-partitions by the formal series

$$
\Delta_P := \sum_{f \in \mathcal{E}(P)} \prod_{i \in [n]} x_{|f(i)|}.
$$

By the Fundamental Lemma of enriched P-partitions:

$$
\Delta_P = \sum_{\pi \in \mathcal{L}(P)} \Delta_{\pi}.
$$

Proposition (Stembridge, 1997)

As a quasi-symmetric function, ∆*^π* has the following expansion of monomial quasi-symmetric functions

$$
\Delta_{\pi} = \sum_{E \subseteq [n-1]: \ \text{Pk}_{\pi} \subseteq E \cup (E+1)} 2^{|E|+1} M_{n,E}.
$$

Takeaway: ∆*^π* depends on Pk *π*.

Every DAG, abbreviation for directed acyclic graph, has a unique transitive closure; transitive \vec{D} induces a poset on the vertex set V by if $i \rightarrow j$ in \vec{D} then $i <_{\vec{D}} j$.

Every DAG, abbreviation for directed acyclic graph, has a unique transitive closure; transitive \vec{D} induces a poset on the vertex set V by if $i \rightarrow j$ in \vec{D} then $i <_{\vec{D}} j$.

Ex: \vec{D} has vertex set $V = \{1, 2, 3, 4\}$.

Every DAG, abbreviation for directed acyclic graph, has a unique transitive closure; transitive \vec{D} induces a poset on the vertex set V by if $i \rightarrow j$ in \vec{D} then $i <_{\vec{D}} j$.

Ex: \vec{D} has vertex set $V = \{1, 2, 3, 4\}.$

 $\bf{Observation:}$ Both \vec{D}_1 and \vec{D}_2 extend \vec{D} , so 2431 and 2413 linearly extend \vec{D} .

Every DAG, abbreviation for directed acyclic graph, has a unique transitive closure; transitive \vec{D} induces a poset on the vertex set V by if $i \rightarrow j$ in \vec{D} then $i <_{\vec{D}} j$.

Ex: \vec{D} has vertex set $V = \{1, 2, 3, 4\}.$

 $\bf{Observation:}$ Both \vec{D}_1 and \vec{D}_2 extend \vec{D} , so 2431 and 2413 linearly extend \vec{D} . Equivalently, one can define a linear extension of \vec{D} as being a DAG \vec{D}' on the same vertex set whose arc set contains that of \vec{D} .

Definition (Flip)

Suppose i is a source (all arrows out) or a sink (all arrows in) in $\vec D,$ we say $\vec D'$ is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}'\equiv\vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} .

Definition (Flip)

Suppose i is a source (all arrows out) or a sink (all arrows in) in $\vec D$, we say $\vec D'$ is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}'\equiv\vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} .

Definition (Flip)

Suppose i is a source (all arrows out) or a sink (all arrows in) in $\vec D,$ we say $\vec D'$ is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}'\equiv\vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} . **Question:** If $\vec{D} = \pi$ is a total linear order, what's the corresponding $[\vec{D}]$?

Definition (Flip)

Suppose i is a source (all arrows out) or a sink (all arrows in) in $\vec D,$ we say $\vec D'$ is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}'\equiv\vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} . **Question:** If $\vec{D} = \pi$ is a total linear order, what's the corresponding $[\vec{D}]$?

The cyclic permutation [*π*]!

Definition (Flip)

Suppose i is a source (all arrows out) or a sink (all arrows in) in $\vec D$, we say $\vec D'$ is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}'\equiv\vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} . **Question:** If $\vec{D} = \pi$ is a total linear order, what's the corresponding $[\vec{D}]$? The cyclic permutation [*π*]!

Proposition (Develin-Macauley-Reiner, 2016)

If $\vec{D} = \pi$ is a total linear order with $\pi = \pi_1 \dots \pi_n$, then there is a bijection between toric DAG $|\vec{D}|$ and cyclic permutation $[\pi]$.

Definition (Flip)

Suppose i is a source (all arrows out) or a sink (all arrows in) in $\vec D,$ we say $\vec D'$ is obtained from \vec{D} by a flip at *i* if \vec{D}' is obtained by reversing all arrows containing *i*.

Define the equivalence relation \equiv on DAGs as follows: $\vec{D}'\equiv\vec{D}$ if and only if \vec{D}' is obtained from \vec{D} by a sequence of flips. A toric DAG $[\vec{D}]$ is the equivalence class of a DAG \vec{D} . **Question:** If $\vec{D} = \pi$ is a total linear order, what's the corresponding $[\vec{D}]$?

The cyclic permutation [*π*]!

For a general toric DAG [\vec{D}], define

$$
\mathcal{L}^{\text{tor}}([\vec{D}]):=\{\,[\pi] : [\pi] \text{ torically extends } [\vec{D}]\,\}.
$$

Toric [\vec{D}]-partitions

Definition

A toric $[\vec{D}]$ -partition is a function $f:[n]\to\mathbb{P}$ which is a \vec{D}' -partition for at least one <code>DAG</code> $\vec{D}' \in [\vec{D}]$. Denote by ${\cal A}^{\sf tor}([\vec{D}])$ the set of all toric $[\vec{D}]$ -partitions f .

Toric [D^T]-partitions

Definition

A toric $[\vec{D}]$ -partition is a function $f:[n]\to\mathbb{P}$ which is a \vec{D}' -partition for at least one <code>DAG</code> $\vec{D}' \in [\vec{D}]$. Denote by $\mathcal{A}^{\text{tor}}([\vec{D}])$ the set of all toric $[\vec{D}]$ -partitions f.

Fundamental Lemma ✓

Toric [D^T]-partitions

Definition

A toric $[\vec{D}]$ -partition is a function $f:[n]\to\mathbb{P}$ which is a \vec{D}' -partition for at least one <code>DAG</code> $\vec{D}' \in [\vec{D}]$. Denote by $\mathcal{A}^{\text{tor}}([\vec{D}])$ the set of all toric $[\vec{D}]$ -partitions f.

- Fundamental Lemma ✓
- Similarly define the generating function

$$
\mathsf{\Gamma}^{\text{cyc}}_{[\vec{D}]} = \sum_{f \in \mathcal{A}^{\text{tor}}([\vec{D}])} \mathsf{x}^f.
$$

It turns out that

$$
\Gamma_{[\pi]}^{cyc} = F_{n,cDes\pi}^{cyc} \in cQSym.
$$

Definition (Enriched toric [D^{*j*}-partition)

An enriched toric $[\vec{D}]$ -partition is a function $f:[n] \to \mathbb{P}'$ which is an enriched $\vec{D'}$ -partition for at least one DAG \vec{D}' in $[\vec{D}].$ Let ${\cal E}^{\rm tor}([\vec{D}])$ denote the set of all enriched toric $[\vec{D}].$ partitions.

Definition (Enriched toric [D^{*I*}]-partition)

An enriched toric $[\vec{D}]$ -partition is a function $f:[n] \to \mathbb{P}'$ which is an enriched $\vec{D'}$ -partition for at least one DAG \vec{D}' in $[\vec{D}].$ Let ${\cal E}^{\rm tor}([\vec{D}])$ denote the set of all enriched toric $[\vec{D}].$ partitions.

By definition,

$$
\mathcal{E}^{\text{tor}}([\vec{D}]) = \bigcup_{\vec{D}' \in [\vec{D}]} \mathcal{E}(\vec{D}'), \qquad \left(\mathcal{E}^{\text{tor}}([\pi]) = \bigcup_{\pi' \in [\pi]} \mathcal{E}(\pi') \right).
$$

Definition (Enriched toric [D^{*j*}-partition)

An enriched toric $[\vec{D}]$ -partition is a function $f:[n] \to \mathbb{P}'$ which is an enriched $\vec{D'}$ -partition for at least one DAG \vec{D}' in $[\vec{D}].$ Let $\mathcal{E}^{\text{tor}}([\vec{D}])$ denote the set of all enriched toric $[\vec{D}].$ partitions.

By definition,

$$
\mathcal{E}^{\mathsf{tor}}([\vec{D}]) = \bigcup_{\vec{D}' \in [\vec{D}]} \mathcal{E}(\vec{D}'), \qquad \left(\mathcal{E}^{\mathsf{tor}}([\pi]) = \bigcup_{\pi' \in [\pi]} \mathcal{E}(\pi') \right).
$$

Lemma (Fundamental Lemma of enriched toric [\vec{D}]-partitions, L, 2022)

For a DAG \vec{D} , the set of all enriched toric \vec{D} -partitions is a disjoint union of the set of enriched toric [*π*]-partitions of all toric extensions [*π*] of [D*⃗*]:

$$
\mathcal{E}^{\text{tor}}([\vec{D}]) = \bigsqcup_{[\pi] \in \mathcal{L}^{\text{tor}}([\vec{D}])} \mathcal{E}^{\text{tor}}([\pi]).
$$

Definition (Enriched toric [D^{*j*}-partition)

An enriched toric $[\vec{D}]$ -partition is a function $f:[n] \to \mathbb{P}'$ which is an enriched $\vec{D'}$ -partition for at least one DAG \vec{D}' in $[\vec{D}].$ Let ${\cal E}^{\rm tor}([\vec{D}])$ denote the set of all enriched toric $[\vec{D}].$ partitions.

By definition,

$$
\mathcal{E}^{\text{tor}}([\vec{D}]) = \bigcup_{\vec{D}' \in [\vec{D}]} \mathcal{E}(\vec{D}'), \qquad \left(\mathcal{E}^{\text{tor}}([\pi]) = \bigcup_{\pi' \in [\pi]} \mathcal{E}(\pi') \right).
$$

Fundamental Lemma ✓

Definition (Enriched toric [D^{*j*}-partition)

An enriched toric $[\vec{D}]$ -partition is a function $f:[n] \to \mathbb{P}'$ which is an enriched $\vec{D'}$ -partition for at least one DAG \vec{D}' in $[\vec{D}].$ Let ${\cal E}^{\rm tor}([\vec{D}])$ denote the set of all enriched toric $[\vec{D}].$ partitions.

By definition,

$$
\mathcal{E}^{\mathsf{tor}}([\vec{D}]) = \bigcup_{\vec{D}' \in [\vec{D}]} \mathcal{E}(\vec{D}'), \qquad \left(\mathcal{E}^{\mathsf{tor}}([\pi]) = \bigcup_{\pi' \in [\pi]} \mathcal{E}(\pi') \right).
$$

- Fundamental Lemma ✓
- Denote the weight enumerator for enriched toric [\vec{D}]-partitions by $\Delta_{\tau \vec{\alpha} \tau}^{\text{cyc}}$ ^{cyc}. The Fundamental Lemma implies,

$$
\Delta^{\text{cyc}}_{[\vec{D}]} = \sum_{[\pi] \in \mathcal{L}^{\text{tor}}([\vec{D}])} \Delta^{\text{cyc}}_{[\pi]}
$$

Cyclic Peak Functions

Proposition (L, 2022)

1 For any given cyclic permutation $\lceil \pi \rceil$ of length *n*, we have

$$
\Delta^{\mathrm{cyc}}_{[\pi]} = \sum_{E \subseteq [n]: \, \mathrm{cPk}(\pi) \subseteq E \cup (E+1)} 2^{|E|} M^{\mathrm{cyc}}_{n,E}.
$$

The sum is independent of the choice of representative *π* of [*π*].

Cyclic Peak Functions

Proposition (L, 2022)

¹ For any given cyclic permutation [*π*] of length n, we have

$$
\Delta_{[\pi]}^{\rm cyc} = \sum_{E \subseteq [n]: \, \mathsf{cPk}(\pi) \subseteq E \cup (E+1)} 2^{|E|} M_{n,E}^{\rm cyc}.
$$

The sum is independent of the choice of representative *π* of [*π*]. Takeaway: ∆^{cyc} [*π*] depends on cPk *π*, or equivalently, cPk[*π*]; one can associate to every cyclic peak set \dot{S} a cyclic quasi-symmetric function $\mathcal{K}^{\mathsf{cyc}}_{S}$ $\zeta^{cyc} := \Delta_{[\pi]}^{\text{cyc}}$ for any permutation π with peak $cPk \pi = S$. That is our cyclic peak function.

Cyclic Peak Functions

Proposition (L, 2022)

1 For any given cyclic permutation $[\pi]$ of length *n*, we have

$$
\Delta_{[\pi]}^{\rm cyc} = \sum_{E \subseteq [n]: \, \mathsf{cPk}(\pi) \subseteq E \cup (E+1)} 2^{|E|} M_{n,E}^{\rm cyc}.
$$

The sum is independent of the choice of representative *π* of [*π*]. Takeaway: ∆^{cyc} [*π*] depends on cPk *π*, or equivalently, cPk[*π*]; one can associate to every cyclic peak set \dot{S} a cyclic quasi-symmetric function $\mathcal{K}^{\mathsf{cyc}}_{S}$ $\zeta^{cyc} := \Delta_{[\pi]}^{\text{cyc}}$ for any permutation π with peak $cPk \pi = S$. That is our cyclic peak function.

2 For any cyclic peak set S in $[n]$, we have

$$
2^{-|S|}K_S^{\text{cyc}} = \sum_{E \subseteq [n]: S \subseteq E \triangle (E+1)} F_{n,E}^{\text{cyc}},
$$

where \triangle denotes symmetric difference.

Algebra of cyclic peaks

Let Λ_n be the space of cyclic quasi-symmetric functions spanned by cyclic peak function $\kappa_S^{\rm cyc}$ S , where S ranges over cyclic peak sets in $[n]$. Also let

$$
\Lambda:=\oplus_{n\geq 0}\Lambda_n.
$$

Proposition (L, 2022)

 Λ is a graded subring of cQSym, with $\mathcal{K}^{\mathsf{cyc}}_\mathsf{S}$ S^{cyc} form a basis of Λ. We call Λ the algebra of cyclic peaks.

Algebra of cyclic peaks

Let Λ_n be the space of cyclic quasi-symmetric functions spanned by cyclic peak function $\kappa_S^{\rm cyc}$ S , where S ranges over cyclic peak sets in $[n]$. Also let

$$
\Lambda:=\oplus_{n\geq 0}\Lambda_n.
$$

Proposition (L, 2022) Λ is a graded subring of cQSym, with $\mathcal{K}^{\mathsf{cyc}}_\mathsf{S}$ S^{cyc} form a basis of Λ. We call Λ the algebra of cyclic peaks.

More interesting stuff:

- Order polynomial
- Cyclic shuffle-compatibility (a joint work with Bruce Sagan and Yan Zhuang in preparation)

References

```
F
   Ron M. Adin, Ira M. Gessel, Victor Reiner, and Yuval Roichman.
   Cyclic quasi-symmetric functions.
   Sém. Lothar. Combin., 82B:Art. 67, 12, 2020.
Ħ
   Mike Develin, Matthew Macauley, and Victor Reiner.
   Toric partial orders.
   Trans. Amer. Math. Soc., 368(4):2263–2287, 2016.
```
Jinting Liang. F Enriched toric [\vec{D}]-partitions. Preprint, <https://arxiv.org/abs/2209.00051>, 2022.

John R. Stembridge. Enriched P-partitions. Trans. Amer. Math. Soc., 349(2):763–788, 1997.

Thank You!

MICHIGAN STATE UNIVERSITY