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Combinatorial warmup: Stable trees

A stable tree, or at-least-trivalent tree, is a leaf-labeled tree with
leaves 1, 2, . . . , n and no vertices of degree 2. Ex and non-ex:
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Poset STn of stable trees

Poset STn: tree T1 ą T2 if T2 contracts to T1. Portion of ST6:
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STn is a join-semilattice, coatomic. p2n ´ 5q!! minima (trivalent)
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When do meets exist?

Coatoms of STn look like:

A B

Write as DpA|Bq.

Compatibility: DpA|Bq ^ DpX |Y q exists iff either A Ď X , A Ď Y ,
A Ě X , or A Ě Y (equivalent up to symmetry).

Example:
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Coatomicity

Let T be a stable tree, e internal edge of T , let Ae ,Be be the sets of
leaves on either side of e in T . Write De “ DpAe |Beq.

Notice: T “
Ź

e De where e ranges over all internal edges e of T .

Example: The tree T below:

is the meet:
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e De where e ranges over all internal edges e of T .
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Dp268|134579q ^ Dp14|2356789q ^ Dp12468|3579q ^ Dp1245678|39q
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General meets

Proposition (“G., Levinson”, “folklore (Giansiracusa)”)

The meet T ^ T 1 exists iff for all internal edges e P T and e 1 P T 1,
De ^ De1 exists.

Alternatively: simplicial complex whose vertices are coatoms and faces are
meets is a flag complex: a face is in the complex if and only if all its
edges are.

Corollary

A collection of trees T1, . . . ,Tn has a meet if and only if each pairwise
meet Ti ^ Tj exists.
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Proof sketch/construction of meets

Lemma: T ^ DpA|Bq exists iff DpA|Bq compatible with every divisor
De of an internal edge e in T .

Construction: Find the vertex v such that the branches at v either
only contain A leaves or only B leaves; form S “ T ^ DpA|Bq by
inserting a new edge at v separating A,B (or S “ T if result is not
stable).

Example. T at left below; T ^ Dp124568|379q shown at right.
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Geometric motivation: Rational curves

Recall: 5 general points determine a conic in the plane

Q: How to classify conics passing through 4 general points in P2?

Work over C, curves are genus 0, define M0,4 to be the moduli space
of these curves. M0,4 – P1; above curves are p1´ tqx2 ` ty2 “ 1

Cubics through 5 general points in P3? M0,5

Quartics through 6 general points in P4? M0,6
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Geometric motivation: Stable curves

Alt def: M0,n is space of stable curves of genus 0, n marked points

Stable curve: Tree structure of P1’s glued at nodes, each has at
least 3 special points

Dual tree: Vertex for each P1, edges are incidence

Boundary stratum: XT is closure of set of curves with dual tree T

XT Ď XT 1 iff T ă T 1 in STn.
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Poset STn again

Poset STn is poset of strata XT under inclusion:
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Chow ring and intersection theory on M0,n

Chow ring: Graded ring A˚pM0,nq, elements are rational equivalence
classes rX s of closed subvarieties X (like boundary strata)

Product gives intersections; if DpA|Bq ‰ DpX |Y q then
rDpA|Bqs ¨ rDpX |Y qs is rXT s where T “ DpA|Bq ^ DpX |Y q

In dim 0: rDp12|3456qs ¨ rDp1234|56qs ¨ rDp34|1256qs “ rT s “ rpts,

T “
1

2

3

4

5

6

When a product lands in dimension 0, it is c ¨ rpts for some c , called
the intersection number.

What are intersection numbers of arbitrary products of rXT s’s?
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Self-intersections, Psi classes, and tangency

Self-intersection: If D “ DpA|Bq, need to compute rDs2.

Intuition: Perturb D slightly in the moduli space to something
rationally equivalent to it, take the intersection with D

Psi classes: ψi “ c1pLi q where Li is the cotangent line bundle, fiber
over curve C is cotangent space at marked point i .

Psi classes on D: Note D – M0,AY‚ ˆM0,BY‚ where ‚ is the shared
node (corresponding to internal edge e).

Formula: Interpreting ψ‚ on M0,AY‚ or M0,BY‚ as pushed forward to
a class on M0,n, have

rDs2 “ ´pψA,‚ ` ψB,‚q

In fact
rDsk`1 “ p´1qkpψA,‚ ` ψB,‚q

k
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Psi class intersection numbers

Rational curve interpretation: ψi is class of degree n ´ 2 curves
through n points in Pn´2 tangent to a given hyperplane at point i

Example: ψ1ψ2 in M0,5 is class of cubics through 5 points in P3

tangent to fixed hyperplanes at 1, 2. Two solutions; ψ1ψ2 “ 2 ¨ rpts.

General intersection number: if a1 ` ¨ ¨ ¨ ` an “ n ´ 3, have

ψa1
1 ¨ ¨ ¨ψ

an
n “

ˆ

n ´ 3

a1, a2, . . . , an

˙

¨ rpts
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Intersections of boundary classes

Setup: Stable trees T1, . . . ,T` with
ř

codimpXTi
q “ dimM0,n

(i.e., total n ´ 3 internal edges) and
Ş

XTi
“ XT .

Note this means T1 ^ T2 ^ ¨ ¨ ¨ ^ T` “ T .

Write each rXTi
s as product of its rDes’s; one of each gives rXT s, let

kpeq be the number of excess copies of each rDes in
ś

rXTi
s

Example: T below, T ^ Dp124|356q “ T ,
rXT s ¨ rDp124|356qs “ rDp12|3456qs ¨ rDp124|356qs2

1

2
4

3

5

6

Write ψv ,e for the psi class at edge e from component v . Then
ź

rXTi
s “

ź

ePT

rDes
kpeq`1 “

ź

e“pv ,wqPT

p´1qkpeqpψv ,e ` ψw ,eq
kpeq
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Setup: Stable trees T1, . . . ,T` with
ř

codimpXTi
q “ dimM0,n

(i.e., total n ´ 3 internal edges) and
Ş

XTi
“ XT .

Note this means T1 ^ T2 ^ ¨ ¨ ¨ ^ T` “ T .

Write each rXTi
s as product of its rDes’s; one of each gives rXT s, let

kpeq be the number of excess copies of each rDes in
ś

rXTi
s
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Expansion and balanced weights

Claim: Only one term in expanding
ś

p´ψv ,e ´ ψw ,eq
kpeq survives!

Think of kpeq’s as edge labels, sum to dimpXT q “
ř

v degpvq ´ 3.

Choose exponents kpv , eq, kpw , eq with sum kpeq for each factor,

coefficient
` kpeq
kpv ,eq,kpw ,eq

˘

- split edge labels into one part at each vertex

Vertex sums are degpvq ´ 3; unique splitting by greedy algorithm

A NOTE ON PRODUCTS OF BOUNDARY CLASSES ON M0,n 4

y z

x

w

u v

ψx,e4 + ψz,e4

(ψx,e3 + ψw,e3)
3

ψu,e1 + ψw,e1 (ψw,e2 + ψv,e2)
2

0 1

2

3

0 1

0 1

3

1 2

0 1

2

3

0 1

0

0

0

1

2

1

1

0

1

1

Figure 2. A decorated tree with leaf labels omitted. Left: Factors of (ψv,e +

ψv′,e)
k(e) are shown. Middle: Simplified decoration, showing only vertex weights

(dimensions) and edge weights (exponents). Right: The unique balanced weights,
giving −36 times the class of a point (see Ex. 11).

3. Self-intersections and a balanced weight formula

We now fix stable trees T1, . . . , Tℓ, such that
∑

codim(XTi) = dimM0,n and
⋂
XTi is nonempty,

hence equal to XT for some T . We calculate the product
∏

[XTi ]. Let ι : XT ↪→ M0,n be the

inclusion.
For each v ∈ v(T ), we let n(v) := deg(v) − 3, the dimension of the corresponding M0,v. Next,

let e ∈ e(T ) be an edge and let De be the corresponding boundary divisor. We let

k(e) := #{i : XTi ⊆ De} − 1,

that is, k(e) counts how many times De occurs after the first, when each XTi is expressed as a
complete intersection. Note that

∑

v∈v(T )

n(v) = dimXT =
∑

e∈e(T )

k(e),

since the overall product has dimension 0.
The data n(v), k(e) essentially decorates the tree T with its leaves contracted (Fig. 2). Working

in the Chow ring A(XT ) of the stratum, we label the edge e with a factor (−1)k(e)(ψv,e+ψv′,e)
k(e).

Lemma 7. We have

k∏

i=1

[XTi ] = ι∗

( ∏

e∈e(T )

(−1)k(e)(ψv,e + ψv′,e)
k(e)

)
.

Proof. Write each XTi as a product of divisors D. Taking the first occurrence of each distinct factor
gives [XT ]. Then our product has the form

[XT ] ·
∏

e∈e(T )

De
k(e) = ι∗ι∗

( ∏

e∈e(T )

De
k(e)

)
.

Combining with the self-intersection formula (2.3) gives the desired form. □
We continue directly in A(XT ). Expanding out the product from Lemma 7 involves sums and

products from the terms (ψv,e+ψv′,e)
k(e), but many such terms vanish as, for each v, by dimension-

ality we can’t take more than n(v) factors of the form ψv,e. In fact, at most one term contributes,
as the following combinatorial lemma shows.
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Balanced Weights formula

Summary: Left with a unique term in expansion:

p´1q
ř

kpeq
ź

e

ˆ

kpeq

kpv , eq, kpw , eq

˙

ź

v ,e

ψ
kpv ,eq
v ,e

Product of psi classes: multinomial coefficient for each vertex v :

ź

i

rXTi
s “ p´1q

ř

kpeq
ź

ePT

ˆ

kpeq

kpv , eq

˙

ź

vPT

ˆ

degpvq ´ 3

kpv , e1q, kpv , e2q, . . .

˙

Simplified: Let npvq “ degpvq ´ 3 for any v . Then:

Theorem (G., Levinson, “folklore”)

We have
ś

i rXTi
s “ p´1q

ř

npvq
ś

npvq!
ś

kpeq!
ś

kpv ,eq!2
¨ rpts
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Example of Balanced Weights Formula

Formula:
ś

i rXTi
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ψv′,e)
k(e) are shown. Middle: Simplified decoration, showing only vertex weights

(dimensions) and edge weights (exponents). Right: The unique balanced weights,
giving −36 times the class of a point (see Ex. 11).

3. Self-intersections and a balanced weight formula
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codim(XTi) = dimM0,n and
⋂
XTi is nonempty,

hence equal to XT for some T . We calculate the product
∏

[XTi ]. Let ι : XT ↪→ M0,n be the

inclusion.
For each v ∈ v(T ), we let n(v) := deg(v) − 3, the dimension of the corresponding M0,v. Next,

let e ∈ e(T ) be an edge and let De be the corresponding boundary divisor. We let

k(e) := #{i : XTi ⊆ De} − 1,

that is, k(e) counts how many times De occurs after the first, when each XTi is expressed as a
complete intersection. Note that

∑

v∈v(T )

n(v) = dimXT =
∑

e∈e(T )

k(e),

since the overall product has dimension 0.
The data n(v), k(e) essentially decorates the tree T with its leaves contracted (Fig. 2). Working

in the Chow ring A(XT ) of the stratum, we label the edge e with a factor (−1)k(e)(ψv,e+ψv′,e)
k(e).

Lemma 7. We have

k∏

i=1

[XTi ] = ι∗

( ∏

e∈e(T )

(−1)k(e)(ψv,e + ψv′,e)
k(e)

)
.

Proof. Write each XTi as a product of divisors D. Taking the first occurrence of each distinct factor
gives [XT ]. Then our product has the form

[XT ] ·
∏

e∈e(T )

De
k(e) = ι∗ι∗

( ∏

e∈e(T )

De
k(e)

)
.

Combining with the self-intersection formula (2.3) gives the desired form. □
We continue directly in A(XT ). Expanding out the product from Lemma 7 involves sums and

products from the terms (ψv,e+ψv′,e)
k(e), but many such terms vanish as, for each v, by dimension-

ality we can’t take more than n(v) factors of the form ψv,e. In fact, at most one term contributes,
as the following combinatorial lemma shows.

p´1q7
p3! ¨ 2! ¨ 1! ¨ 1! ¨ 0! ¨ 0!qp3! ¨ 2! ¨ 1! ¨ 1! ¨ 0!q

p2! ¨ 1! ¨ 1! ¨ 1! ¨ 1! ¨ 0! ¨ 0! ¨ 0! ¨ 0!q2
“
´6 ¨ 2 ¨ 6 ¨ 2

22
“ ´36.
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Examples in special cases

Divisor power: (binomial coefficient)

rDp1 2 3 4 5 6 7|8 9 10 11 12qs8 “

ˆ

8

5

˙

rpts “ 56rpts

8 5 3

Star crab: (multinomial coefficient)

2

2

1

´
`

5
2,2,1

˘

rpts “ ´30rpts
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Announcement: COMOC 2024

COMOC: Combinatorics Of Moduli Of Curves - workshop at Banff
International Research Station (BIRS), 2024

Dates: July 28-Aug 2, 2024

Purpose: Bring together geometers and combinatorialists to work on
combinatorial problems on moduli spaces of curves

Applications: We have a small number of spots open for applications -
spread the word!

Website: https://sites.google.com/view/comoc2024/home
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Thank you!

T H A N
K

Y O U
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