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Outline

▶ Brief history of Stirling permutations

▶ Definitions

▶ Flattened statistic

▶ Type B set partitions

▶ Sketch of our Main Theorem: A bijection between flattened
Stirling permutations and type B set partitions.

▶ Future work: call for collaborators!



Notation:

For n ∈ N := {1, 2, 3, . . .}

▶ let [n] := {1, 2, . . . , n}

▶ let [n]2 := {1, 1, 2, 2, . . . , n, n} be the multiset with each
element in [n] appearing twice

▶ let Sn denote the set of permutations of [n].



Descents of permutations

Given a permutation on [n] in one-line notation

π = π1π2 · · · πn

we say that π has a descent at i if πi > πi+1.

The number of descents of π is denoted by des(π).

Example

↘ ↗ ↘ ↘ ↗ ↗ ↗
π = 8 2 5 4 1 3 6 7 ∈ S8

has descents at index 1, 3, and 4 and des(π) = 3.



History - A result of Euler

Theorem (Euler, 1749)

∞∑
m=0

mntm = An(t)
(1 − t)n+1

where
An(t) =

∑
π∈Sn

tdes(π)

which is called the Eulerian polynomial.

Example S3 = {123, 132, 213, 231, 312, 321}
number of descents 0 1 1 1 1 2

▶ A3(t) = 1t0 + 4t1 + 1t2



History - A result of Gessel and Stanley

Theorem (Euler, 1749)∑∞
m=0 mntm = An(t)

(1−t)n+1 where An(t) =
∑

π∈Sn

tdes(π) which is called

the Eulerian polynomial.

Theorem (Gessel and Stanley, 1978)

∞∑
m=0

S(m + n, n)tm = Qn(t)
(1 − t)2n+1

where S(m + n, n) are Stirling numbers of the second kind, and

Qn(t) = ?

which is called the Stirling polynomial and Qn is the set of Stirling
permutations of order n.



History - A result of Gessel and Stanley

Theorem (Gessel and Stanley, 1978)

∞∑
m=0

S(m + n, n)tm = Qn(t)
(1 − t)2n+1

where S(m + n, n) are Stirling numbers of the second kind, and

Qn(t) =
∑

w∈Qn

tdes(w)

which is called the Stirling polynomial and Qn is the set of Stirling
permutations of order n.

*Recall that the Stirling numbers of the second kind, S(n, k),
count the number of set partitions of [n] into k parts.



Stirling Permutations

A Stirling permutation of order n is a permutation on the
multiset [n]2 = {1, 1, 2, 2, . . . , n, n} such that
▶ numbers between the i values must be greater than i ,

we refer to such values as being nested between i .

Example
Note

123321 ∈ Q3

because
1. i = 1, 2, 3 > 1: 123321
2. i = 2, 3 > 2: 123321
3. i = 3, no numbers are between 3: 123321



Stirling Permutations

A Stirling permutation of order n is a permutation on the
multiset [n]2 = {1, 1, 2, 2, . . . , n, n} such that
▶ numbers between the i values must be greater than i ,

we refer to such values as being nested between i .

Example

123231 /∈ Q3

1. Note that the value 2 lies between the 3’s and so this is not a
Stirling permutation.



Stirling Permutations

A Stirling permutation of order n is a permutation on the
multiset [n]2 = {1, 1, 2, 2, . . . , n, n} such that
▶ numbers between the i values must be greater than i ,

we refer to such values as being nested between i .

Theorem (Gessel and Stanley, 1978)
For n ≥ 1,

|Qn| = (2n − 1)!!

where ℓ!! denotes the the double factorial, which is the product of
all the integers from 1 up to ℓ that have the same parity (odd or
even) as ℓ.



Motivation for our work

▶ Like Euler, many have studied (discrete) statistics of
permutations, such as descents.

▶ Recent work studied flattened permutations with k runs:

▶ Olivia Nabawanda, Fanja Rakotondrajao, and Alex Bamunoba.
Run distribution over flattened partitions.
Journal of Integer Sequences, 23:Article 20.9.6, 10 2020.

▶ Our work extends this study to Stirling permutations.



Runs of a Stirling permutation

Given w ∈ Qn, the runs of w are the maximal contiguous weakly
increasing subwords of w . We write

w = σ1σ2 · · · σr

where σi is a run.

Example

112299
σ1

388
σ2

3(10)(10)(11)(11)
σ3

46677
σ4

455
σ5

∈ Q11



Leading Terms of the Runs
Define σi ,1 to be the initial value the run σi and call these values
the leading terms of the runs of w .

Example
When

w = 112299
σ1

388
σ2

3(10)(10)(11)(11)
σ3

46677
σ4

455
σ5

∈ Q11

the leading terms of the runs are:
▶ σ1,1 = 1
▶ σ2,1 = 3
▶ σ3,1 = 3
▶ σ4,1 = 4
▶ σ5,1 = 4



Flattened Stirling Permutations
If the leading terms of the runs are in weakly increasing order, i.e.

σ1,1 ≤ σ2,1 ≤ · · · ≤ σr ,1,

then we say the Stirling permutation w is flattened. Let flat(Qn)
denote the set of flattened Stirling permutations of order n.

Example
If w = 1233

σ1

2
σ2

1
σ3

∈ Q3

then
σ1,1

?
≤ σ2,1

?
≤ σ3,1



Flattened Stirling Permutations
If the leading terms of the runs are in weakly increasing order, i.e.

σ1,1 ≤ σ2,1 ≤ · · · ≤ σr ,1,

then we say the Stirling permutation w is flattened. Let flat(Qn)
denote the set of flattened Stirling permutations of order n.

Example
If w = 1233

σ1

2
σ2

1
σ3

∈ Q3

then
1 ≤ 2 ≰ 1.

Thus, 123321 /∈ flat(Q3).



Flattened Stirling Permutations
If the leading terms of the runs are in weakly increasing order, i.e.

σ1,1 ≤ σ2,1 ≤ · · · ≤ σr ,1,

then we say the Stirling permutation w is flattened. Let flat(Qn)
denote the set of flattened Stirling permutations of order n.

Example
If w = 112299

σ1

388
σ2

3(10)(10)(11)(11)
σ3

46677
σ4

455
σ5

∈ Q11

then

σ1,1 ≤ σ2,1 ≤ σ3,1 ≤ σ4,1 ≤ σ5,1



Flattened Stirling Permutations
If the leading terms of the runs are in weakly increasing order, i.e.

σ1,1 ≤ σ2,1 ≤ · · · ≤ σr ,1,

then we say the Stirling permutation w is flattened. Let flat(Qn)
denote the set of flattened Stirling permutations of order n.

Example
If w = 112299

σ1

388
σ2

3(10)(10)(11)(11)
σ3

46677
σ4

455
σ5

∈ Q11

then

1 ≤ 3 ≤ 3 ≤ 4 ≤ 4.

Thus, w ∈ flat(Q11).



Research Question

How many flattened Stirling permutations of order n are there?

Computationally, we found:

n 1 2 3 4 5 6 7 8 9 10
|flat(Qn)| 1 2 6 24 116 648 4088 28640 219920 1832224

Table: Number of flattened Stirling permutations

Note that the cardinalities of flat(Qn) are identically to the
Dowling numbers, described in OEIS A007405.

“This is the number of type B set partitions, see R. Suter.”
- Per W. Alexandersson, Dec 19. 2022

Goal: Give a bijection between flattened Stirling permutations of
order n and type B set partitions.

https://oeis.org/A007405


Set partitions
A set partition of
[−n, n] = {−n, −n + 1, . . . , −1, 0, 1, . . . , n − 1, n} is a collection of
sets

π = {β0, β1, β2, . . . , βk}

where βi is a subset of [−n, n] for all 1 ≤ i ≤ k, such that

∪k
i=0βi = [−n, n]

and are pair wise disjoint:

βi ∩ βj = ∅

whenever i ̸= j .

Note that each subset βi in π is called a block of π.



Type B Set Partitions (Adler, 2016)
A set partition π of [−n, n] is called a type B set partition if in
addition it satisfies:

1. For any block β ∈ π, then −β ∈ π.
We call β and −β a block pair of π.

2. There is exactly one block β of π satisfying β = −β.
We call this block, the zero-block of π as 0 must be an
element of this block.

Notation:
▶ ΠB

n denotes type B set partitions of [−n, n], and
▶ ΠB

n,m denotes the type B set partitions with m exactly block
pairs.



Example for Type B Set Partition

Example
Note that

π = {{0, 1, −1, 2, −2}, {3, −4}, {−3, 4}, {5}, {−5}}

is a type B set partition.

▶ Note π is a set partition.

▶ For β = {3, −4} ∈ π, then −β = {−3, 4} ∈ π.

▶ For β = {5} ∈ π, then −β = {−5} ∈ π.

▶ Zero-block: β = {0, 1, −1, 2, −2}, and β = −β.



Our Major Finding:

Theorem
For n ≥ 1, the set ΠB

n−1 is in bijection with the set flat(Qn).

Remainder of talk:
1. Next we introduce notation for type B set partitions, which

we adapt from Adler.

2. Using this notation, we give a sketch of the bijection from
ΠB

n−1 to flat(Qn).



Notation for Proof, Thanks to Adler!

Encode π ∈ ΠB
n,m as a sequence of subwords

π0|π1| · · · |πm

from the alphabet 0, 1, . . . , n.
▶ To begin keep the zero-block, and the block from each block

pair that contains the smallest positive value.

Example

π =
{

{0}, {1}, {−1}, {4}, {−4}, {2, 7, −8}, {−2, −7, 8},
{3, 5, 6, −9, −10}, {−3, −5, −6, 9, 10}

}
.



Notation for Proof, Thanks to Adler!

Encode π ∈ ΠB
n,m as a sequence of subwords

π0|π1| · · · |πm

from the alphabet 0, 1, . . . , n.
▶ To begin keep the zero-block, and the block from each block

pair that contains the smallest positive value.

Example

π =
{

{0}, {1}, {−1}, {4}, {−4}, {2, 7, −8}, {−2, −7, 8},
{3, 5, 6, −9, −10}, {−3, −5, −6, 9, 10}

}
.



Notation for Proof, Thanks to Adler!

Encode π ∈ ΠB
n,m as a sequence of subwords

π0|π1| · · · |πm

from the alphabet 0, 1, . . . , n.
▶ Order the blocks (from left to right) by smallest nonnegative

element.
▶ If a < 0, then write as a. (barred elements)

Example

{0}, {1}, {4}, {2, 7, −8}, {3, 5, 6, −9, −10}.



Notation for Proof, Thanks to Adler!

Encode π ∈ ΠB
n,m as a sequence of subwords

π0|π1| · · · |πm

from the alphabet 0, 1, . . . , n.
▶ Order the blocks (from left to right) by smallest nonnegative

element.
▶ If a < 0, then write as a. (barred elements)

Example

{0}, {1}, {2, 7, 8}, {3, 5, 6, 9, 10}, {4}



Notation for Proof, Thanks to Adler!

Encode π ∈ ΠB
n,m as a sequence of subwords

π0|π1| · · · |πm

from the alphabet 0, 1, . . . , n.
▶ Form π0 by listing positive elements of the zero-block in

increasing order.

Example

{0}, {1}, {2, 7, 8}, {3, 5, 6, 9, 10}, {4}

π0 = 0



Notation for Proof, Thanks to Adler!

Encode π ∈ ΠB
n,m as a sequence of subwords

π0|π1| · · · |πm

from the alphabet 0, 1, . . . , n.
▶ Form πi from the remaining blocks (in order listed) by

1. placing the barred elements of the block in increasing order,
2. followed by placing the non-barred elements in increasing order.

Example

{0} {1} {2, 7, 8} {3, 5, 6, 9, 10} {4}
↓ ↓ ↓ ↓ ↓

π0 = 0 π1 = 1 π2 = 8 2 7 π3 = 9 10 3 5 6 π4 = 4



Notation for Proof, Thanks to Adler!

Put the π0, π1, . . . , πm into a set of blocks separated by dividers to
get

π0|π1| · · · |πm . (1)

Example
Thus

π =
{

{0}, {1}, {−1}, {4}, {−4}, {2, 7, −8}, {−2, −7, 8},
{3, 5, 6, −9, −10}, {−3, −5, −6, 9, 10}

}

is encoded by:

π0|π1|π2|π3|π4 = 0 | 1 | 8 2 7 | 9 10 3 5 6 | 4.



Sketch of Proof (⇒)

Theorem
For n ≥ 1, the set ΠB

n−1 is in bijection with the set flat(Qn).

Proof: (⇒) Given a type B set partition,
▶ Adler’s notation to get π0|π1| · · · |πm

▶ partition each πi further into NiPi

▶ bump up each of the number’s magnitude
▶ duplicate each number and nest accordingly
▶ eliminate the bars and dividers



Sketch of (⇒) Through Example

Example
Proof: (⇒) Given a type B set partition,

π =
{

{0}, {1}, {−1}, {4}, {−4}, {2, 7, −8}, {−2, −7, 8},
{3, 5, 6, −9, −10}, {−3, −5, −6, 9, 10}}

}
∈ ΠB

10,4

▶ Encoding the type B set partition using the adapted notation
from Adler

to get:
0 | 1 | 8 2 7 | 9 10 3 5 6 | 4.



Sketch of (⇒) Through Example

Example
Take

0 | 1 | 8 2 7 | 9 10 3 5 6 | 4

▶ further partition πi into πi = NiPi , where:
▶ Ni consists of the barred elements in πi and
▶ Pi consists of the positive values in πi

to get:
0︸︷︷︸
P0

| 1︸︷︷︸
P1

| 8︸︷︷︸
N2

27︸︷︷︸
P2

| 9(10)︸ ︷︷ ︸
N3

356︸︷︷︸
P3

| 4︸︷︷︸
P4

.



Sketch of (⇒) Through Example

Example
Take

0︸︷︷︸
P0

| 1︸︷︷︸
P1

| 8︸︷︷︸
N2

27︸︷︷︸
P2

| 9(10)︸ ︷︷ ︸
N3

356︸︷︷︸
P3

| 4︸︷︷︸
P4

▶ Increase the magnitude of each letter by

h(S) =
{

{|i | + 1 : i ∈ S} if S ̸= ∅
∅ if S = ∅

where
▶ Pi follows the function,
▶ Ni follows the function and puts a bar over the new number

to get:

1︸︷︷︸
P0

| 2︸︷︷︸
P1

| 9︸︷︷︸
N2

38︸︷︷︸
P2

|(10)(11)︸ ︷︷ ︸
N3

467︸︷︷︸
P3

| 5︸︷︷︸
P4

.



Sketch of (⇒) Through Example

Example
Take

1︸︷︷︸
P0

| 2︸︷︷︸
P1

| 9︸︷︷︸
N2

38︸︷︷︸
P2

|(10)(11)︸ ︷︷ ︸
N3

467︸︷︷︸
P3

| 5︸︷︷︸
P4

▶ duplicate each letter and nest accordingly

f (Ni) =
{

s1 s1 s2 s2 · · · sk sk if Ni = {|s1| < |s2| < |s3| < · · · < |sk |}
∅ if Ni = ∅

g(Pi) =
{

s1 s2 s2 s3 s3 · · · sk sk s1 if Pi = {s1 < s2 < · · · < sk}
∅ if Pi = ∅

to get:

1 1 | 2 2 | 9 9 3 8 8 3 | (10) (10) (11) (11) 4 6 6 7 7 4 | 5 5.



Sketch of (⇒) Through Example

Example
Take

1 1 | 2 2 | 9 9 3 8 8 3 | (10) (10) (11) (11) 4 6 6 7 7 4 | 5 5

▶ eliminate bars over the barred elements and the bars dividing
the blocks

to get:
1122993883(10)(10)(11)(11)46677455.

This is a flattened Stirling permutation as we computed before:

w = 112299
σ1

388
σ2

3(10)(10)(11)(11)
σ3

46677
σ4

455
σ5

∈ flat(Q11)



Sketch of Proof (⇐)

Proof: (⇐) Given a flattened Stirling permutation,
▶ start at right most element of w and partition it into N∗

i s and
P∗

i s
▶ delete the right most occurrence of each of the letters
▶ bump down the magnitude for each letter
▶ note Adler’s notation is a type B set partition



Sketch of (⇐) Through Example

Example
Given a flattened Stirling permutation,

w = 1122993883(10)(10)(11)(11)46677455.

▶ Consider the value w2n.
▶ Find the second occurrence of that value s.t. wj = w2n.

Label the subword wj · · · w2n as P∗
1 .

to get:

1122993883(10)(10)(11)(11)466774 55︸︷︷︸
P∗

1

.



Sketch of (⇐) Through Example

Example
Take

1122993883(10)(10)(11)(11)466774 55︸︷︷︸
P∗

1

.

▶ Look at wj−1.
1. If wj−1 < wj , then N∗

1 = ∅
2. If wj−1 > wj , then find wj−m · · · wj−1 such that wx > wj for all

j − m ≤ x ≤ j − 1.
Label the subword wj−m · · · wj−1 as N∗

1 .
to get:

1122993883(10)(10)(11)(11)466774 ∅︸︷︷︸
N∗

1

55︸︷︷︸
P∗

1

.



Sketch of (⇐) Through Example

Example
Take 1122993883(10)(10)(11)(11)466774 ∅︸︷︷︸

N∗
1

55︸︷︷︸
P∗

1

.

▶ Continue constructing P∗
i and N∗

i in this way.

1. Look at wℓ and find the second occurrence of it s.t. wj = wℓ.
Label the subword wj · · · wℓ as P∗

i .
2. If wj−1 < wj , then N∗

i = ∅
3. If wj−1 > wj , then find wj−m · · · wj−1 such that wx > wj for

all j − m ≤ x ≤ j − 1.
Label the subword wj−m · · · wj−1 as N∗

i .

to get:

11︸︷︷︸
P∗

5

∅︸︷︷︸
N∗

4

22︸︷︷︸
P∗

4

99︸︷︷︸
N∗

3

3883︸ ︷︷ ︸
P∗

3

(10)(10)(11)(11)︸ ︷︷ ︸
N∗

2

466774︸ ︷︷ ︸
P∗

2

∅︸︷︷︸
N∗

1

55︸︷︷︸
P∗

1

.



Sketch of (⇐) Through Example

Example
Take 11︸︷︷︸

P∗
5

∅︸︷︷︸
N∗

4

22︸︷︷︸
P∗

4

99︸︷︷︸
N∗

3

3883︸ ︷︷ ︸
P∗

3

(10)(10)(11)(11)︸ ︷︷ ︸
N∗

2

466774︸ ︷︷ ︸
P∗

2

∅︸︷︷︸
N∗

1

55︸︷︷︸
P∗

1

.

For each P∗
k and N∗

k
▶ delete the right most occurrence of each letter,
▶ for P∗

k , replace each remaining letter (wi) with (wi − 1),
▶ for N∗

k , replace each remaining letter, wi , with (wi − 1),
▶ draw a divider to the right of these letters in the P∗

k
to get:

0︸︷︷︸
P0

| 1︸︷︷︸
P1

| 8︸︷︷︸
N2

27︸︷︷︸
P2

| 9(10)︸ ︷︷ ︸
N3

356︸︷︷︸
P3

| 4︸︷︷︸
P4

.



Sketch of (⇐) Through Example

Example
Take

0︸︷︷︸
P0

| 1︸︷︷︸
P1

| 8︸︷︷︸
N2

27︸︷︷︸
P2

| 9(10)︸ ︷︷ ︸
N3

356︸︷︷︸
P3

| 4︸︷︷︸
P4

.

▶ Eliminate the Pi ’s and Ni ’s below the blocks.
▶ Notice that this is the Adler notation.

0 | 1 | 8 2 7 | 9 10 3 5 6 | 4

Adler’s notation is a type B set partition.

Therefore, the set ΠB
n−1 is in bijection with the set flat(Qn).



Picture
Illustrating the bijection between ΠB

3 and flat(Q4).

0|1|2|3
11223344

0|1|23
11223443

0|2̄1|3
11332244

02|1|3
13312244

0|13|2
11244233

03|1|2
14412233

0|12|3
11233244

0|3̄1|2
11442233

0|1|3̄2
11224433

01|2|3
12213344

01|3̄2
12214433

012|3
12233144

01|23
12213443

0|123
11233442

02|13
13312442

023|1
13344122

0|2̄13
11332442

02|3̄1
13314422

0|2̄3̄1
11334422

03|2̄1
14413322

013|2
12244133

03|12
14412332

0|3̄12
11442332

0123
12233441

Cover relations are given by combining blocks.



Open Problem
Benedict W. J. Irwin gives the following conjecture for the Dowling
numbers OEIS A007405, which we rephrase in terms of flattened
Stirling permutations of order n.

Conjecture
Let Mn be an n × n matrix whose elements are

mij =


1 if i < j − 1
−1 if i = j − 1(n−i

j−i
)

otherwise.

Then
|flat(Qn)| = det(Mn).

Interested in collaborating? Email me!

https://oeis.org/A007405


Thank You!

▶ UW-Milwaukee Math Department
▶ MSU Combinatorics and Graph Theory Seminar
▶ You for being a wonderful audience!

Kim’s Website arXiv Article

Contact email: kjharry@uwm.edu


