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The Fibonacci Numbers

I 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

I Fn = tilings of a strip of length n − 1 with squares and
dominos

I Fn = Fn−1 + Fn−2
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The Fibonomials

I Binomial coefficients:
(n
k

)
= n!

k!(n−k)! is an integer.

I Define Fn! = FnFn−1Fn−2 · · ·F1

I Define the fibonomials as(
n

k

)
F

=
Fn!

Fk !Fn−k !

(Benjamin and Plott, 2008)

I Is
(n
k

)
F

an integer? Yes! (Benjamin and Plott, Sagan and
Savage, and Bennet, Carrillo, Machacek and Sagan)
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F12! counts the number of tilings of the following stairstep shape:

To prove
(12

7

)
F

is an integer, we will partition the set of tilings into

disjoint subsets S1, S2, . . . , Sk such that |Sm|
F7!F5!

.
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The empty boxes to the left of the path can be filled in F7! ways
and the empty boxes to the right of the path can be filled in F5!
ways.
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The Lucas polynomials {n} are defined in variables s and t as
{0} = 0, {1} = 1 and for n ≥ 2 we have:

{n} = s{n − 1}+ t{n − 2}.

If s and t are set to be integers then the sequence of numbers
given by {n} is called a Lucas sequence.

When s = t = 1 we have the Fibonacci sequence. Note that {n} is
the generating function for tilings of a strip of length n − 1 with
squares s and dominoes t.
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The lucanomials are defined by{ n
k

}
=

{n}!
{k}!{n − k}!

where {n}! = {n}{n − 1} · · · {2}{1}.

The lucanomials are polynomials with non-negative integer
coefficients. (BCMS)
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The Catalan Numbers

I 1, 1, 2, 5, 14, 42, . . .

I Cn = counts over 66 different combinatorial objects!

I Cn = 1
n+1

(2n
n

)
= 2n!

(n+1)!n!

I The FiboCatalan numbers (Shapiro):

Cn,F =
1

Fn+1

(
2n

n

)
F

=
F2n!

Fn+1!Fn!

I The FiboCatalan numbers are integers!
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The FiboCatalan Numbers

I Since
(2n

n

)
= 2n!

n!n! and Cn = 2n!
(n+1)!n! are integers,

what about 2n!
(n+2)!n!?

I Not an integer! (Example: n = 1, 2, 4, 6, . . . )

I However, 6(2n)!
(n+2)!n! is an integer.

I Gessel and Xin (2005) give a combinatorial interpretation of
these numbers.
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Gessel and Xin’s intepretation shows that 6(2n)!
(n+2)!n! counts pairs of

Dyck paths of total length 2n with heights differing by at most 1.

Their proof is based on fact that

6(2n)!

(n + 2)!n!
= 4Cn − Cn+1.
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In 1874, Catalan observed that

S(m, n) =
(2m)!(2n)!

m!n!(m + n)!

are integers, but there is no known combinatorial proof.

Gessel (1992) called these numbers the super Catalan numbers
since

1

2
S(1, n) = Cn.

Note that
1

2
S(2, n) =

6(2n)!

(n + 2)!n!
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Gessel (1992) also showed that the generalized Catalan numbers

Jr
(2n)!

n!(n + r + 1)!

are integers when

Jr =
(2r + 1)!

r !
.

Note that when r = 1 we have

6(2n)!

(n + 2)!n!
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Allen and Gheorghiciuc have given a combinatorial interpretation
for S(m, n) for m = 2.

Gheorghiciuc and Orelowitz have given a combinatorial
interpretation for T (m, n) = 1

2S(m, n) for m = 3 and m = 4.

Chen and Wang have given a combinatorial interpretation for
S(m,m + s) for 0 ≤ s ≤ 3.
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In my work, I have defined the super FiboCatalan numbers as

S(m, n)F =
F2m!F2n!

Fm!Fn!Fm+n!

and the generalized FiboCatalan numbers as

Jr ,F
F2n!

Fn!Fn+r+1!

where Jr ,F = F2r+1!
Fr !

.
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The generalized FiboCatalan number for r = 0 is an integer:

J0,F
F2n!

Fn!Fn+0+1!
=

F1!

F0!

F2n!

Fn!Fn+1!
= Cn,F = S(1, n)F .

The generalized FiboCatalan number for r = 1 is:

J1,F
F2n!

Fn!Fn+1+1!
=

F3!

F1!

F2n!

Fn!Fn+2!
= 2

F2n!

Fn!Fn+2!
=

1

3
S(2, n)F .

Are these numbers integers?
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Lemma 1: F2nFn+2 − F2n+2Fn = (−1)nFn.

Proof: A tail swapping argument similar to those found in Proofs
That Really Count (Benjamin and Quinn).

Lemma 2: FknFn+2 − Fkn+2Fn = (−1)nF(k−1)n.
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Theorem
(KK) F2n+1F2nCn,F − Fn+1FnCn+1,F = (−1)nFnF2n+1

F2n!
Fn+2!Fn!

.

Proof.

F2n+1F2nCn,F − Fn+1FnCn+1,F

=
F2n+1F2nF2n!

Fn+1Fn!Fn!
− Fn+1FnF2n+2!

Fn+2Fn+1!Fn+1!

= F2n+1F2nFn+2
F2n!

Fn+2!Fn!
− F2n+2F2n+1Fn

F2n!

Fn+2!Fn!

= F2n+1[F2nFn+2 − F2n+2Fn]
F2n!

Fn+2!Fn!

= F2n+1(−1)nFn
F2n!

Fn+2!Fn!
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It is well know that F2n = FnFn+1 + FnFn−1, thus the left side of
Theorem 1 is equal to

F2n+1[FnFn+1 + FnFn−1]Cn,F − Fn+1FnCn+1,F

and is therefore divisible by Fn. Thus

F2n+1Fn+1Cn,F + F2n+1Fn−1Cn,F − Fn+1Cn+1,F

= (−1)nF2n+1
F2n!

Fn+2!Fn!

= (−1)n
1

Fn+2

(
2n + 1

n

)
F

.
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Corollary

For n ≥ 1,

F2n+1
F2n!

Fn+2!Fn!
=

1

Fn+2

(
2n + 1

n

)
F

is an integer.

Note this is not true for binomial coefficients! n = 2 fails to give
an integer, for example.

Kendra Killpatrick Super FiboCatalan Numbers and their Lucas Analogues



Fibonomials
The FiboCatalan Numbers

The super FiboCatalan numbers
The Lucas analogues

Corollary

For n ≥ 1,

F2n+1
F2n!

Fn+2!Fn!
=

1

Fn+2

(
2n + 1

n

)
F

is an integer.

Note this is not true for binomial coefficients! n = 2 fails to give
an integer, for example.

Kendra Killpatrick Super FiboCatalan Numbers and their Lucas Analogues



Fibonomials
The FiboCatalan Numbers

The super FiboCatalan numbers
The Lucas analogues

F2n+1
F2n!

Fn+2!Fn!
= F2n+1

1

Fn+2
Cn,F .

A well-known fact about Fibonacci numbers is that

gcd(Fn,Fm) = Fgcd(m,n)

Thus
gcd(F2n+1,Fn+2) = Fgcd(2n+1,n+2)

The gcd(2n + 1, n + 2) = 1 or 3.

If gcd(2n + 1, n + 2) = 1 then gcd(F2n+1,Fn+2) = F1 = 1, so Fn+2

divides Cn,F .

If gcd(2n + 1, n + 2) = 3 then gcd(F2n+1,Fn+2) = F3 = 2, so Fn+2

divides 2Cn,F .
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Corollary

For n ≥ 1, the generalized FiboCatalan number for r = 1,

2F2n!

Fn+2!Fn!
=

1

Fn+2
2Cn,F

is an integer.

Theorem
For n ≥ 1, the super FiboCatalan number is an integer for m = 2.
I.e.,

S(2, n)F =
6F2n!

Fn!Fn+2!

is an integer.
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Theorem
(KK) The super FiboCatalan number S(m,m + s)F is an integer
for 0 ≤ s ≤ 4.

When s = 0 we have:

S(m,m)F =
F2m!F2m!

Fm!Fm!F2m!
=

(
2m

m

)
F

which is an integer.
When s = 1,

S(m,m + 1)F =
F2m!F2m+2!

Fm!Fm+1!F2m+1!
=

F2m+2F2m!

Fm+1!Fm!
= F2m+2Cm,F

which is an integer.
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When s = 2,

S(m,m + 2)F =
F2m!F2m+4!

Fm!Fm+2!F2m+2!

=
F2m!F2m+4F2m+3F2m+2!

Fm+2Fm+1Fm!Fm!F2m+2!

=
1

Fm+1

F2m!

Fm!Fm!

F2m+4

Fm+2
F2m+3

= F2m+3Cm,F

F2(m+2)

Fm+2
.

Since F2n = FnFn−1 + FnFn+1 then Fn divides F2n so Fm+2 divides
F2(m+2). Therefore,

F2m+3Cm,F

F2(m+2)

Fm+2

is an integer.
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When s = 3,

S(m,m + 3)F =
F2m!F2(m+3)!

Fm!Fm+3!F2m+3!

=
F2m!F2m+6F2m+5F2m+4F2m+3!

Fm!Fm!Fm+1Fm+2Fm+3F2m+3!

= Cm,F
F2m+6

Fm+3

F2m+4

Fm+2
F2m+5

which again is an integer since Fn divides F2n.
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The Lucas analogue of the generalized FiboCatalan number for
r = 0 is equal to C{n} which is equal to 1

{2}S{1, n}:

J{0}
{2n}!

{n}!{n + 0 + 1}!
=
{1}!
{0}!

{2n}!
{n}!{n + 1}!

= C{n} =
1

{2}
S{1, n}.

The Lucas analogue of the generalized FiboCatalan number for
r = 1 is:

J{1}
{2n}!

{n}!{n + 1 + 1}!
=
{3}!
{1}!

{2n}!
{n}!{n + 2}!

= {3}! {2n}!
{n}!{n + 2}!

=
{2}
{4}

S(2, n)F .

These polynomials are polynomials with non-negative integer
coefficients.
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Theorem

{2n + 1}{2n}C{n} − {n + 1}{n}C{n+1}

= (−1)ntn{2}{n}{2n + 1} {2n}!
{n + 2}!{n}!

.

Corollary

For n ≥ 1,

{2n + 1}{2} {2n}!
{n + 2}!{n}!

= {2} 1

{n + 2}

{ 2n + 1
n

}
is a polynomial with non-negative integer coefficients.
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Theorem
S{m,m + s} is a polynomial with non-negative integer coefficients
for 0 ≤ s ≤ 4.

When s = 0 we have:

S{m,m} =
{2m}!{2m}!

{m}!{m}!{2m}!
=

{ 2m
m

}
which is a polynomial with non-negative integer coefficients.
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When s = 1,

S{m,m + 1} =
{2m}!{2m + 2}!

{m}!{m + 1}!{2m + 1}!
(1)

=
{2m + 2}{2m}!
{m + 1}!}m}!

(2)

= {2m + 2}C{m} (3)

which is a polynomial with non-negative integer coefficients.
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When s = 2,

S{m,m + 2} =
{2m}!{2m + 4}!

{m}!{m + 2}!{2m + 2}!

=
{2m}!{2m + 4}{2m + 3}{2m + 2}!
{m + 2}{m + 1}{m}!{m}!{2m + 2}!

=
1

{m + 1}
{2m}!

{m}!{m}!
{2m + 4}
{m + 2}

{2m + 3}

= {2m + 3}C{m}
{2(m + 2)}
{m + 2}

.

Since {2n} = t{n}{n − 1}+ {n}{n + 1} then {n} divides {2n} so
{m + 2} divides {2(m + 2)}. Therefore,

{2m + 3}C{m}
{2(m + 2)}
{m + 2}

is a polynomial with non-negative integer coefficients.
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When s = 3,

S{m,m + 3} =
{2m}!{2(m + 3)}!

{m}!{m + 3}!{2m + 3}!

=
{2m}!{2m + 6}{2m + 5}{2m + 4}{2m + 3}!
{m}!{m}!{m + 1}{m + 2}{m + 3}{2m + 3}!

= C{m}
{2m + 6}
{m + 3}

{2m + 4}
{m + 2}

{2m + 5}

which again is a polynomial with non-negative integer coefficients
since {n} divides {2n}.
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I Open Problems:

I The rest of the cases!

I A combinatorial interpretation of the super FiboCatalan
numbers.

I Type Bn and others.

I Other identities
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In addition, the super Catalan numbers satisfy a number of
interesting binomial identities, such as this identity of von Szily
(1894):

S(m, n) =
∑
k∈Z

(−1)k
(

2m

m + k

)(
2n

n + k

)
.

Is there an analogue for the super FiboCatalan numbers?
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Mikic recently proved the following alternating convolution formula
for the super Catalan numbers:

2n∑
k=0

(−1)k
(

2n

k

)
S(k, l)S(2n − k, l) = S(n, l)S(n + l , n)

for all non-negative integers n and l . Mikic also proved a similar
identity for the Catalan numbers:

2n∑
k=0

(−1)k
(

2n

k

)
CkC2n−k = Cn

(
2n

n

)
.

Is there an analogue for the super FiboCatalan numbers?
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