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Graph Coloring

Color vertices so that any vertices with an edge between
them must get different colors.

A proper m-coloring of a graph G is a labeling
c : V (G)→ [m], such that c(u) 6= c(v) whenever u and v
are adjacent in G.

Minimum number of colors needed for such a coloring is
called the chromatic number χ(G) of the graph G.

Each vertex has the same list of colors [m] available to it.



List Coloring

List coloring was introduced independently by Vizing
(1976) and Erdős, Rubin, and Taylor (1979), as a
generalization of usual graph coloring.



List Coloring

For graph G suppose each v ∈ V (G) is assigned a list,
L(v), of colors. We refer to L as a list assignment. If all the
lists associated with the list assignment L have size m, we
say that L is an m-assignment.

An L-coloring for G is a proper coloring, f , of G such that
f (v) ∈ L(v) for all v ∈ V (G).

When an L-coloring for G exists, we say that G is
L-colorable or L-choosable.



List Chromatic Number

The list chromatic number of a graph G, written χ`(G), is
the smallest m such that G is L-colorable whenever
|L(v)| ≥ m for each v ∈ V (G).



List Chromatic Number

The list chromatic number of a graph G, written χ`(G), is
the smallest m such that G is L-colorable whenever
|L(v)| ≥ m for each v ∈ V (G).

Since usual coloring corresponds to a constant list
assignment,

χ(G) ≤ χ`(G).

The gap between χ(G) and χ`(G) can be arbitrarily large:
χ`(Kk ,t ) = k + 1 iff t ≥ kk .



A Different Perspective



DP-Coloring
In 2015, Dvořák and Postle introduced DP-coloring (they
called it correspondence coloring) of graphs.
Intuitively, DP-coloring considers the worst-case scenario
of how many colors we need in the lists if we no longer can
identify the names of the colors. Each vertex still gets a list
of colors but identification of which colors are different can
vary from edge to edge.

A (DP-)cover of G is a pair H = (L,H) consisting of a
graph H and a function L : V (G)→ P(V (H)) satisfying:

(1) the set {L(u) : u ∈ V (G)} is a partition of V (H);
(2) for every u ∈ V (G), the graph H[L(u)] is complete;
(3) if EH(L(u),L(v)) is nonempty, then u = v or uv ∈ E(G);
(4) if uv ∈ E(G), then EH(L(u),L(v)) is a matching (the
matching may be empty).
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(DP-) Cover of a Graph

A cover of G is a pair H = (L,H) consisting of a graph H
and a function L : V (G)→ P(V (H)) satisfying:

(1) the set {L(u) : u ∈ V (G)} is a partition of V (H);
(2) for every u ∈ V (G), the graph H[L(u)] is complete;
(3) if EH(L(u),L(v)) is nonempty, then u = v or uv ∈ E(G);
(4) if uv ∈ E(G), then EH(L(u),L(v)) is a matching (the
matching may be empty).
See also “covering graphs”, “Lifts”. Studied since 1990s.

Intuition:
Blow up each vertex u in G into a clique of size |L(u)|;
Add a matching (possibly empty) between any two such
cliques for vertices u and v if uv is an edge in G.



(DP-) Cover of a Graph
Intuition:
Blow up each vertex u in G into a clique of size |L(u)|;
Add a matching (possibly empty) between any two such
cliques for vertices u and v if uv is an edge in G.
A cover H = (L,H) is called m-fold if |L(u)| = m for all u.
Two 2-fold covers of C4:



DP-Chromatic Number of a Graph

Given H = (L,H), a cover of G, an H-coloring of G is an
independent set in H of size |V (G)|. Equivalently, an
independent transversal in H.
The DP-chromatic number of a graph G, χDP(G), is the
smallest m such that G admits an H-coloring for every
m-fold cover H of G.



DP-Chromatic Number of a Graph
Given H = (L,H), a cover of G, an H-coloring of G is an
independent set in H of size |V (G)|.
The DP-chromatic number of a graph G, χDP(G), is the
smallest m such that G admits an H-coloring for every
m-fold cover H of G.
χDP(C4) > 2 = χ`(C4):



DP-Coloring and List Coloring
Given an m-assignment, L, for a graph G, it is easy to
construct an m-fold cover H of G such that:
G has an H-coloring if and only if G has a proper
L-coloring.

χ(G) ≤ χ`(G) ≤ χDP(G).



The Chromatic Polynomial

Birkhoff 1912: For m ∈ N, let P(G,m) denote the number
of proper colorings of G where the colors used come from
{1, . . . ,m}.

P(G,m) is a polynomial in m of degree |V (G)|. We call
P(G,m) the chromatic polynomial of G.

Explored deeply and widely in the past 100 years, and
generalized in many different ways.



The List Color Function

P(G,L) be the number of proper L-colorings of G.

Kostochka and Sidorenko 1990: The list color function
P`(G,m) is the minimum value of P(G,L) over all possible
m-assignments L for G.

In general, P`(G,m) ≤ P(G,m).



The List Color Function

P(G,L) be the number of proper L-colorings of G.

Kostochka and Sidorenko 1990: The list color function
P`(G,m) is the minimum value of P(G,L) over all possible
m-assignments L for G.

In general, P`(G,m) ≤ P(G,m).

P(K2,4,2) = 2, and yet P`(K2,4,2) = 0.
P`(K3,26,3) ≤ 38212 < 31226 ≤ P(K3,26,3).



The List Color Function

P(G,L) be the number of proper L-colorings of G.

Kostochka and Sidorenko 1990: The list color function
P`(G,m) is the minimum value of P(G,L) over all possible
m-assignments L for G.

In general, P`(G,m) ≤ P(G,m).

Theorem (Kostochka, Sidorenko (1990); Kirov, Naimi
(2016); K., Mudrock (2021))
1) P`(G,m) = P(G,m) for all m, if G is chordal.
2) P`(Cn,m) = P(Cn,m) = (m − 1)n + (−1)n(m − 1) for all m.
3) P`(Cn ∨ Kk ,m) = P(Cn ∨ Kk ,m) for all m.



The List Color Function

P`(G,m) ≤ P(G,m). And for some G, P`(G,m) < P(G,m)

P`(G,m) need not be a polynomial, but it will equal the
chromatic polynomial ultimately.

Theorem (Dong, Zhang (2022+); improving Wang, Qian, Yan
(2017), Thomassen (2009), Donner (1992), question of Kostochka &
Sidorenko (1990))
For any connected graph G with t edges, P`(G,m) = P(G,m)
for m > t − 1.



The DP Color Function

For H = (L,H), a cover of graph G, PDP(G,H) be the
number of H-colorings of G.

K. and Mudrock 2021: The DP color function, PDP(G,m),
is the minimum value of PDP(G,H) where the minimum is
taken over all possible m-fold covers H of G.

P(C4,2) = P`(C4,2) = 2, and yet PDP(C4,2) = 0.

In general, PDP(G,m) ≤ P`(G,m) ≤ P(G,m).
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The DP Color Function

For H = (L,H), a cover of graph G, PDP(G,H) be the
number of H-colorings of G.

K. and Mudrock 2021: The DP color function, PDP(G,m),
is the minimum value of PDP(G,H) where the minimum is
taken over all possible m-fold covers H of G.

P(C4,2) = P`(C4,2) = 2, and yet PDP(C4,2) = 0.

In general, PDP(G,m) ≤ P`(G,m) ≤ P(G,m).



How is DP Color Function useful?

Guaranteed number of DP-colorings regardless of the
cover being used.



How is DP Color Function useful?

Lower bound on both P`(G,m) and P(G,m).

Theorem (Bernshteyn, Brazelton, Cao, Kang (2023))
For any triangle-free graph G with n vertices, t edges, ∆(G)
large enough, and m > (1 + o(1))∆(G)/ log ∆(G),
PDP(G,m) ≥ (1− δ)n(1− 1

m )tmn.



How is DP Color Function useful?

Lower bound on both P`(G,m) and P(G,m).

Theorem (Bernshteyn, Brazelton, Cao, Kang (2023))
For any triangle-free graph G with n vertices, t edges, ∆(G)
large enough, and m > (1 + o(1))∆(G)/ log ∆(G),
PDP(G,m) ≥ (1− δ)n(1− 1

m )tmn.
Close to being sharp modulo the (1− δ)n error term.

Proposition (K., Mudrock (2021))
For any graph G, PDP(G,m) ≤ (1− 1

m )|E(G)|m|V (G)|, for all m.



How is DP Color Function useful?

Lower bound on both P`(G,m) and P(G,m).

Theorem
Let G be a n-vertex planar graph. χ`(G), χDP(G) ≤ 5.
(Thomassen (2007a)) P`(G,5) ≥ 2n/9.

Let G be a n-vertex planar graph of girth at least 5.
χ`(G), χDP(G) ≤ 3.
(Thomassen (2007b)) P`(G,3) ≥ 2n/10000.
(Postle, Smith-Roberge (2022+)) PDP(G,3) ≥ 2n/292.
(Dahlberg, K., Mudrock (2023+)) PDP(G,3) ≥ 3n/6.



How is DP Color Function useful?

It can capture the behavior of extremal values:



How is DP Color Function useful?

Theorem (K., Mudrock, Sharma, Stratton (2023))
For any graphs G and H,

χDP(G�H) ≤ min{χDP(G) + col(H), χDP(H) + col(G)} − 1.

χDP(G�Kk,t ) = χDP(G) + k when
t ≥ (PDP(G, χDP(G) + k − 1))k .

χDP(C2m+1�Kk,t ) = k + 3 when

t ≥
(

2k ln(k+2)
(k+1)!

)
(PDP(C2m+1, k + 2))k .

χDP(C2m+1�K1,t ) = 4 iff t ≥ PDP(C2m+1,3)
3 = 22m+1−2

3 .

χDP(C2m+2�Kk,t ) = k + 3 when

t ≥
(

2 ln(k+2)
b(k+2)/2c(k−1)!

)
(PDP(C2m+2, k + 2))k .

χDP(C2m+2�K1,t ) = 4 iff t ≥ PDP(C2m+2,3) = 22m+2 − 1.



A Natural Question

We know:
Theorem (Dong, Zhang (2022+); improving Wang, Qian, Yan
(2017), Thomassen (2009), Donner (1992), question of Kostochka &
Sidorenko (1990))
For any connected graph G with t edges, P`(G,m) = P(G,m)
for m > t − 1.

For every graph G, does PDP(G,m) = P(G,m) for
sufficiently large m?



DP Color Function is different

Theorem (K., Mudrock (2021))
If G is a graph with girth that is even, then there is an N such
that PDP(G,m) < P(G,m) whenever m ≥ N.

Furthermore, for any integer g ≥ 3 there exists a graph G with
girth g and an N such that PDP(G,m) < P(G,m) whenever
m ≥ N.

Theorem (Dong, Yang (2022))
If G contains an edge e such that the length of a shortest cycle
containing e in G is even, then there exists N ∈ N such that
PDP(M,m) < P(M,m) whenever m ≥ N.



A Follow-up Natural Question

For which graphs G does PDP(G,m) = P(G,m) for all m?
For which graphs G does there exist N such that
PDP(G,m) = P(G,m) for all m ≥ N?

Theorem (K., Mudrock (2021))
If G is chordal, then PDP(G,m) = P(G,m) for every m.

a straightforward application of perfect elimination ordering.
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Theta Graphs

A Generalized Theta graph Θ(l1, . . . , lk ) consists of a pair
of end vertices joined by k internally disjoint paths of
lengths l1, . . . , lk . Θ(l1, l2, l3) is simply called a Theta graph.
P(Θ(l1, . . . , lk ),m) =∏k

i=1((m−1)li+1+(−1)li+1(m−1))
(m(m−1))k−1 +

∏k
i=1((m−1)li +(−1)li (m−1))

mk−1 .

Widely studied for many graph theoretic problems and are the
main subject of two classical papers on the chromatic
polynomial by Sokal, which include the celebrated result that the
zeros of the chromatic polynomials of the Generalized Theta
graphs are dense in the whole complex plane with the possible
exception of the unit disc around the origin (by including the join
of Generalized Theta graphs with K2 this extends to all of the
complex plane).



Theta Graphs
Extending results of K. and Mudrock (2021),

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))

Let G = Θ(l1, l2, l3) and 2 ≤ l1 ≤ l2 ≤ l3.

(1) If the parity of l1 is different from both l2 and l3, then
PDP(G,m) = P(G,m) for all m.

(2) If the parity of l1 is the same as l2 and different from l3, then for
m ≥ 2: PDP(G,m) =
1
m
[
(m − 1)l1+l2+l3 + (m − 1)l1 − (m − 1)l2+1 − (m − 1)l3 + (−1)l3+1(m − 2)

]
.

(3) If the parity of l1 is the same as l3 and different from l2, then for
m ≥ 2: PDP(G,m) =
1
m
[
(m − 1)l1+l2+l3 + (m − 1)l1 − (m − 1)l3+1 − (m − 1)l2 + (−1)l2+1(m − 2)

]
.

(4) If l1, l2 and l3 all have the same parity, then for m ≥ 3: PDP(G,m) =
1
m
[
(m − 1)l1+l2+l3 − (m − 1)l1 − (m − 1)l2 − (m − 1)l3 + 2(−1)l1+l2+l3

]
.



Two Fundamental Questions

For which graphs G does there exist N such that
PDP(G,m) = P(G,m) for all m ≥ N?

Given a graph G does there always exist an N ∈ N and a
polynomial p(m) such that PDP(G,m) = p(m) whenever
m ≥ N?



Two Fundamental Questions
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PDP(G,m) = P(G,m) for all m ≥ N?

Given a graph G does there always exist an N ∈ N and a
polynomial p(m) such that PDP(G,m) = p(m) whenever
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Generalized Theta Graphs

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))

Let G = Θ(l1, . . . , lk ) where k ≥ 2, l1 ≤ · · · ≤ lk , and l2 ≥ 2.

(i) If there is a j ∈ {2, . . . , k} such that l1 and lj have the same
parity, then there is an N ∈ N such that PDP(G,m) < P(G,m)
for all m ≥ N.

(ii) If l1 and lj have different parity for each j ∈ {2, . . . , k}, then
there is an N ∈ N such that PDP(G,m) = P(G,m) for all m ≥ N.

Statement (i) does not answer the question of whether
PDP(G,m) equals a polynomial for sufficiently large m. To
answer that question, we study the DP color function of a
class of graphs that contains all Generalized Theta graphs.



Generalized Theta Graphs

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))

Let G = Θ(l1, . . . , lk ) where k ≥ 2, l1 ≤ · · · ≤ lk , and l2 ≥ 2.

(i) If there is a j ∈ {2, . . . , k} such that l1 and lj have the same
parity, then there is an N ∈ N such that PDP(G,m) < P(G,m)
for all m ≥ N.

(ii) If l1 and lj have different parity for each j ∈ {2, . . . , k}, then
there is an N ∈ N such that PDP(G,m) = P(G,m) for all m ≥ N.

Statement (i) does not answer the question of whether
PDP(G,m) equals a polynomial for sufficiently large m. To
answer that question, we study the DP color function of a
class of graphs that contains all Generalized Theta graphs.



Graphs with a Feedback Vertex Set of Order One

A feedback vertex set of a graph is a subset of vertices whose
removal makes the resulting induced subgraph acyclic. Clearly, a
Generalized Theta graph has a feedback vertex set of size one.

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))

Let G be a graph with a feedback vertex set of order one. Then
there exists N and a polynomial p(m) such that
PDP(G,m) = p(m) for all m ≥ N.



What is the polynomial?

Theorem (Halberg, K., Liu, Mudrock, Shin, Thomason (2021+))

Let G be a graph with a feedback vertex set of order one. Then there
exists N and a polynomial p(m) s.t. PDP(G,m) = p(m) for all m ≥ N.

There is no explicit formula for the polynomial p(m) but we
know its three highest degree terms are the same as
P(G,m).
By extension of results of and answering a question of K.
and Mudrock (2021),

Theorem (Mudrock, Thomason (2021))

For any graph G, P(G,m)− PDP(G,m) = O(mn−3) as m→∞.
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P(G,m).
By extension of results of and answering a question of K.
and Mudrock (2021),

Theorem (Mudrock, Thomason (2021))

For any graph G, P(G,m)− PDP(G,m) = O(mn−3) as m→∞.



When does List Color Ftn equal Chromatic Poly?

Given any graph G, the list color function number of G,
denoted ν`(G), is the smallest m ≥ χ(G) such that
P`(G,m) = P(G,m).

The list color function threshold of G, denoted τ`(G), is the
smallest k ≥ χ(G) such that P`(G,m) = P(G,m) for all
m ≥ k .



When does List Color Ftn equal Chromatic Poly?

Given any graph G, the list color function number of G,
denoted ν`(G), is the smallest m ≥ χ(G) such that
P`(G,m) = P(G,m).

The list color function threshold of G, denoted τ`(G), is the
smallest k ≥ χ(G) such that P`(G,m) = P(G,m) for all
m ≥ k .

By Donner’s 1992 result, we know that both ν`(G) and
τ`(G) are finite for any graph G. Furthermore,
χ(G) ≤ χ`(G) ≤ ν`(G) ≤ τ`(G).



When does List Color Ftn equal Chromatic Poly?
Given any graph G, the list color function number of G,
denoted ν`(G), is the smallest m ≥ χ(G) such that
P`(G,m) = P(G,m).

The list color function threshold of G, denoted τ`(G), is the
smallest k ≥ χ(G) such that P`(G,m) = P(G,m) for all
m ≥ k .

Theorem (Thomassen (2009))

τ`(G) ≤ |V (G)|10 + 1.

Theorem (Wang, Qian, Yan (2017))

τ`(G) ≤ (|E(G)| − 1)/ ln(1 +
√

2) + 1.

Theorem (Dong, Zhang (2022+))

τ`(G) ≤ (|E(G)| − 1).



When does List Color Ftn equal Chromatic Poly?

Two well-known open questions on the list color function
can be stated as:

Kirov and Naimi 2016: For every graph G, is it the
case that ν`(G) = τ`(G)?

Thomassen 2009: Is there a universal constant µ
such that for any graph G, τ`(G)− χ`(G) ≤ µ?



When does List Color Ftn equal Chromatic Poly?

Kirov and Naimi 2016: For every graph G, is it the case
that ν`(G) = τ`(G)?

A question of stickiness: Do the list color function and the
corresponding chromatic polynomial of a graph stay the
same after the first point at which they are both nonzero
and equal?

Still Open. But corresponding DP color function question
has been answered negatively.



When does List Color Ftn equal Chromatic Poly?

Thomassen 2009: Is there a universal constant µ such that
for any graph G, τ`(G) ≤ χ`(G) + µ?
The answer is no in a very strong sense.

Theorem (K., Kumar, Mudrock, Rewers, Shin, To (2022+))
There is a constant C > 0 such that for each l ≥ 16,
τ`(K2,l)− χ`(K2,l) = τ`(K2,l)− 3 ≥ C

√
l .



When does List Color Ftn equal Chromatic Poly?

Threshold Extremal functions:
δmax (t) = max{τ`(G)− χ`(G) : |E(G)| ≤ t}
τmax (t) = max{τ`(G) : |E(G)| ≤ t}

Theorem (Wang et al. (2017) and K. et al. (2022+))

C1
√

t ≤ δmax (t) ≤ C2t for large enough t
C3
√

t ≤ τmax (t) ≤ C2t for large enough t

What is the asymptotic behavior of δmax (t)?
What is the asymptotic behavior of τmax (t)? In particular, is
τmax (t) = ω(

√
t)?

Since χ`(G) = O(
√
|E(G)|) as |E(G)| → ∞,

if τmax (t) = ω(
√

t) as t →∞, then δmax (t) ∼ τmax (t) as t →∞.



When does DP Color Ftn equal Chromatic Poly?

Given any graph G, the DP color function number of G,
denoted νDP(G), is the smallest m ≥ χ(G) such that
PDP(G,m) = P(G,m).
If P(G,m)− PDP(G,m) > 0 for all m, we let νDP(G) =∞.

The DP color function threshold of G, denoted τDP(G), is
the smallest k ≥ χ(G) such that PDP(G,m) = P(G,m)
whenever m ≥ k .
If P(G,m)− PDP(G,m) > 0 for infinitely many m, we let
τDP(G) =∞.



When does DP Color Ftn equal Chromatic Poly?

Given any graph G, the DP color function number of G,
denoted νDP(G), is the smallest m ≥ χ(G) such that
PDP(G,m) = P(G,m).
If P(G,m)− PDP(G,m) > 0 for all m, we let νDP(G) =∞.

The DP color function threshold of G, denoted τDP(G), is
the smallest k ≥ χ(G) such that PDP(G,m) = P(G,m)
whenever m ≥ k .
If P(G,m)− PDP(G,m) > 0 for infinitely many m, we let
τDP(G) =∞.

χ(G) ≤ χ`(G) ≤ χDP(G) ≤ νDP(G) ≤ τDP(G).



When does DP Color Ftn equal Chromatic Poly?

We can now ask two natural questions about the DP color
function:

For every graph G, is it the case that
νDP(G) = τDP(G)?

When is τDP(G) finite?
Find any universal bounds on τDP .
Mostly wide open. Some results with Becker, Hewitt,
Maxfield, Mudrock, Spivey, Thomason, Wagstrom (2021+).



When does DP Color Ftn equal Chromatic Poly?

Kirov and Naimi 2016: For every graph G, is it the case that
ν`(G) = τ`(G)?

Still Open.

For every graph G, is it the case that νDP(G) = τDP(G)?
No!

Theorem (K., Maxfield, Mudrock, Thomason (2022+))
If G is Θ(2,3,3,3,2) or Θ(2,3,3,3,3,3,2,2), then
PDP(G,3) = P(G,3) and there is an N such that
PDP(G,m) < P(G,m) for all m ≥ N.

Only two counterexamples!



Polynomial Method

In a survey article, Terrence Tao describes the polynomial
method as:

“strategy is to capture the arbitrary set of objects in the zero set
of a polynomial whose degree is in control; for instance the
degree may be bounded by a function of the number of the
objects.”

Then we use algebraic tools to understand this zero set.

This paradigm has been used for breakthrough results in
arithmetic combinatorics, additive combinatorics, number
theory, graph theory, discrete geometry, and more.



Combinatorial Nullstellentsatz

How many zeros can a n-variable polynomial on a field F
have?

Lemma
Let f ∈ F[x1, . . . , xn]. For each i, let the degree of f in xi be at
most ti , and suppose Si is a set of more than ti distinct values
from F. If f (x1, . . . , xn) = 0 for (x1, . . . , xn) ∈∏n

i=1 Si , then f is
the zero polynomial.

Can we do better? Instead of controlling the individual
degree of each variable, work with the total degree of the
polynomial.



Combinatorial Nullstellentsatz

Theorem (Combinatorial Nullstellensatz; Alon (1999))
Suppose that f ∈ F[x1, . . . , xn], and the degree of f is at most∑n

i=1 ti . For each i ∈ {1, . . . ,n}, suppose that Si is a set of
elements in F with |Si | > ti .

If [
∏n

i=1 x ti
i ]f 6= 0, then f (s1, . . . , sn) 6= 0 for some

(s1, . . . , sn) ∈∏n
i=1 Si .

[
∏n

i=1 x ti
i ]p denotes the element of F that is the coefficient

of the monomial
∏n

i=1 x ti
i in the expanded form of

p ∈ F[x1, . . . , xn].



Combinatorial Nullstellentsatz

Theorem (Combinatorial Nullstellensatz; Alon (1999))
Suppose that f ∈ F[x1, . . . , xn], and the degree of f is at most∑n

i=1 ti . For each i ∈ {1, . . . ,n}, suppose that Si is a set of
elements in F with |Si | > ti .

If [
∏n

i=1 x ti
i ]f 6= 0, then f (s1, . . . , sn) 6= 0 for some

(s1, . . . , sn) ∈∏n
i=1 Si .

Combinatorial Nullstellensatz has been applied to
numerous problems in additive combinatorics, number
theory, discrete geometry, graph theory since 1980s.



Graph Polynomial
The graph polynomial of G with V (G) = {v1, . . . , vn} is
fG(x1, x2, . . . , xn) =

∏
vi vj∈E(G), j>i(xi − xj).

fG(x1, x2, x3, x4) = (x1 − x2)(x2 − x3)(x3 − x4)(x1 − x4)

fG is homogenous of degree |E(G)|.
If L is a list assignment for G with L(v) ⊂ R for v ∈ V (G),
then a proper L-coloring of G exists if and only if there is a
(c1, . . . , cn) ∈∏n

i=1 L(vi) such that fG(c1, . . . , cn) 6= 0.
fG(1,2,4,3) = (−1)(−2)(1)(−2) = −4 (In fact, χ`(C4) ≤ 2)
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Combinatorial Nullstellensatz and List Coloring

Suppose f ∈ R[x1, x2, x3, x4] is given by
f (x1, x2, x3, x4) = (x1 − x2)(x2 − x3)(x3 − x4)(x1 − x4). Note
f has degree at most 4.
Suppose S1 = S2 = {1,2}, S3 = {3,4}, and S4 = {1,3}.
Since [x1x2x3x4]f = −2 6= 0, the CN tells us there is an
element in

∏4
i=1 Si for which f is nonzero.

Alon-Tarsi (1990) famously gave a combinatorial
interpretation of this non-zero coefficient of the graph
polynomial. A fundamental method for bounding the list
chromatic number: χ`(G) ≤ AT (G).
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chromatic number: χ`(G) ≤ AT (G).



Combinatorial Nullstellensatz and DP Coloring
We saw χ`(C4) ≤ AT (C4) ≤ 2, but we know χDP(C4) > 2.
Intuitively, the issue with applying the Combinatorial
Nullstellensatz in the DP-context is that which “colors” are
different can vary from edge to edge.

This poses an issue in working with graph polynomials with
real coefficients.
To (partially) overcome this issue we view graph
polynomials as having coefficients in some finite field.
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Prime Covers
Given a graph G and a function f : V (G)→ N, we say
H = (L,H) is an f -cover of G if |L(u)| = f (u) for each
u ∈ V (G). We say that G is f -DP-colorable if G is
H-colorable whenever H is an f -cover of G.
An f -cover H = (L,H) of G is a prime cover of G of order t
whenever t is a power of a prime and maxv∈V (G) f (v) ≤ t .
When the choice of t is implicitly known, we simply say
prime cover or prime f -cover.
If H = (L,H) is a prime cover of G of order t , we assume
that L(v) ⊆ {(v , j) : j ∈ Ft} for each v ∈ V (G).

We need a way of analyzing matchings between parts.
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Saturation Functions

V (G) = {v1, . . . , vn}.
H = (L,H) be a prime cover of G of order t .
For each vivj ∈ E(G), the saturation function associated
with EH(L(vi),L(vj)) is denoted σHvi vj

.

For example, σHv3v4
(0) = 1 and σHv3v4

(1) = 0.



Good Saturation Functions

We say that σHvi vj
is good if there is a β ∈ Ft such that for

each a in the domain of σHvi vj

a− σHvi vj
(a) = β

where subtraction is performed in Ft .
For a 2-fold cover, each saturation function associated with
a matching, must be good!
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Good Covers

Suppose H = (L,H) is a prime cover of G of order t .
We say that H is a good prime cover of order t if for each
vivj ∈ E(G) with j > i , the associated saturation function
σHvi vj

is good.
For example, we know every 2-fold cover is a good prime
cover of order 2.
It cannot be said that every 3-fold cover is a good prime
cover of order 3.
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Key Observations

Suppose G is a graph with V (G) = {v1, . . . , vn} and
H = (L,H) is a good prime cover of G of order t .
For each vivj ∈ E(G) with j > i , there is a βi,j ∈ Ft such
that a− σHvi vj

(a)− βi,j = 0 for each a in the domain of σHvi vj
.

Let f̂ (x1, . . . , xn) =
∏

vi vj∈E(G), j>i(xi − xj − βij).

An H-coloring of G exists if there is a
(p1, . . . ,pn) ∈∏n

i=1 Pi such that f̂ (p1,p2, . . . ,pn) 6= 0,
where Pi = {j ∈ Ft : (vi , j) ∈ L(v)}.
Note that if

∑n
i=1 ti = |E(G)|, then[∏n

i=1 x ti
i

]
f̂

=
[∏n

i=1 x ti
i

]
fG

. So, the Combinatorial

Nullstellensatz can be applied.
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Combinatorial Nullstellensatz for DP Coloring

Theorem (K., Mudrock (2020))
Let H = (L,H) be a good prime cover of order t of a graph G.
Suppose that fG ∈ Ft [x1, . . . , xn]. If [

∏n
i=1 x ti

i ]fG 6= 0 and
|L(vi)| > ti for each i ∈ [n], then there is an H-coloring of G.

With applications to:
f -DP-coloring of a cone of a connected bipartite graph.
DP-coloring analogue of a Theorem of Akbari et al. (2006)
on a sufficient condition for f-choosability in terms of
unique colorability.
Completely determine the DP-chromatic number of
squares of all cycles.
Algebraic sufficient condition for 3-DP-colorability.



Three-fold Covers

Suppose that H is a prime cover of G of order 3.
If σHvi vj

is bad, there is a βi,j ∈ F3 so that a + σHvi vj
(a) = βi,j .

So, for any vivj ∈ E(G) there is a ci,j , βi,j ∈ F3 so that

a + (−1)ci,jσHvi vj
(a) = βi,j

for each a in the domain of σHvi vj
.



Three-fold Covers

Theorem (K., Mudrock (2020))
Suppose G is a graph with χDP(G) ≥ 2 and
V (G) = {v1, . . . , vn}. Let F ⊆ F3[x1, . . . , xn] be the set of at
most 2|E(G)| polynomials given by:
F =

{∏
vi vj∈E(G), j>i(xi + bi,jxj) : bi,j ∈ {−1,1}

}
.

If for each f ∈ F there exists (t1, t2, . . . , tn) ∈∏n
i=1{0,1,2} such

that [
∏n

i=1 x ti
i ]f 6= 0, then χDP(G) ≤ 3.

The number of polynomials in set F can be reduced to
2|E(G)|−|V (G)|+1, when G is a connected graph containing a
cycle.



Combinatorial Nullstellensatz for DP-color Function

Theorem (Alon, Füredi (1993))
Let F be an arbitrary field, let A1, A2, . . ., An be any non-empty
subsets of F, and let B =

∏n
i=1 Ai . Suppose that

P ∈ F[x1, . . . , xn] is a polynomial of degree d that does not
vanish on all of B. Then, the number of points in B for which P
has a non-zero value is at least min

∏n
i=1 qi where the minimum

is taken over all integers qi such that 1 ≤ qi ≤ |Ai | and∑n
i=1 qi ≥ −d +

∑n
i=1 |Ai |.

with f̂ (x1, . . . , xn) =
∏

vi vj∈E(G), j>i(xi + (−1)cij xj − βij) gives:
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Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with χDP(G) ≤ 3. Suppose that |V (G)| = n,
|E(G)| = l , and 2n ≥ l . Then, PDP(G,3) ≥ 3n−l/2.



Combinatorial Nullstellensatz for DP-color Function

Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with χDP(G) ≤ 3. Suppose that |V (G)| = n,
|E(G)| = l , and 2n ≥ l . Then, PDP(G,3) ≥ 3n−l/2.

Corollary
Let G be an n-vertex planar graph of girth at least 5. Then,
PDP(G,3) ≥ 3n/6.

Previous best bounds: P`(G,3) ≥ 2n/10000 (Thomassen
(2007b)), and PDP(G,3) ≥ 2n/292 (Postle, Smith-Roberge
(2022+)).



Combinatorial Nullstellensatz for DP-color Function
Theorem (Dahlberg, K., Mudrock (2023+))
Let G be a graph with χDP(G) ≤ 3. Suppose that |V (G)| = n,
|E(G)| = l , and 2n ≥ l . Then, PDP(G,3) ≥ 3n−l/2.

Corollary
Let G be an n-vertex planar graph of girth at least 5. Then,
PDP(G,3) ≥ 3n/6.

Corollary
There are infinitely many graphs G for which χDP(G) = 3,
PDP(G,3) = P(G,3), and there is an NG ∈ N such that
PDP(G,m) < P(G,m) whenever m ≥ NG.

Previously only two such graphs were known.
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Thank You!
Questions?

For which graphs G does ∃N such that PDP(G,m) = P(G,m) for
all m ≥ N? That is, when is τDP(G) finite?

Given a graph G does there always exist an N ∈ N and a
polynomial p(m) such that PDP(G,m) = p(m) whenever m ≥ N?

Given a graph G and p ∈ N, what is the value of τDP(Kp ∨G)?

What is the asymptotic behavior of δmax (t) and τmax (t)? In
particular, is τmax (t) = ω(

√
t)?

For fixed n what is the asymptotic behavior of τ`(Kn,l ) as l →∞?

Kirov and Naimi 2016: For every graph G, is it the case that
ν`(G) = τ`(G)? That is, if P`(G,m) = P(G,m) for some
m ≥ χ(G), does it follow that P`(G,m + 1) = P(G,m + 1)?
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Tools for DP Color Function - I

Classic tools like:

Lemma (from Whitney’s Broken Circuit Theorem (1932))
G be a connected graph on n vertices and s edges with girth g.
Suppose P(G,m) =

∑n
i=0(−1)iaimn−i .

Then, for i = 0,1, . . . ,g − 2
ai =

(s
i

)
and ag−1 =

( s
g−1

)
− t ,

where t is the number of cycles of length g contained in G.

Inclusion-Exclusion type arguments.
AM-GM inequality, and its generalization the
Rearrangement Inequality.
Probabilistic arguments/ Random constructions.



Tools for DP Color Function - II

Proposition (K., Mudrock (2021))
PDP(G,m) ≤ mn(m−1)|E(G)|

m|E(G)| for all m.

Expected number of independent transversals in a random
m-fold cover.



Tools for DP Color Function - II

Proposition (K., Mudrock (2021))
PDP(G,m) ≤ mn(m−1)|E(G)|

m|E(G)| for all m.

This upper bound is the same as the lower bound on
P(G,m) when G is bipartite, as claimed by the well-known
Sidorenko’s conjecture on counting homomorphisms from
bipartite graphs.

Corollary (K., Mudrock (2021))
For any connected graph G,
PDP(G,m) = m|V (G)|(m−1)|E(G)|

m|E(G)| for all m if and only if G is a tree.



Tools for DP Color Function - II

Proposition (K., Mudrock (2021))
PDP(G,m) ≤ mn(m−1)|E(G)|

m|E(G)| for all m.

Lemma (K., Mudrock (2021))
Let G be a graph with e ∈ E(G).
If m ≥ 2 and P(G − {e},m) < m

m−1P(G,m),
then PDP(G,m) < P(G,m).



Tools for DP Color Function - III

Let H = (L,H) be an m-fold cover of G. We say that H has
a canonical labeling if it is possible to name the vertices of
H so that L(u) = {(u, j) : j ∈ [m]} and (u, j)(v , j) ∈ E(H) for
each j ∈ [m] whenever uv ∈ E(G).
When H has a canonical labeling, G has an H-coloring if
and only if G has a proper m-coloring.
Trees have a canonical labeling.

Using canonical labeling, we can develop tools to handle
graphs that are close to being a forest.
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H so that L(u) = {(u, j) : j ∈ [m]} and (u, j)(v , j) ∈ E(H) for
each j ∈ [m] whenever uv ∈ E(G).
When H has a canonical labeling, G has an H-coloring if
and only if G has a proper m-coloring.
Trees have a canonical labeling.

Using canonical labeling, we can develop tools to handle
graphs that are close to being a forest.



Tools for DP Color Function - III

A sharp bound when removing an edge gives us a
canonical labeling.

Lemma (K., Mudrock (2021))
Let H = (L,H) be an m-fold cover of G with m ≥ 2.
Suppose e = uv ∈ E(G). Let H ′ = H − EH(L(u),L(v)) so that
H′ = (L,H ′) is an m-fold cover of G − {e}.
If H′ has a canonical labeling, then
PDP(G,H) ≥ P(G − e,m)−max

{
P(G − e,m)− P(G,m), P(G,m)

m−1

}
Moreover, there exists an m-fold cover of G, H∗ = (L,H∗), s.t.
PDP(G,H∗) = P(G − e,m)−max

{
P(G − e,m)− P(G,m), P(G,m)

m−1

}
.

Next, a sharp bound when removing an induced P3.
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Next, a sharp bound when removing an induced P3.



Tools for DP Color Function - III
Lemma (K., Mudrock (2021))
Let H = (L,H) be an m-fold cover of G with m ≥ 3. Let e1,e2
be the edges of an induced path P of length two.
Let G0 = G − {e1,e2}, G1 = G − e1, G2 = G − e2, and G∗ be
the graph obtained by making P into K3. Suppose H′, the
m-fold cover of G0 induced by H, has a canonical labeling. Let

A1 = P(G0,m)− P(G,m),A2 = P(G0,m)− P(G2,m) +
1

m − 1
P(G,m),

A3 = P(G0,m)− P(G1,m) +
1

m − 1
P(G,m),

A4 =
1

m − 1
(P(G1,m) + P(G2,m) + P(G∗,m)− P(G,m)) , and

A5 =
1

m − 1

(
P(G1,m) + P(G2,m)− 1

m − 2
P(G∗,m)

)
.

Then, PDP(G,H) ≥ P(G0,m)−max{A1,A2,A3,A4,A5}.
Moreover, there exists an m-fold cover of G that achieves the equality.



Tools for DP Color Function - IV

Clique-gluing and the closely related clique-sum are
fundamental graph operations which have been used to
give a structural characterization of many families of
graphs.

A simple example is that chordal graphs are precisely the
graphs that can be formed by clique-gluings of cliques.
While the most famous example would be Robertson and
Seymour’s seminal Graph Minor Structure Theorem
characterizing minor-free families of graphs.



Tools for DP Color Function - IV

We build a toolbox for studying Kp-gluings of graphs:
Choose a copy of Kp contained in each Gi and form a new
graph G (∈⊕n

i=1(Gi ,p)), called a Kp-gluing of G1, . . . ,Gn,
from the union of G1, . . . ,Gn by arbitrarily identifying the
chosen copies of Kp.



Tools for DP Color Function - IV

Given vertex disjoint graphs G1, . . . ,Gn, we define
amalgamated cover, a natural analogue of “gluing” m-fold
covers of each Gi together so that we get an m-fold cover
for G ∈⊕n

i=1(Gi ,p).

We define separated covers, a natural analogue of
“splitting” an m-fold cover of G ∈⊕n

i=1(Gi ,p) into separate
m-fold covers for each Gi .



Tools for DP Color Function - IV

Given vertex disjoint graphs G1, . . . ,Gn, we define
amalgamated cover, a natural analogue of “gluing” m-fold
covers of each Gi together so that we get an m-fold cover
for G ∈⊕n

i=1(Gi ,p).

We define separated covers, a natural analogue of
“splitting” an m-fold cover of G ∈⊕n

i=1(Gi ,p) into separate
m-fold covers for each Gi .

We apply these ideas together with other tools to build a
theory of DP Color Function of Clique-gluings of graphs
and how the DP Color Function of such graphs compares
with the corresponding chromatic polynomial.
But that’s another talk.


