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The usual suspects!



Polytopes



Polytopes

I Denote BM,bbb a convex polytope in Rd that can be expressed
as

BM,bbb = {zzz ∈ Rd
≥0 | Mzzz ≤ bbb},

where M is an n × d integral matrix and bbb ∈ Zn.

I It is called an integer polytope when all its vertices are in Zd .

I Its normalized volume Vol(BM,bbb) is the integer

Vol(BM,bbb) = d!EuclideanVol(BM,bbb).

I Two lattice polytopes P ⊂ Rm and Q ⊂ Rn are integrally
equivalent if there exists an affine transformation
ϕ : Rm → Rn whose restriction to P is a bijection ϕ : P → Q
that preserves the lattice. This also implies that
Vol(P) = Vol(Q).
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A motivating question!



An exercise in Stanley’s EC1

Find the volume of the polytope Cd ,2 in Rd defined by the
inequalities zi ≥ 0 for all i = 1, . . . , d , and

z1 + z2 ≤ 1

z2 + z3 ≤ 1

...
...

zd−1 + zd ≤ 1.
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Proposition (Stanley)

We have that
Vol(Cd ,2) = Ed ,

where Ed is the dth-Euler number.

Euler numbers count up/down permutations

n = 2 12 E2 = 1

n = 3 132, 231 E3 = 2

n = 4 1324, 1423, 2314, 2413, 3412 E4 = 5

...
...
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Stanley propose the more general question

Question (Stanley)

Find the volume of the polytope Cd ,k in Rd defined by the
inequalities zi ≥ 0 for all i = 1, . . . , d, and

z1 + z2 + · · ·+ zk ≤ 1

z2 + z3 + · · ·+ zk+1 ≤ 1

...
...

zd−k+1 + zd−k+2 · · ·+ zd ≤ 1.



An even more general question

Question (Ayyer, Josuat-Vergès, Ramassamy 2019)

Find the volume of the polytope BS in Rd defined by the
inequalities zi ≥ 0 for all i = 1, . . . , d, and∑

i∈I
zi ≤ 1

for all I ∈ S, where S is a collection of intervals in [d ].

The polytopes BS are called consecutive coordinate polytopes.
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Partial cyclic orders



Partial cyclic order

Definition
A partial cyclic order on a set X is a ternary relation γ ⊆ X 3

satisfying the following conditions:

(a) (x , y , z) ∈ γ implies (y , z , x) ∈ γ (cyclicity),

(b) (x , y , z) ∈ γ implies (z , y , x) /∈ γ (asymmetry),

(c) (x , y , z) ∈ γ and (x , z , u) ∈ γ implies (x , y , u) ∈ γ
(transitivity).

A partial cyclic order is called a total cyclic order if in addition it
satisfies:

(d) for every x , y , z ∈ X , either (x , y , z) ∈ γ or (z , y , x) ∈ γ
(comparability).
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Total cyclic order

Total cyclic orders are easy to represent on a circle:

γ =

0

1

2

53

6

4



Parcial cyclic orders from intervals

Given a collection S of intervals of [d ] one can define a partial
cyclic order γS that is compatible with S .

Example

For example if S = {[1, 2], [2, 3]} the partial cyclic order is defined
as the minimal that contains the cyclic chains (0, 1, 2) and (1, 2, 3).

The total cyclic extensions of this partial cyclic order.
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A beautiful answer to Stanley’s question

Theorem (Ayyer, Josuat-Vergès, Ramassamy 2019)

For a collection S of intervals in [d ], the polytope BS is a lattice
polytope with

Vol(BS) = AS ,

where AS is the number of total cyclic extensions to the partial
cyclic order determined by S.



Can we generalize this further?

For example, to cases where the sets in S are not necessarily
intervals.
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Column-convex and row-convex matrices


1 1 0 0 0 0
0 1 1 1 0 0
1 1 1 0 1 1
0 1 1 1 0 0



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1 1 1 1 0 1
1 1 1 1 1 1
0 1 1 1 0 0


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0 0 1 1 1 0
0 1 1 1 0 0
1 1 1 0 0 0
0 0 0 0 1 1




1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 0 1 1



not column or
row convex

column-convex row-convex doubly-convex
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Observations:

I BS are BM,111 polytopes with row-convex M.

I We can remove redundant (nested) intervals in S without
changing the polytope BS .

I The order of the inequalities does not matter in the definition
of BS . So we could use lexicographic order in the
nonredundant intervals giving also column-convexity.
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Moral:
Consecutive coordinate polytopes are polytopes from
doubly-convex matrices.



From column-convex matrices
to graphs



From column-convex matrices to graphs

There is a bijection between column-convex matrices and spinal
graphs.

y6y5y4y3y2y1

x4

x3

x2

x1

M =


1 1 0 0 0 0
1 1 1 0 0 0
0 1 0 1 1 0
0 0 0 1 1 1

 G =

1 2 3 4 5x1 x2 x3 x4

y1

y2

y3

y4

y5

y6



Flow polytopes



Flows on a graph (network)

Figure: Image taken from the U.S. Energy Information Administration



Flows on a directed graph G

a1 a2 a3 a4 a5

· · ·
an an+1

I We will think that the vector aaa = (a1, a2, . . . , an+1) is the
netflow coming in/out of each vertex.

I The network is balanced in the sense that

n+1∑
i=1

ai = 0.
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Flows on a directed graph G

1 1 0 0 1 −3

0.5 0.5 0 0 1.3

0.2

0
0.3

1
0.7

0

We have that (0.5, 0.2, 0, 0.3, 0.5, 1, 0, 0.7, 0, 0, 1.3) ⊆ R11 is an
(1, 1, 0, 0, 1,−3)-flow on the graph G .
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Flows on a directed graph G

a1 a2 a3 a4 a5

· · ·
an an+1

I We define FG (aaa) to be the set of non-negative aaa-flows on the
edges of G .

I FG (aaa) is a polytope.

I The Kostant partition function
KG (aaa) = {integer aaa-flows on G}.
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An example of a simple graph

1 1 −2

x1,2

x1,3

x2,3

1 1 −2

0.3

0.7

1.3

With neflow vector aaa = (1, 1,−2) conservation of flow gives

x1,2 + x1,3 = 1

x2,3 − x1,2 = 1.

The nonnegative flow condition gives

x1,2 ≥ 0

x1,3 ≥ 0

x2,3 ≥ 0.
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An example of a simple graph

x1,2

x1,3

x2,3

(0, 1, 1)

x1,2

x1,3

x2,3

(0 3 0.7, 1.3)



Another example

10 1 −2

x
1

1,2
x2,3 x3,4

x1,3

x
2

1,2

x2,4

−→



Open parenthesis (



Volumes of flow polytopes

For certain graphs G and vectors aaa, the volumes of FG (aaa) have
nice combinatorial formulas.

Theorem (Zeilberger 1999)

When G is the complete graph Kn+1 and aaa = (1, 0, . . . ,−1), the
(normalized) volume of FG (aaa) (called the Chan–Robbins–Yuen
“CRY”polytope) is given by

Vol FKn+1(1, 0, . . . ,−1) =
n−2∏
i=1

Ci ,

where Ck := 1
k+1

(2k
k

)
is the k-th Catalan number.

Open problem

Find a combinatorial proof of Zeilberger’s theorem.
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A simpler graph, a simpler
problem



The caracol graph

1 2 3 4 5
· · ·

n − 1 n n + 1

Figure: The caracol graph Carn+1



Volumes of Caracol polytopes

Theorem (Stanley, Mészáros-Morales,
Benedetti-G.D’L.-Hanusa-Harris-Khare-Morales-Yip)

For n ≥ 2, the volume of the flow polytope FCarn+1(1, 0, . . . ,−1) is

Vol FCarn+1(1, 0, . . . ,−1) = Cn−2.

Theorem (Benedetti-G.D’L.-Hanusa-Harris-Khare-Morales-Yip)

For n ≥ 2, the volume of the flow polytope FCarn+1(1, 1, . . . ,−n) is

Vol FCarn+1(1, 1, . . . ,−n) = Cn−2 · nn−2.



A more general Caracol!



The ν-Caracol graph

(0, 0)

(7, 5)
ν5 = 1

ν4 = 3

ν3 = 0

ν2 = 1

ν1 = 2
1 2 3 4 5 6 7 8

A lattice path ν = NE 2NE 1NE 0NE 3NE 1 and its associated
ν-caracol graph Carν .



Framed triangulations of the
ν-Caracol polytope



Framed triangulations, the ν-Tamari lattice, and Young´s
lattice

Theorem (von Bell-G.D’L.-Mayorga-Yip)

The length-framed triangulation of FCarν (1, 0, . . . ,−1) is a regular
unimodular triangulation whose dual graph is the Hasse diagram of
the ν-Tamari lattice Tam(ν) defined by Préville-Ratelle and
Viennot.

Theorem (von Bell-G.D’L.-Mayorga-Yip)

The planar-framed triangulation of FCarν (1, 0, . . . ,−1) is a regular
unimodular triangulation whose dual graph is the Hasse diagram of
the principal order ideal I (ν) in Young’s lattice Y .

Corollary (Mészáros - Morales)

The normalized volume of the flow polytope FCarν is given by the
number of ν-Dyck paths, that is, the ν-Catalan number Cat(ν).
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The normalized volume of the flow polytope FCarν is given by the
number of ν-Dyck paths, that is, the ν-Catalan number Cat(ν).



The ν-Tamari lattice and the principal order ideal I (ν) in
Young’s lattice Y



Close parenthesis )



A key integral equivalence

Theorem (González D’León-Hanusa-Morales-Yip)

When M is column-convex, the polytope BM,111 is integrally
equivalent to the flow polytope FG .
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y1 + y2 + x1 = a1

y3 + x2 = a2 + x1

y4 + y5 + x3 = a3 + x2 + y1 + y3

y6 + x4 = a4 + x3 + y2
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Idea behind the integral equivalence

a1 a2 a3 a4 a5x1 x2 x3 x4

y1

y2

y3
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y1 + y2 ≤ a1

y1 + y2 + y3 ≤ a1 + a2

y2 + y4 + y5 ≤ a1 + a2 + a3

y4 + y5 + y6 ≤ a1 + a2 + a3 + a4



Idea behind the integral equivalence

a1 a2 a3 a4 a5x1 x2 x3 x4

y1

y2

y3

y4

y5

y6

y1 + y2 ≤ 1

y1 + y2 + y3 ≤ 1

y2 + y4 + y5 ≤ 1

y4 + y5 + y6 ≤ 1

when aaa = (1, 0, 0, 0,−1).
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Lidskii formulas

Baldoni and Vergne (2008) gave a beautiful set of formulas (which
they call as the Lidskii Formulas) to compute volumes of flow
polytopes.



Indegree Lidskii volume formula

Theorem (Baldoni-Vergne)

We have that

Vol FG (a1, . . . , an, an+1) =
∑
j≤i

(
m − n

j

)
(−aaa)jKG (i− j, 0),

where i = (indegG (2)− 1, indegG (3)− 1, . . . , indegG (n + 1)− 1).



Indegree version when aaa = (1, 0, . . . , 0,−1)

Theorem (Postnikov-Stanley, Baldoni and Vergne)

Let ui = indegG (i)− 1 for i = 2, . . . , n + 1. Then

Vol FG = KG

(
0, u2, . . . , un,−

n∑
i=2

ui

)
.



The spirit of this formula

Volume of

1 0 0 0 −1

is equal to

Integer flows of

0 0 2 1 −3



G -cyclic orders
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Upper and lower G -cyclic orders

0 0 2 1 −30 0 0 1

y1 = 0

y2 = 0

y3 = 0

y5 = 1

y4 = 1

y6 = 0 γ ↓=

0

4

1

56

2

3

γ↑ =

0

4

1

25

6

3



Upper and lower G -cyclic orders



A more general answer

Theorem (González D’León-Hanusa-Morales-Yip)

For a spinal graph G, the normalized volume of the flow polytope
FG is the number of upper (or lower) G-cyclic orders. In other
words,

Vol FG = A↓G = A↑G .



What else we gain in this
translation?



Benefits of the flow polytope perspective

I We obtain a volume formula of the same flavor for a larger
family of polytopes.

I We gain all the combinatorics of flow polytopes (Lidskii
formulas, a variety of combinatorial objects and triangulations)

I Because of the general Lidskii formula, that involves mixed
volumes, and the Aleksandrov-Fenchel inequalities for mixed
volumes one can prove certain log-concavity relations.
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I We obtain a volume formula of the same flavor for a larger
family of polytopes.

I We gain all the combinatorics of flow polytopes (Lidskii
formulas, a variety of combinatorial objects and triangulations)

I Because of the general Lidskii formula, that involves mixed
volumes, and the Aleksandrov-Fenchel inequalities for mixed
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Back to the original polytopes
Cn,k .



Distance graphs and k-Euler numbers

To the polytopes Cd ,k we associate the distance graphs
G (k, n + 1).

G(4,12)

0 0 0 0 1 1 1 1 1 1 1 −7

By analogy with the case k = 2, one can define the d-th k-Euler
number E k

d as the volume

E k
d = Vol(FG(k,d+k)) = Vol(Cd ,k).
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Distance graphs and k-Euler numbers

To the polytopes Cd ,k we associate the distance graphs
G (k, n + 1).

G(4,12)

0 0 0 0 1 1 1 1 1 1 1 −7

By analogy with the case k = 2, one can define the d-th k-Euler
number E k

d as the volume

E k
d = Vol(FG(k,d+k)) = Vol(Cd ,k).



k-Entringer numbers

A further refinement are the k-Entringer numbers Esss indexed by
weak compositions sss = (s1, . . . , sk).

G(4,12)
s4 s3 s2

s1

0 0 0 0 1 1 1 1 1 1 1 −7



k-Entringer numbers

A further refinement are the k-Entringer numbers Esss indexed by
weak compositions sss = (s1, . . . , sk).

1 1 1 1 1 1 1−s4
1−s3

1−s2
1−s1

The recursivity of these graphs imply the boustrophedon
recursion:

Theorem (c.f. Ayyer-Josuat-Vergès-Ramassamy 2019)

For k ≥ 2, we have

E(s1,...,sk ) =


1 if (s1, . . . , sk) = (0, . . . , 0),∑s1−1

j=0 E(s2+j ,s3,...,sk ,s1−j−1), if s1 > 0,

0, otherwise.
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Boustrophedon recursion

E(0,2,1)E(0,3,0) E(0,1,2) E(0,0,3)

E(1,2,0) E(1,1,1) E(1,0,2)

E(2,1,0) E(2,0,1)

E(3,0,0)

E(0,2,0) E(0,1,1) E(0,0,2)

E(1,1,0) E(1,0,1)

E(2,0,0)

0

1

1

1 1

1

0 0

0

0

1

1

000

0



Nested boustrophedon recursions

E(0,3,0) E(0,2,1) E(0,1,2) E(0,0,3)

E(1,2,0) E(1,1,1) E(1,0,2)

E(2,1,0) E(2,0,1)

E(3,0,0)

0 0 0 0

1 1 0

1 1

1

E(0,4,0) E(0,3,1) E(0,2,2) E(0,1,3) E(0,0,4)

E(1,3,0) E(1,2,1) E(1,1,2) E(1,0,3)

E(2,2,0) E(2,1,1) E(2,0,2)

E(3,1,0) E(3,0,1)

E(4,0,0)

0 0 0 0 0

1 1 1 0

2 2 1

2 2

2

E(0,5,0) E(0,4,1) E(0,3,2) E(0,2,3) E(0,1,4) E(0,0,5)

E(1,4,0) E(1,3,1) E(1,2,2) E(1,1,3) E(1,0,4)

E(2,3,0) E(2,2,1) E(2,1,2) E(2,0,3)

E(3,2,0) E(3,1,1) E(3,0,2)

E(4,1,0) E(4,0,1)

E(5,0,0)

0 0 0 0 0 0

2 2 2 1 0

4 4 3 1

5 5 3

5 5

5



Log-concavity of k-Entringer numbers

We obtain also this further log-concavity result about k-Entringer
numbers

Theorem (González D’León-Hanusa-Morales-Yip)

Let k ≥ 2 and sss = (s1, . . . , sk−1, sk), then the numbers Esss are
log-concave along root directions. That is,

E 2
sss ≥ Esss−eee i+eee j · Esss+eee i−eee j .



Log-concavity along root directions

0 0 0 0 0 0

02 2 2 1

4

5

4 3 1

5 3

5 5

5

eee1 − eee2

eee2 − eee3

eee1 − eee3

32 = E 2
(2,1,2) ≥ E(1,2,2)E(3,0,2) = 2 · 3

32 = E 2
(2,1,2) ≥ E(3,1,1)E(1,1,3) = 5 · 1

32 = E 2
(2,1,2) ≥ E(2,2,1)E(2,0,3) = 4 · 1



And a conjecture



The h∗-polynomial

A popular refinement of the volume of a lattice polytope that
comes from Ehrhart theory is known as the h∗-polynomial.

Theorem (Ayyer–Josuat-Vergès–Ramassamy 2019)

For a collection S of intervals in [d ] we have

h∗BS (z) =
∑
γ∈AS

zdes(γ).

Conjecture

Given a spinal graph G we have that

FA↓G ,des
(z) � h∗FG

(z) � FA↑G ,des
(z),

where � indicates dominance order in the vectors of coefficients.
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Gracias!


