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Polytopes

» Denote By p a convex polytope in RY that can be expressed
as

Bump = {z € RSy | Mz < b},
where M is an n x d integral matrix and b € Z".
> It is called an integer polytope when all its vertices are in Z9.

» Its normalized volume Vol(By p) is the integer

Vol(Bw p) = d! EuclideanVol(Bp p)-

» Two lattice polytopes P C R” and Q C R” are integrally
equivalent if there exists an affine transformation
@ : R™ — R" whose restriction to P is a bijection ¢ : P — Q
that preserves the lattice. This also implies that
Vol(P) = Vol(Q).



A motivating question!
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An exercise in Stanley's EC1

Find the volume of the polytope Cq > in RY defined by the
inequalities z > 0 forall i =1,...,d, and

2+ <1
n+2z3<1

zg1+2z9g <1

=0

Vol(Cs2) = 2




Proposition (Stanley)

We have that
VOI(Cd’Q) = Ed,

where E4 is the dth-Euler number.



Proposition (Stanley)

We have that
VOI(Cd’Q) = Ed,

where E4 is the dth-Euler number.

Euler numbers count up/down permutations

n=3 132,231 Es =2
n=4  1324,1423,2314,2413, 3412 E,=5



Stanley propose the more general question

Question (Stanley)

Find the volume of the polytope Cyq \ in RY defined by the
inequalities z; > 0 for all i =1,...,d, and

n+z+--+z <1
n+z3+ -+ z41 <1

Zd—k+1+ Zd—kt2 -+ 24 < L.



An even more general question

Question (Ayyer, Josuat-Verges, Ramassamy 2019)

Find the volume of the polytope Bs in RY defined by the
inequalities z; > 0 for all i =1,...,d, and

ZZ,‘ < 1
i€l

for all | € S, where S is a collection of intervals in [d].



An even more general question

Question (Ayyer, Josuat-Verges, Ramassamy 2019)

Find the volume of the polytope Bs in RY defined by the
inequalities z; > 0 for all i =1,...,d, and

ZZ,'S].

i€l

for all | € S, where S is a collection of intervals in [d].

The polytopes Bs are called consecutive coordinate polytopes.
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Partial cyclic order

Definition

A partial cyclic order on a set X is a ternary relation v C X3

satisfying the following conditions:

(a) (x,y,z) € v implies (y, z, x) € v (cyclicity),

(b) (x,y,z) € v implies (z,y, x) ¢ v (asymmetry),

(c) (x,y,z) €y and (x,z,u) € v implies (x,y, u) €y
(transitivity).

A partial cyclic order is called a total cyclic order if in addition it

satisfies:

(d) for every x,y,z € X, either (x,y,z) € yor (z,y,x) €~
(comparability).



Total cyclic order

Total cyclic orders are easy to represent on a circle:
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Given a collection S of intervals of [d] one can define a partial
cyclic order ~ys that is compatible with S.

Example

For example if S = {[1,2],[2, 3]} the partial cyclic order is defined
as the minimal that contains the cyclic chains (0, 1,2) and (1, 2, 3).
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Parcial cyclic orders from intervals

Given a collection S of intervals of [d] one can define a partial
cyclic order ~ys that is compatible with S.

Example

For example if S = {[1,2],[2, 3]} the partial cyclic order is defined
as the minimal that contains the cyclic chains (0, 1,2) and (1, 2, 3).

The total cyclic extensions of this partial cyclic order.

0 0



A beautiful answer to Stanley’s question

Theorem (Ayyer, Josuat-Verges, Ramassamy 2019)
For a collection S of intervals in [d], the polytope Bs is a lattice
polytope with

Vol(Bs) = As,
where As is the number of total cyclic extensions to the partial
cyclic order determined by S.



Can we generalize this further?



Can we generalize this further?

For example, to cases where the sets in S are not necessarily
intervals.



Column-convex {0, 1}-matrices
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Column-convex and row-convex matrices

row convex

1 1 0 0 0 oO 1 1 0 0 0 oO 0 0 1 1 1 0 1 1 1 0 0 O
0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0o 1 1 1 0 o0 0O 0 0 0 1 1 0O 0 0 0 1 1
not column or | column-convex row-convex doubly-convex

Observations:

» Bs are By 1 polytopes with row-convex M.
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Observations:

» Bs are By 1 polytopes with row-convex M.

» We can remove redundant (nested) intervals in S without
changing the polytope Bs.




Column-convex and row-convex matrices
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not column or | column-convex row-convex doubly-convex
row convex

Observations:
» Bs are By 1 polytopes with row-convex M.
» We can remove redundant (nested) intervals in S without
changing the polytope Bs.
» The order of the inequalities does not matter in the definition

of Bs. So we could use lexicographic order in the
nonredundant intervals giving also column-convexity.



Column-convex and row-convex matrices

1 1 0 0 0 oO 1 1 0 0 0 oO 0 0 1 1 1 0 1 1 1 0 0 O
0 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0o 1 1 1 0 o0 0O 0 0 0 1 1 0O 0 0 0 1 1
not column or | column-convex row-convex doubly-convex

row convex

Moral:

Consecutive coordinate polytopes are polytopes from
doubly-convex matrices.



From column-convex matrices
to graphs



From column-convex matrices to graphs

There is a bijection between column-convex matrices and spinal
graphs.

Y1 Y2 Y3 Ya Y5 Y6
1100 0 0lx y2 ys
11100 0 B «
M_010110X3E3G_ )/3 Vo
0 00 1 1 1|x

X1 X2 X3 X4



Flow polytopes



Flows on a graph (network)
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Figure: Image taken from the U.S. Energy Information Administration



Flows on a directed graph G
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Flows on a directed graph G

EN a az ag ag an an41

» We will think that the vector a = (a1, a2, ..., an+1) is the
netflow coming in/out of each vertex.

» The network is balanced in the sense that

n+1

Z a; = 0.
i=1



Flows on a directed graph G
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Flows on a directed graph G

» We define F;(a) to be the set of non-negative a-flows on the
edges of G.
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Flows on a directed graph G

» We define F;(a) to be the set of non-negative a-flows on the
edges of G.

» Fc(a) is a polytope.
» The Kostant partition function
K (a) = {integer a-flows on G}.
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T3
. 1,2 > 2,3 >o

0.3




An example of a simple graph

1.3 0.7
m 03 13 W
° o o ° o L add
1 1 —2 1 1 —2

With neflow vector a = (1,1, —2) conservation of flow gives

x12+x3=1

x23 —x12 = 1.



An example of a simple graph

x1.3 0.7
m 03 13 W
° o o ° o L add
1 1 -2 1 1 —2

With neflow vector a = (1,1, —2) conservation of flow gives

x12+x3=1

x23 —x12 = 1.
The nonnegative flow condition gives

x12 >0
x13>0
x23 > 0.



An example of a simple graph

(0.3,0.7,1.3)

\\(’u. 1,1) °




Another example

Q>
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Volumes of flow polytopes

For certain graphs G and vectors a, the volumes of Fg(a) have
nice combinatorial formulas.



Volumes of flow polytopes

For certain graphs G and vectors a, the volumes of Fg(a) have
nice combinatorial formulas.

Theorem (Zeilberger 1999)

When G is the complete graph K,+1 and a= (1,0,...,—1), the
(normalized) volume of Fg(a) (called the Chan—Robbins—Yuen
“CRY" polytope) is given by

n—2
VO/-FK,,H(L 07 ey —1) = H C,',
i=1
where Cy = ﬁ(ik) is the k-th Catalan number.

Open problem

Find a combinatorial proof of Zeilberger's theorem.



A simpler graph, a simpler
problem



The caracol graph

Figure: The caracol graph Car,11



Volumes of Caracol polytopes

Theorem (Stanley, Mészaros-Morales,
Benedetti-G.D'L.-Hanusa-Harris-Khare-Morales-Yip)

For n > 2, the volume of the flow polytope Fcar,,,(1,0,...,—1) is

Vol Fear,y(1,0,...,—1) = Cyo.

Theorem (Benedetti-G.D'L.-Hanusa-Harris-Khare-Morales-Yip)
For n > 2, the volume of the flow polytope Fcar,,,(1,1,...,—n) is

VolfCa,n+1(1, 1,.. .,—n) =Cho- 2.



A more general Caracol!



The v-Caracol graph

(7,5)

(0,0)

A lattice path v = NE2NE*NE°NE3NE! and its associated
v-caracol graph Car,.



Framed triangulations of the
v-Caracol polytope



Framed triangulations, the v-Tamari lattice, and Young’s
lattice

Theorem (von Bell-G.D'L.-Mayorga-Yip)

The length-framed triangulation of Fca,,(1,0,...,—1) is a regular
unimodular triangulation whose dual graph is the Hasse diagram of

the v-Tamari lattice Tam(v) defined by Préville-Ratelle and
Viennot.
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Framed triangulations, the v-Tamari lattice, and Young’s
lattice

Theorem (von Bell-G.D'L.-Mayorga-Yip)

The length-framed triangulation of Fca,,(1,0,...,—1) is a regular
unimodular triangulation whose dual graph is the Hasse diagram of
the v-Tamari lattice Tam(v) defined by Préville-Ratelle and
Viennot.

Theorem (von Bell-G.D'L.-Mayorga-Yip)

The planar-framed triangulation of Fcay, (1,0,...,—1) is a regular
unimodular triangulation whose dual graph is the Hasse diagram of
the principal order ideal I(v) in Young's lattice Y.

Corollary (Mészéros - Morales)

The normalized volume of the flow polytope Fc.,, is given by the
number of v-Dyck paths, that is, the v-Catalan number Cat(v).



The v-Tamari lattice and the principal order ideal /(v) in
Young's lattice Y




Close parenthesis )



A key integral equivalence

Theorem (Gonzéalez D'Leén-Hanusa-Morales-Yip)

When M is column-convex, the polytope By 1 is integrally
equivalent to the flow polytope Fg.



Idea behind the integral equivalence
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Idea behind the integral equivalence

Y2 Y5

J1 ,

y3
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Yat+ys+x3=a3+x2+y1+y3
Yo+ X4 =a4+x3+ )2



Idea behind the integral equivalence

Y2 Y5

v ,

y3

ap X1 ay X2 a3 X3 a X4 g

it+y»+x1=ai
Yi+ty2+y3s+x2=a;+ a
Yo+ ys+ys +x3=a1+ax+ a3
Ya+Yys+Yet+Xxa=a1+ax+ a3+ as



Idea behind the integral equivalence

Y2 Y5

SR

3 Y6

ap X1 ay X2 a3 X3 a X4 g

yity2<a
vity+ys<ar+a
Yot+ys+ys <ar+a+ a3
Ya+Yys+Ye <air+axtaz+as



Idea behind the integral equivalence

Y2 Y5

SR

3 Y6

ap X1 ay X2 a3 X3 a X4 g

yi+y2<1
vity»+ys<1
yot+ys+ys <1
ya+ys+ye <1

when a = (1,0,0,0, —1).



A key integral equivalence
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A key integral equivalence

Theorem (Gonzélez D'Leén-Hanusa-Morales-Yip)

When M is column-convex, the polytope By 1 is integrally
equivalent to the flow polytope F.

Moral:

Consecutive coordinate polytopes “are” flow polytopes.



Lidskii formulas



Lidskii formulas

Baldoni and Vergne (2008) gave a beautiful set of formulas (which
they call as the Lidskii Formulas) to compute volumes of flow
polytopes.



Indegree Lidskii volume formula

Theorem (Baldoni-Vergne)
We have that

m-—n ; . .
Vol Fe(an, .. amanin) = 3 (") (-aPKe(i 5.0

i<i

where i = (indegg(2) — 1,indegs(3) — 1,...,indegg(n+ 1) — 1).



Indegree version when a = (1,0,...,0,—1)

Theorem (Postnikov-Stanley, Baldoni and Vergne)
Let uj = indegg(i) — 1 fori=2,...,n+ 1. Then

Vol F¢ = K¢ <0, uz,...,u,,,—Zu,-> .
i=2



The spirit of this formula

Volume of Integer flows of

/ ; Z; % is equal to m
1 0 0 0 -1 0 0 2 1 -3




G-cyclic orders



Bijection between integral flows and upper (lower) G-cyclic
orders

00002011—3



Bijection between integral flows and upper (lower) G-cyclic
orders
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Bijection between integral flows and upper (lower) G-cyclic
orders




Upper and lower G-cyclic orders




Upper and lower G-cyclic orders
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A more general answer

Theorem (Gonzélez D'Leén-Hanusa-Morales-Yip)

For a spinal graph G, the normalized volume of the flow polytope
F¢ is the number of upper (or lower) G-cyclic orders. In other
words,

Vol Fg = AL = AL.



What else we gain in this
translation?



Benefits of the flow polytope perspective

> We obtain a volume formula of the same flavor for a larger
family of polytopes.
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Benefits of the flow polytope perspective

> We obtain a volume formula of the same flavor for a larger
family of polytopes.

» We gain all the combinatorics of flow polytopes (Lidskii
formulas, a variety of combinatorial objects and triangulations)

» Because of the general Lidskii formula, that involves mixed
volumes, and the Aleksandrov-Fenchel inequalities for mixed
volumes one can prove certain log-concavity relations.



Back to the original polytopes
Ch.k-
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Distance graphs and k-Euler numbers

To the polytopes Cy4 x we associate the distance graphs
G(k,n+1).

G(4,12)

VA R:9:9:99: 00

0 00O0OT17111111-7

By analogy with the case kK = 2, one can define the d-th k-Euler
number E(’j as the volume

EX = Vol(Fg(kd+k)) = Vol(Ca ).



k-Entringer numbers

A further refinement are the k-Entringer numbers Eg indexed by
weak compositions s = (s1,...,Sk).

e
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k-Entringer numbers

A further refinement are the k-Entringer numbers Eg indexed by
weak compositions s = (s1,...,Sk).

The recursivity of these graphs imply the boustrophedon
recursion:

Theorem (c.f. Ayyer-Josuat-Verges-Ramassamy 2019)
For k > 2, we have

1 if(Sl,...,Sk):(O,...
-1 .
E(Sl,.‘.,sk) = 2_11:0 E(52+j,53,‘..,5k,517_j71)7 IfS]_ > O)
0, otherwise.



Boustrophedon recursion




Nested boustrophedon recursions

E0.0)
Eer0) Eeon
Enzo Eaay Eaoz

Eo30) Eo21) Eo12) Eo03)

Ea0.0)
Es10 Eaon
Ee20 Ee1y Eeoz)
Exso Euzy Epiz) Enos)

Eoa40) Eos1) Eo22 Eo13) Eo04

E5,0,0)
Es10) E@on) 5 5
Ego) Esay Egop) 5 5 3
E230 Eeey Eei2) Eeos) 4 4 3 1
Euao Eusy Eazz) Eais) Enos 2 2 2 1 0
Eos.0) Eoa1) Eos2) Eo23 Eoi4) Eoos 0 0 0 0 0 0

DA



Log-concavity of k-Entringer numbers

We obtain also this further log-concavity result about k-Entringer
numbers

Theorem (Gonzédlez D'Leén-Hanusa-Morales-Yip)

Let k >2 ands = (s1,...,Sk—1,Sk), then the numbers Eg are
log-concave along root directions. That is,

2
Es > Esfe,-+ej : Es+e;fej~



Log-concavity along root directions

€y —ée3 € — e

ﬂ 3 =Ej12 > EnenEpon =23

\ 3= E(22,1,2) > Ez11)Eai3z=5-1

<— 3 =Ebi1s > EppnEpoy =41



And a conjecture
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The h*-polynomial

A popular refinement of the volume of a lattice polytope that
comes from Ehrhart theory is known as the h*-polynomial.

Theorem (Ayyer—Josuat-Vergés—Ramassamy 2019)

For a collection S of intervals in [d] we have

des(y
th Z z

) YEAs
Conjecture

Given a spinal graph G we have that
FAé,des(Z) < h;'—c(z) < FAE,des(Z)’

where < indicates dominance order in the vectors of coefficients.



Gracias!



