
Counting neighborhood-restricted graphs

Ira M. Gessel

Department of Mathematics
Brandeis University

Michigan State University
Combinatorics and Graph Theory Seminar

March 31, 2021

Point-determining graphs

A graph is called point-determining or mating or mating-type or
distinct-neighborhood or R-thin if no two vertices have the
same neighborhood.

The neighborhood N(v) of a vertex v in a graph is the set of
vertices adjacent to v. (A vertex is not adjacent to itself.)

1 2 3

Here vertices 1 and 3 have the same neighborhood, {2}, so
this graph is not point-determining. Note that if N(u) = N(v)
then u and v are not adjacent.

Point-determining graphs

A graph is called point-determining or mating or mating-type or
distinct-neighborhood or R-thin if no two vertices have the
same neighborhood.

The neighborhood N(v) of a vertex v in a graph is the set of
vertices adjacent to v. (A vertex is not adjacent to itself.)

1 2 3

Here vertices 1 and 3 have the same neighborhood, {2}, so
this graph is not point-determining. Note that if N(u) = N(v)
then u and v are not adjacent.

Point-determining graphs

A graph is called point-determining or mating or mating-type or
distinct-neighborhood or R-thin if no two vertices have the
same neighborhood.

The neighborhood N(v) of a vertex v in a graph is the set of
vertices adjacent to v. (A vertex is not adjacent to itself.)

1 2 3

Here vertices 1 and 3 have the same neighborhood, {2}, so
this graph is not point-determining.

Note that if N(u) = N(v)
then u and v are not adjacent.

Point-determining graphs

A graph is called point-determining or mating or mating-type or
distinct-neighborhood or R-thin if no two vertices have the
same neighborhood.

The neighborhood N(v) of a vertex v in a graph is the set of
vertices adjacent to v. (A vertex is not adjacent to itself.)

1 2 3

Here vertices 1 and 3 have the same neighborhood, {2}, so
this graph is not point-determining. Note that if N(u) = N(v)
then u and v are not adjacent.

If G is an arbitrary graph then we can construct a
point-determining graph from G by identifying vertices with the
same neighborhood.

1,3 21 2 3

Conversely, an arbitrary graph can be constructed uniquely
from a point-determining graph by replacing each vertex with a
nonempty set of vertices, all with the same neighborhood.

This decomposition yields an identity of generating functions.

If G is an arbitrary graph then we can construct a
point-determining graph from G by identifying vertices with the
same neighborhood.

1,3 21 2 3

Conversely, an arbitrary graph can be constructed uniquely
from a point-determining graph by replacing each vertex with a
nonempty set of vertices, all with the same neighborhood.

This decomposition yields an identity of generating functions.

If G is an arbitrary graph then we can construct a
point-determining graph from G by identifying vertices with the
same neighborhood.

1,3 21 2 3

Conversely, an arbitrary graph can be constructed uniquely
from a point-determining graph by replacing each vertex with a
nonempty set of vertices, all with the same neighborhood.

This decomposition yields an identity of generating functions.

Exponential generating functions

Let P (x) =

∞∑
n=0

pn
xn

n!
be the exponential generating function for

point-determining graphs.

Let G(x) =

∞∑
n=0

2(n2)
xn

n!
be the exponential generating function

for all graphs.

The exponential generating function for nonempty sets is
ex − 1 =

∑∞
n=1 x

n/n!.

By the theory of exponential generating functions, the
decomposition just described implies that G(x) = P (ex − 1) so

P (x) = G
(
log(1 + x)

)
= 1 + x +

x2

2!
+ 4

x3

3!
+ 32

x4

4!
+ 588

x5

5!
+ 21476

x6

6!
+ · · ·

Exponential generating functions

Let P (x) =

∞∑
n=0

pn
xn

n!
be the exponential generating function for

point-determining graphs.

Let G(x) =

∞∑
n=0

2(n2)
xn

n!
be the exponential generating function

for all graphs.

The exponential generating function for nonempty sets is
ex − 1 =

∑∞
n=1 x

n/n!.

By the theory of exponential generating functions, the
decomposition just described implies that G(x) = P (ex − 1) so

P (x) = G
(
log(1 + x)

)
= 1 + x +

x2

2!
+ 4

x3

3!
+ 32

x4

4!
+ 588

x5

5!
+ 21476

x6

6!
+ · · ·

Complementary neighborhoods

Now we consider another problem—counting graphs in which
no two vertices have complementary neighborhoods. We call
them noncomplementary neighborhood graphs.

For example, consider

1 2 3

Here N(1) = {2} and N(2) = {1, 3} so this is not a
noncomplementary neighborhood graph. On the other hand the
complete graph Kn for n > 2 is a noncomplementary
neighborhood graph.

The decomposition approach does not work for counting
noncomplementary neighborhood graphs. Instead we will use
inclusion-exclusion.

Complementary neighborhoods

Now we consider another problem—counting graphs in which
no two vertices have complementary neighborhoods. We call
them noncomplementary neighborhood graphs.

For example, consider

1 2 3

Here N(1) = {2} and N(2) = {1, 3} so this is not a
noncomplementary neighborhood graph. On the other hand the
complete graph Kn for n > 2 is a noncomplementary
neighborhood graph.

The decomposition approach does not work for counting
noncomplementary neighborhood graphs. Instead we will use
inclusion-exclusion.

Complementary neighborhoods

Now we consider another problem—counting graphs in which
no two vertices have complementary neighborhoods. We call
them noncomplementary neighborhood graphs.

For example, consider

1 2 3

Here N(1) = {2} and N(2) = {1, 3} so this is not a
noncomplementary neighborhood graph. On the other hand the
complete graph Kn for n > 2 is a noncomplementary
neighborhood graph.

The decomposition approach does not work for counting
noncomplementary neighborhood graphs. Instead we will use
inclusion-exclusion.

Inclusion-exclusion

We have a set S of objects and a set P of conditions. For each
condition p there is a subset Sp ⊆ S of objects that satisfy
condition p. We would like to find the number of objects
satisfying none of the conditions in P, i.e., the size of⋂

p∈P Sp = S −
⋃

p∈P Sp.

For any subset A ⊆P, let SA =
⋂

p∈A Sp (with S∅ = S). The
inclusion-exclusion theorem says that∣∣∣ ⋂

p∈P

Sp

∣∣∣ =
∑
A⊆P

(−1)|A||SA|.

For inclusion-exclusion to be useful, we must be able to
compute |SA| for each A ⊆P.

Inclusion-exclusion

We have a set S of objects and a set P of conditions. For each
condition p there is a subset Sp ⊆ S of objects that satisfy
condition p. We would like to find the number of objects
satisfying none of the conditions in P, i.e., the size of⋂

p∈P Sp = S −
⋃

p∈P Sp.

For any subset A ⊆P, let SA =
⋂

p∈A Sp (with S∅ = S). The
inclusion-exclusion theorem says that∣∣∣ ⋂

p∈P

Sp

∣∣∣ =
∑
A⊆P

(−1)|A||SA|.

For inclusion-exclusion to be useful, we must be able to
compute |SA| for each A ⊆P.

Inclusion-exclusion

We have a set S of objects and a set P of conditions. For each
condition p there is a subset Sp ⊆ S of objects that satisfy
condition p. We would like to find the number of objects
satisfying none of the conditions in P, i.e., the size of⋂

p∈P Sp = S −
⋃

p∈P Sp.

For any subset A ⊆P, let SA =
⋂

p∈A Sp (with S∅ = S). The
inclusion-exclusion theorem says that∣∣∣ ⋂

p∈P

Sp

∣∣∣ =
∑
A⊆P

(−1)|A||SA|.

For inclusion-exclusion to be useful, we must be able to
compute |SA| for each A ⊆P.

Partitions
Let’s apply inclusion-exclusion to count certain partitions. (This
is closely related to counting point-determining graphs.)

Let S be the set of partitions Π of [n], so |S| is the nth Bell
number Bn. We take conditions of the form

ci,j : i and j are in the same block of Π.

The number of partitions of [n] in which 1 and 2 are in the same
block is Bn−1 since to construct such a partition, we can join 1
and 2 together, and then take a partition of the (n− 1)-element
set

{
12 , 3, 4, . . . , n

}
.

Similarly, the number of of partitions of [n] satisfying conditions
c1,2 and c2,3, or c1,2 and c3,4, is Bn−2.

The set of conditions {c1,2, c2,3, c1,3} is equivalent to the set
{c1,2, c1,3}, so the number of partitions satisfying these three
conditions is also Bn−2.

Partitions
Let’s apply inclusion-exclusion to count certain partitions. (This
is closely related to counting point-determining graphs.)

Let S be the set of partitions Π of [n], so |S| is the nth Bell
number Bn. We take conditions of the form

ci,j : i and j are in the same block of Π.

The number of partitions of [n] in which 1 and 2 are in the same
block is Bn−1 since to construct such a partition, we can join 1
and 2 together, and then take a partition of the (n− 1)-element
set

{
12 , 3, 4, . . . , n

}
.

Similarly, the number of of partitions of [n] satisfying conditions
c1,2 and c2,3, or c1,2 and c3,4, is Bn−2.

The set of conditions {c1,2, c2,3, c1,3} is equivalent to the set
{c1,2, c1,3}, so the number of partitions satisfying these three
conditions is also Bn−2.

Partitions
Let’s apply inclusion-exclusion to count certain partitions. (This
is closely related to counting point-determining graphs.)

Let S be the set of partitions Π of [n], so |S| is the nth Bell
number Bn. We take conditions of the form

ci,j : i and j are in the same block of Π.

The number of partitions of [n] in which 1 and 2 are in the same
block is Bn−1 since to construct such a partition, we can join 1
and 2 together, and then take a partition of the (n− 1)-element
set

{
12 , 3, 4, . . . , n

}
.

Similarly, the number of of partitions of [n] satisfying conditions
c1,2 and c2,3, or c1,2 and c3,4, is Bn−2.

The set of conditions {c1,2, c2,3, c1,3} is equivalent to the set
{c1,2, c1,3}, so the number of partitions satisfying these three
conditions is also Bn−2.

Let’s use inclusion-exclusion to count partitions of [n] in which
1, 2, and 3 are all in separate blocks. We sum over subsets of
the conditions {c1,2, c1,3, c2,3}. We obtain

Bn − 3Bn−1 + 3Bn−2 −Bn−2

The last term is Bn−2 rather than Bn−3 since the set of all three
conditions is equivalent to two independent conditions.

We have some cancellation so the sum reduces to

Bn − 3Bn−1 + 2Bn−2.

This simpler formula can be explained by Möbius inversion.

However, for our purposes, the full inclusion-exclusion formula
is easier to work with, even though there will be cancellation.

Let’s use inclusion-exclusion to count partitions of [n] in which
1, 2, and 3 are all in separate blocks. We sum over subsets of
the conditions {c1,2, c1,3, c2,3}. We obtain

Bn − 3Bn−1 + 3Bn−2 −Bn−2

The last term is Bn−2 rather than Bn−3 since the set of all three
conditions is equivalent to two independent conditions.

We have some cancellation so the sum reduces to

Bn − 3Bn−1 + 2Bn−2.

This simpler formula can be explained by Möbius inversion.

However, for our purposes, the full inclusion-exclusion formula
is easier to work with, even though there will be cancellation.

Let’s use inclusion-exclusion to count partitions of [n] in which
1, 2, and 3 are all in separate blocks. We sum over subsets of
the conditions {c1,2, c1,3, c2,3}. We obtain

Bn − 3Bn−1 + 3Bn−2 −Bn−2

The last term is Bn−2 rather than Bn−3 since the set of all three
conditions is equivalent to two independent conditions.

We have some cancellation so the sum reduces to

Bn − 3Bn−1 + 2Bn−2.

This simpler formula can be explained by Möbius inversion.

However, for our purposes, the full inclusion-exclusion formula
is easier to work with, even though there will be cancellation.

Let’s use inclusion-exclusion to count partitions of [n] in which
1, 2, and 3 are all in separate blocks. We sum over subsets of
the conditions {c1,2, c1,3, c2,3}. We obtain

Bn − 3Bn−1 + 3Bn−2 −Bn−2

The last term is Bn−2 rather than Bn−3 since the set of all three
conditions is equivalent to two independent conditions.

We have some cancellation so the sum reduces to

Bn − 3Bn−1 + 2Bn−2.

This simpler formula can be explained by Möbius inversion.

However, for our purposes, the full inclusion-exclusion formula
is easier to work with, even though there will be cancellation.

Let’s use inclusion-exclusion to count partitions of [n] in which
1, 2, and 3 are all in separate blocks. We sum over subsets of
the conditions {c1,2, c1,3, c2,3}. We obtain

Bn − 3Bn−1 + 3Bn−2 −Bn−2

The last term is Bn−2 rather than Bn−3 since the set of all three
conditions is equivalent to two independent conditions.

We have some cancellation so the sum reduces to

Bn − 3Bn−1 + 2Bn−2.

This simpler formula can be explained by Möbius inversion.

However, for our purposes, the full inclusion-exclusion formula
is easier to work with, even though there will be cancellation.

Now let’s count partitions of [n] that satisfy none of the
conditions ci,j , 1 ≤ i < j ≤ n, using exponential generating
functions. Of course it’s easy to count them directly: there is
only one, the partition {{1}, {2}, . . . , {n}}. But we want to count
them by inclusion-exclusion.

To every set A of conditions, we associate a condition graph
GA. For example, if A = {c1,2, c1,3, c1,4, c2,3, c5,6} then GA is

1 2 5

63

4

Now let’s count partitions of [n] that satisfy none of the
conditions ci,j , 1 ≤ i < j ≤ n, using exponential generating
functions. Of course it’s easy to count them directly: there is
only one, the partition {{1}, {2}, . . . , {n}}. But we want to count
them by inclusion-exclusion.

To every set A of conditions, we associate a condition graph
GA. For example, if A = {c1,2, c1,3, c1,4, c2,3, c5,6} then GA is

1 2 5

63

4

The partitions of [n] associated to a condition graph GA are
those in which every pair of adjacent vertices is in the same
block. Thus the vertices of each connected component of GA

are in the same block.

If GA has k components, then the number of partitions
satisfying all the conditions in A is the Bell number Bk.

The partitions of [n] associated to a condition graph GA are
those in which every pair of adjacent vertices is in the same
block. Thus the vertices of each connected component of GA

are in the same block.

If GA has k components, then the number of partitions
satisfying all the conditions in A is the Bell number Bk.

So the exponential generating function for partitions in which no
two elements are in the same block is

∞∑
n=0

xn

n!

∑
G

(−1)#edges of GB#components of G

where the sum is over all graphs G on [n], and this may be
written

∞∑
n=0

xn

n!

∑
k,i

(−1)ihn,k,iBk,

where hn,k,i is the number of graphs on [n] with k components
and i edges.

Let’s rewrite this as
∞∑
k=0

Bk

∑
n,i

(−1)ihn,k,i
xn

n!
.

We will compute the inner sum.

So the exponential generating function for partitions in which no
two elements are in the same block is

∞∑
n=0

xn

n!

∑
G

(−1)#edges of GB#components of G

where the sum is over all graphs G on [n], and this may be
written

∞∑
n=0

xn

n!

∑
k,i

(−1)ihn,k,iBk,

where hn,k,i is the number of graphs on [n] with k components
and i edges.

Let’s rewrite this as
∞∑
k=0

Bk

∑
n,i

(−1)ihn,k,i
xn

n!
.

We will compute the inner sum.

So the exponential generating function for partitions in which no
two elements are in the same block is

∞∑
n=0

xn

n!

∑
G

(−1)#edges of GB#components of G

where the sum is over all graphs G on [n], and this may be
written

∞∑
n=0

xn

n!

∑
k,i

(−1)ihn,k,iBk,

where hn,k,i is the number of graphs on [n] with k components
and i edges.

Let’s rewrite this as
∞∑
k=0

Bk

∑
n,i

(−1)ihn,k,i
xn

n!
.

We will compute the inner sum.

Exponential generating functions

So we want to count graphs by vertices, edges, and
components.

Let’s recall some basic facts about exponential generating
functions.

Let f = f(x) be the exponential generating function for a class
of labeled structures. (Think of connected graphs of some sort.)

Then fk/k! is the exponential generating function for sets of k of
these structures, and

∑∞
k=0 f

k/k! = ef is the exponential
generating function for all sets of these structures.

If we start with g = ef then we can recover f as log g and then
fk/k! = (log g)k/k!.

Exponential generating functions

So we want to count graphs by vertices, edges, and
components.

Let’s recall some basic facts about exponential generating
functions.

Let f = f(x) be the exponential generating function for a class
of labeled structures. (Think of connected graphs of some sort.)

Then fk/k! is the exponential generating function for sets of k of
these structures, and

∑∞
k=0 f

k/k! = ef is the exponential
generating function for all sets of these structures.

If we start with g = ef then we can recover f as log g and then
fk/k! = (log g)k/k!.

Exponential generating functions

So we want to count graphs by vertices, edges, and
components.

Let’s recall some basic facts about exponential generating
functions.

Let f = f(x) be the exponential generating function for a class
of labeled structures. (Think of connected graphs of some sort.)

Then fk/k! is the exponential generating function for sets of k of
these structures, and

∑∞
k=0 f

k/k! = ef is the exponential
generating function for all sets of these structures.

If we start with g = ef then we can recover f as log g and then
fk/k! = (log g)k/k!.

Exponential generating functions

So we want to count graphs by vertices, edges, and
components.

Let’s recall some basic facts about exponential generating
functions.

Let f = f(x) be the exponential generating function for a class
of labeled structures. (Think of connected graphs of some sort.)

Then fk/k! is the exponential generating function for sets of k of
these structures, and

∑∞
k=0 f

k/k! = ef is the exponential
generating function for all sets of these structures.

If we start with g = ef then we can recover f as log g and then
fk/k! = (log g)k/k!.

Exponential generating functions

So we want to count graphs by vertices, edges, and
components.

Let’s recall some basic facts about exponential generating
functions.

Let f = f(x) be the exponential generating function for a class
of labeled structures. (Think of connected graphs of some sort.)

Then fk/k! is the exponential generating function for sets of k of
these structures, and

∑∞
k=0 f

k/k! = ef is the exponential
generating function for all sets of these structures.

If we start with g = ef then we can recover f as log g and then
fk/k! = (log g)k/k!.

Now let’s take the case in which f counts connected graphs by
edges and g counts all graphs by edges, where edges are
weighted y. (Soon we will set y = −1.)

Then

g =
∞∑
n=0

(1 + y)(
n
2)
xn

n!

and f = log g.

Setting y = −1 gives g = 1 + x and f = log(1 + x).

So log(1 + x) counts connected graphs where edges are
weighted −1.

Now let’s take the case in which f counts connected graphs by
edges and g counts all graphs by edges, where edges are
weighted y. (Soon we will set y = −1.)

Then

g =

∞∑
n=0

(1 + y)(
n
2)
xn

n!

and f = log g.

Setting y = −1 gives g = 1 + x and f = log(1 + x).

So log(1 + x) counts connected graphs where edges are
weighted −1.

Now let’s take the case in which f counts connected graphs by
edges and g counts all graphs by edges, where edges are
weighted y. (Soon we will set y = −1.)

Then

g =

∞∑
n=0

(1 + y)(
n
2)
xn

n!

and f = log g.

Setting y = −1 gives g = 1 + x and f = log(1 + x).

So log(1 + x) counts connected graphs where edges are
weighted −1.

Recall that we showed earlier that the exponential generating
function for partitions in which no two elements are in the same
block is

∞∑
k=0

Bk

∑
n,i

(−1)ihn,k,i
xn

n!

where Bk is the Bell number and hn,k,i is the number of graphs
on [n] with k components and i edges.

The inner sum is just fk/k! = log(1 + x)k/k!. So the sum is just

R(x) :=
∞∑
k=0

Bk
log(1 + x)k

k!
= B

(
log(1 + x)

)
,

where

B(x) =
∞∑
n=0

Bk
xn

n!
= ee

x−1.

So R(x) = ex =
∑∞

n=0 x
n/n!.

Recall that we showed earlier that the exponential generating
function for partitions in which no two elements are in the same
block is

∞∑
k=0

Bk

∑
n,i

(−1)ihn,k,i
xn

n!

where Bk is the Bell number and hn,k,i is the number of graphs
on [n] with k components and i edges.

The inner sum is just fk/k! = log(1 + x)k/k!. So the sum is just

R(x) :=

∞∑
k=0

Bk
log(1 + x)k

k!
= B

(
log(1 + x)

)
,

where

B(x) =

∞∑
n=0

Bk
xn

n!
= ee

x−1.

So R(x) = ex =
∑∞

n=0 x
n/n!.

Recall that we showed earlier that the exponential generating
function for partitions in which no two elements are in the same
block is

∞∑
k=0

Bk

∑
n,i

(−1)ihn,k,i
xn

n!

where Bk is the Bell number and hn,k,i is the number of graphs
on [n] with k components and i edges.

The inner sum is just fk/k! = log(1 + x)k/k!. So the sum is just

R(x) :=

∞∑
k=0

Bk
log(1 + x)k

k!
= B

(
log(1 + x)

)
,

where

B(x) =

∞∑
n=0

Bk
xn

n!
= ee

x−1.

So R(x) = ex =
∑∞

n=0 x
n/n!.

Point-determining graphs

Now let’s return to point-determining graphs. We want to count
them by inclusion-exclusion. (We call the graphs to be counted
object graphs to distinguish them from condition graphs.) We
start with the set of graphs with vertex set [n]. There are 2(n2) of
them. We want to count the graphs satisfying none of the
conditions

pi,j : i and j have the same neighborhood.

The number of object graphs satisfying any single condition pi,j

is 2(n−1
2) because a graph satisfying it can be constructed by

contracting i and j to a single vertex, picking a graph on these
n− 1 vertices, and then replacing the contracted vertex with
vertices i and j, with the same neighborhood as the contracted
vertex.

Point-determining graphs

Now let’s return to point-determining graphs. We want to count
them by inclusion-exclusion. (We call the graphs to be counted
object graphs to distinguish them from condition graphs.) We
start with the set of graphs with vertex set [n]. There are 2(n2) of
them. We want to count the graphs satisfying none of the
conditions

pi,j : i and j have the same neighborhood.

The number of object graphs satisfying any single condition pi,j

is 2(n−1
2) because a graph satisfying it can be constructed by

contracting i and j to a single vertex, picking a graph on these
n− 1 vertices, and then replacing the contracted vertex with
vertices i and j, with the same neighborhood as the contracted
vertex.

An arbitrary set of conditions works exactly like our earlier
example of partitions. To every set A of conditions, we
associate a condition graph GA whose edges correspond to the
conditions in A. The object graphs on [n] satisfying all the
conditions in A are those in which the vertices of each
connected component of the condition graph GA all have the
same neighborhood.

If GA has k components, then the number of graphs satisfying
all the conditions in A is 2(k2).

So by the same reasoning as before, the generating function for
graphs with all neighborhoods distinct is G

(
log(1 + x)

)
where

G(x) =

∞∑
n=0

2(n2)
xn

n!
is the exponential generating function for all

graphs.

(Recall that log(1 + x) is the exponential generating function for
connected graphs with edges weighted −1.)

An arbitrary set of conditions works exactly like our earlier
example of partitions. To every set A of conditions, we
associate a condition graph GA whose edges correspond to the
conditions in A. The object graphs on [n] satisfying all the
conditions in A are those in which the vertices of each
connected component of the condition graph GA all have the
same neighborhood.

If GA has k components, then the number of graphs satisfying
all the conditions in A is 2(k2).

So by the same reasoning as before, the generating function for
graphs with all neighborhoods distinct is G

(
log(1 + x)

)
where

G(x) =

∞∑
n=0

2(n2)
xn

n!
is the exponential generating function for all

graphs.

(Recall that log(1 + x) is the exponential generating function for
connected graphs with edges weighted −1.)

An arbitrary set of conditions works exactly like our earlier
example of partitions. To every set A of conditions, we
associate a condition graph GA whose edges correspond to the
conditions in A. The object graphs on [n] satisfying all the
conditions in A are those in which the vertices of each
connected component of the condition graph GA all have the
same neighborhood.

If GA has k components, then the number of graphs satisfying
all the conditions in A is 2(k2).

So by the same reasoning as before, the generating function for
graphs with all neighborhoods distinct is G

(
log(1 + x)

)
where

G(x) =

∞∑
n=0

2(n2)
xn

n!
is the exponential generating function for all

graphs.

(Recall that log(1 + x) is the exponential generating function for
connected graphs with edges weighted −1.)

An arbitrary set of conditions works exactly like our earlier
example of partitions. To every set A of conditions, we
associate a condition graph GA whose edges correspond to the
conditions in A. The object graphs on [n] satisfying all the
conditions in A are those in which the vertices of each
connected component of the condition graph GA all have the
same neighborhood.

If GA has k components, then the number of graphs satisfying
all the conditions in A is 2(k2).

So by the same reasoning as before, the generating function for
graphs with all neighborhoods distinct is G

(
log(1 + x)

)
where

G(x) =

∞∑
n=0

2(n2)
xn

n!
is the exponential generating function for all

graphs.

(Recall that log(1 + x) is the exponential generating function for
connected graphs with edges weighted −1.)

Noncomplementary neighborhood graphs

Now we count noncomplementary neighborhood graphs. We
consider conditions

qi,j : i and j have complementary neighborhoods.

The number of graphs on [n] satisfying one of these conditions
is 2(n−1

2) by the same kind of contraction argument as before.
(Note that if i and j have complementary neighborhoods then i
and j must be adjacent.) If there is more than one condition the
situation is similar but some sets of conditions are inconsistent.

For example, suppose conditions q1,2 and q2,3 are satisfied.
Then 1 and 3 must have the same neighborhood, so they
cannot have complementary neighborhoods. So the set
{q1,2, q2,3, q1,3} is inconsistent.

Noncomplementary neighborhood graphs

Now we count noncomplementary neighborhood graphs. We
consider conditions

qi,j : i and j have complementary neighborhoods.

The number of graphs on [n] satisfying one of these conditions
is 2(n−1

2) by the same kind of contraction argument as before.
(Note that if i and j have complementary neighborhoods then i
and j must be adjacent.) If there is more than one condition the
situation is similar but some sets of conditions are inconsistent.

For example, suppose conditions q1,2 and q2,3 are satisfied.
Then 1 and 3 must have the same neighborhood, so they
cannot have complementary neighborhoods. So the set
{q1,2, q2,3, q1,3} is inconsistent.

The condition graphs corresponding to consistent sets of
conditions bipartite graphs.

These are graphs in which the vertices can be colored in two
colors so that every edge joins vertices of opposite colors; or
equivalently, they are graphs with no odd cycles.

So by the same argument as before, the exponential generating
function for noncomplementary neighborhood graphs is G(b(x))

where G(x) =
∑

n 2(n2)xn/n! and b(x) is the exponential
generating function for connected bipartite graphs in which
edges are weighted −1.

How do we count connected bipartite graphs?

The condition graphs corresponding to consistent sets of
conditions bipartite graphs.

These are graphs in which the vertices can be colored in two
colors so that every edge joins vertices of opposite colors; or
equivalently, they are graphs with no odd cycles.

So by the same argument as before, the exponential generating
function for noncomplementary neighborhood graphs is G(b(x))

where G(x) =
∑

n 2(n2)xn/n! and b(x) is the exponential
generating function for connected bipartite graphs in which
edges are weighted −1.

How do we count connected bipartite graphs?

The condition graphs corresponding to consistent sets of
conditions bipartite graphs.

These are graphs in which the vertices can be colored in two
colors so that every edge joins vertices of opposite colors; or
equivalently, they are graphs with no odd cycles.

So by the same argument as before, the exponential generating
function for noncomplementary neighborhood graphs is G(b(x))

where G(x) =
∑

n 2(n2)xn/n! and b(x) is the exponential
generating function for connected bipartite graphs in which
edges are weighted −1.

How do we count connected bipartite graphs?

The condition graphs corresponding to consistent sets of
conditions bipartite graphs.

These are graphs in which the vertices can be colored in two
colors so that every edge joins vertices of opposite colors; or
equivalently, they are graphs with no odd cycles.

So by the same argument as before, the exponential generating
function for noncomplementary neighborhood graphs is G(b(x))

where G(x) =
∑

n 2(n2)xn/n! and b(x) is the exponential
generating function for connected bipartite graphs in which
edges are weighted −1.

How do we count connected bipartite graphs?

Counting bipartite graphs

To count bipartite graphs, we start by counting bicolored
graphs. These are graphs in which the vertices are colored red
or blue, and every edge joins a red vertex and a blue vertex:

We can count bicolored graphs on [n] directly. If we weight
edges by y, the contribution from graphs with i red and n− i
blue vertices is

(
n
i

)
(1 + y)i(n−i) so for all bicolored graphs on [n]

we have

bn(y) :=

n∑
i=0

(
n

i

)
(1 + y)i(n−i)

Counting bipartite graphs

To count bipartite graphs, we start by counting bicolored
graphs. These are graphs in which the vertices are colored red
or blue, and every edge joins a red vertex and a blue vertex:

We can count bicolored graphs on [n] directly. If we weight
edges by y, the contribution from graphs with i red and n− i
blue vertices is

(
n
i

)
(1 + y)i(n−i) so for all bicolored graphs on [n]

we have

bn(y) :=

n∑
i=0

(
n

i

)
(1 + y)i(n−i)

So the exponential generating function for all bicolored graphs
is

B(x) :=

∞∑
n=0

bn(y)
xn

n!

and the exponential generating function for connected bicolored
graphs is logB(x).

Every connected bipartite graph has exactly two proper
colorings, so the exponential generating function for connected
bipartite graphs is 1

2 logB(x).

Now we set y = −1. We have b0(−1) = 1 and bn(−1) = 2 for
n > 0. So B(x) reduces to 2ex − 1 and the exponential
generating function for connected bipartite graphs reduces to
b(x) = 1

2 log(2ex − 1).

So the exponential generating function for all bicolored graphs
is

B(x) :=

∞∑
n=0

bn(y)
xn

n!

and the exponential generating function for connected bicolored
graphs is logB(x).

Every connected bipartite graph has exactly two proper
colorings, so the exponential generating function for connected
bipartite graphs is 1

2 logB(x).

Now we set y = −1. We have b0(−1) = 1 and bn(−1) = 2 for
n > 0. So B(x) reduces to 2ex − 1 and the exponential
generating function for connected bipartite graphs reduces to
b(x) = 1

2 log(2ex − 1).

So the exponential generating function for all bicolored graphs
is

B(x) :=

∞∑
n=0

bn(y)
xn

n!

and the exponential generating function for connected bicolored
graphs is logB(x).

Every connected bipartite graph has exactly two proper
colorings, so the exponential generating function for connected
bipartite graphs is 1

2 logB(x).

Now we set y = −1. We have b0(−1) = 1 and bn(−1) = 2 for
n > 0. So B(x) reduces to 2ex − 1 and the exponential
generating function for connected bipartite graphs reduces to
b(x) = 1

2 log(2ex − 1).

Therefore, the exponential generating function for
noncomplementary neighborhood graphs is

G
(
1
2 log(2ex − 1)

)
= 1+x+

x2

2!
+5

x3

3!
+33

x4

4!
+629

x5

5!
+21937

x6

6!
+1570213

x7

7!
+· · ·

Can we say anything about the coefficients of

J(x) := 1
2 log(2ex − 1) = x− x2

2!
+ 3

x3

3!
− 13

x4

4!
+ 75

x5

5!
− · · ·?

These are (up to sign) the Fubini or ordered Bell numbers that
count ordered partitions of a set:

J ′(x) =
1

2− e−x
.

Can we say anything about the coefficients of

J(x) := 1
2 log(2ex − 1) = x− x2

2!
+ 3

x3

3!
− 13

x4

4!
+ 75

x5

5!
− · · ·?

These are (up to sign) the Fubini or ordered Bell numbers that
count ordered partitions of a set:

J ′(x) =
1

2− e−x
.

Could we count noncomplementary neighborhood graphs using
a decomposition?

Let K(x) = J(x)〈−1〉 be the compositional inverse of J(x), so if
N(x) is the exponential generating function for
noncomplementary neighborhood graphs then

G(x) = N
(
K(x)

)
.

The coefficients of K(x) aren’t positive, though they do have
some nice properties.

We have

K(x) = log
(
1
2(e2x + 1)

)
= x +

x2

2!
− 2

x4

4!
+ 16

x6

6!
− 272

x8

8!
+ · · ·

These are (signed) tangent numbers: K ′(x) = 1 + tanhx.

Could we count noncomplementary neighborhood graphs using
a decomposition? Probably not.

Let K(x) = J(x)〈−1〉 be the compositional inverse of J(x), so if
N(x) is the exponential generating function for
noncomplementary neighborhood graphs then

G(x) = N
(
K(x)

)
.

The coefficients of K(x) aren’t positive, though they do have
some nice properties.

We have

K(x) = log
(
1
2(e2x + 1)

)
= x +

x2

2!
− 2

x4

4!
+ 16

x6

6!
− 272

x8

8!
+ · · ·

These are (signed) tangent numbers: K ′(x) = 1 + tanhx.

Could we count noncomplementary neighborhood graphs using
a decomposition?

Let K(x) = J(x)〈−1〉 be the compositional inverse of J(x), so if
N(x) is the exponential generating function for
noncomplementary neighborhood graphs then

G(x) = N
(
K(x)

)
.

The coefficients of K(x) aren’t positive, though they do have
some nice properties.

We have

K(x) = log
(
1
2(e2x + 1)

)
= x +

x2

2!
− 2

x4

4!
+ 16

x6

6!
− 272

x8

8!
+ · · ·

These are (signed) tangent numbers: K ′(x) = 1 + tanhx.

Could we count noncomplementary neighborhood graphs using
a decomposition?

Let K(x) = J(x)〈−1〉 be the compositional inverse of J(x), so if
N(x) is the exponential generating function for
noncomplementary neighborhood graphs then

G(x) = N
(
K(x)

)
.

The coefficients of K(x) aren’t positive, though they do have
some nice properties.

We have

K(x) = log
(
1
2(e2x + 1)

)
= x +

x2

2!
− 2

x4

4!
+ 16

x6

6!
− 272

x8

8!
+ · · ·

These are (signed) tangent numbers: K ′(x) = 1 + tanhx.

Could we count noncomplementary neighborhood graphs using
a decomposition?

Let K(x) = J(x)〈−1〉 be the compositional inverse of J(x), so if
N(x) is the exponential generating function for
noncomplementary neighborhood graphs then

G(x) = N
(
K(x)

)
.

The coefficients of K(x) aren’t positive, though they do have
some nice properties.

We have

K(x) = log
(
1
2(e2x + 1)

)
= x +

x2

2!
− 2

x4

4!
+ 16

x6

6!
− 272

x8

8!
+ · · ·

These are (signed) tangent numbers: K ′(x) = 1 + tanhx.

Point-determining and noncomplementary
neighborhood graphs

What about graphs that are both point-determining and
noncomplementary neighborhood?

We can count them by using inclusion-exclusion, but there is a
shortcut. Once we know the exponential generating function
N(x) for noncomplementary neighborhood graphs, we can get
the exponential generating function M(x) for graphs that are
both point-determining and noncomplementary neighborhood
by the decomposition method: N(x) = M(ex − 1) so

M(x) = N
(
log(1 + x)) = G

(
1
2 log(1 + 2x)

)
= 1 + x + 4

x3

3!
+ 8

x4

4!
+ 448

x5

5!
+ 14336

x6

6!
+ 1202432

x7

7!
+ · · ·

Point-determining and noncomplementary
neighborhood graphs

What about graphs that are both point-determining and
noncomplementary neighborhood?

We can count them by using inclusion-exclusion, but there is a
shortcut. Once we know the exponential generating function
N(x) for noncomplementary neighborhood graphs, we can get
the exponential generating function M(x) for graphs that are
both point-determining and noncomplementary neighborhood
by the decomposition method:

N(x) = M(ex − 1) so

M(x) = N
(
log(1 + x)) = G

(
1
2 log(1 + 2x)

)
= 1 + x + 4

x3

3!
+ 8

x4

4!
+ 448

x5

5!
+ 14336

x6

6!
+ 1202432

x7

7!
+ · · ·

Point-determining and noncomplementary
neighborhood graphs

What about graphs that are both point-determining and
noncomplementary neighborhood?

We can count them by using inclusion-exclusion, but there is a
shortcut. Once we know the exponential generating function
N(x) for noncomplementary neighborhood graphs, we can get
the exponential generating function M(x) for graphs that are
both point-determining and noncomplementary neighborhood
by the decomposition method: N(x) = M(ex − 1) so

M(x) = N
(
log(1 + x)) = G

(
1
2 log(1 + 2x)

)
= 1 + x + 4

x3

3!
+ 8

x4

4!
+ 448

x5

5!
+ 14336

x6

6!
+ 1202432

x7

7!
+ · · ·

We can invert this to get

G(x) = M
(
1
2(e2x − 1)

)
but I don’t know of a combinatorial interpretation to this formula.
If we count these graphs directly, the condition graphs are
balanced signed graphs.

Möbius inversion

We can eliminate some of the cancellation that occurs in
inclusion-exclusion by using Möbius inversion. This doesn’t
really help with the derivation, but it shows an interesting
example of Möbius inversion. First we look at the
point-determining case.

Let us say that two condition graphs (which are arbitrary graphs
in this case) are equivalent if they yield equivalent sets of
conditions. Then two condition graphs are equivalent if the
have the same connected components (as sets of vertices). So
the equivalence classes are partitions of [n], and we have
Möbius inversion in the lattice of partitions of a set.

Möbius inversion

We can eliminate some of the cancellation that occurs in
inclusion-exclusion by using Möbius inversion. This doesn’t
really help with the derivation, but it shows an interesting
example of Möbius inversion. First we look at the
point-determining case.

Let us say that two condition graphs (which are arbitrary graphs
in this case) are equivalent if they yield equivalent sets of
conditions. Then two condition graphs are equivalent if the
have the same connected components (as sets of vertices). So
the equivalence classes are partitions of [n], and we have
Möbius inversion in the lattice of partitions of a set.

The exponential generating function log(1 + x)k/k! that we
computed earlier, that counts graphs with k components,
weighted by (−1)# edges, is the sum of the Möbius functions of
all partitions with k blocks (Whitney number of the second kind).

So the exponential generating function for the characteristic
polynomials of the lattice of partitions is

et log(1+x) = (1 + x)t =
∞∑
n=0

t(t− 1) · · · (t− n + 1)
xn

n!

The exponential generating function log(1 + x)k/k! that we
computed earlier, that counts graphs with k components,
weighted by (−1)# edges, is the sum of the Möbius functions of
all partitions with k blocks (Whitney number of the second kind).

So the exponential generating function for the characteristic
polynomials of the lattice of partitions is

et log(1+x) = (1 + x)t =

∞∑
n=0

t(t− 1) · · · (t− n + 1)
xn

n!

Möbius inversion for noncomplementary neighborhood
graphs

For noncomplementary neighborhood graphs, the condition
graphs are bipartite graphs.

The equivalence classes for condition graphs correspond to
partitions of [n] in which each block of size greater than 1 is
further partitioned into two (nonempty) blocks (equivalently,
graphs in which each connected component with more than
one vertex is a complete bipartite graph).

 2, 5 41, 3

1 2

2

53

Möbius inversion for noncomplementary neighborhood
graphs

For noncomplementary neighborhood graphs, the condition
graphs are bipartite graphs.

The equivalence classes for condition graphs correspond to
partitions of [n] in which each block of size greater than 1 is
further partitioned into two (nonempty) blocks (equivalently,
graphs in which each connected component with more than
one vertex is a complete bipartite graph).

 2, 5 41, 3

1 2

2

53

Möbius inversion for noncomplementary neighborhood
graphs

For noncomplementary neighborhood graphs, the condition
graphs are bipartite graphs.

The equivalence classes for condition graphs correspond to
partitions of [n] in which each block of size greater than 1 is
further partitioned into two (nonempty) blocks (equivalently,
graphs in which each connected component with more than
one vertex is a complete bipartite graph).

 2, 5 41, 3

1 2

2

53

Here the generating function for the characteristic polynomials
is

exp
(
t
2 log(2ex − 1)

)
= (2ex − 1)t/2

= 1 + tx + (t2 − t)
x2

2!
+ (t3 − 3t2 + 3t)

x3

3!

+ (t4 − 6t3 + 15t2 − 13t)
x4

4!
+ · · ·

For graphs that are both point-determining and
noncomplementary neighborhood, the exponential generating
function for the characteristic polynomials is

e
t
2
log(1+2x) = (1 + 2x)t/2

= 1 + tx + t(t− 2)
x2

2!
+ t(t− 2)(t− 4)

x3

3!

+ t(t− 2)(t− 4)(t− 6)
x6

6!
+ · · ·

Here the generating function for the characteristic polynomials
is

exp
(
t
2 log(2ex − 1)

)
= (2ex − 1)t/2

= 1 + tx + (t2 − t)
x2

2!
+ (t3 − 3t2 + 3t)

x3

3!

+ (t4 − 6t3 + 15t2 − 13t)
x4

4!
+ · · ·

For graphs that are both point-determining and
noncomplementary neighborhood, the exponential generating
function for the characteristic polynomials is

e
t
2
log(1+2x) = (1 + 2x)t/2

= 1 + tx + t(t− 2)
x2

2!
+ t(t− 2)(t− 4)

x3

3!

+ t(t− 2)(t− 4)(t− 6)
x6

6!
+ · · ·

Closed neighborhoods

Instead of neighborhoods we might consider closed
neighborhoods which are defined by

N(v) = N(v) ∪ {v}.

We call a graph co-point-determining if no two vertices have the
same closed neighborhood.

It is not hard to see that if G is the complement of the graph G
then the closed neighborhood of v in G is the complement of
the neighborhood of v in G.

Thus a graph is co-point-determining if and only if its
complement is point-determining. So co-point-determining
graphs are easy to count.

Closed neighborhoods

Instead of neighborhoods we might consider closed
neighborhoods which are defined by

N(v) = N(v) ∪ {v}.

We call a graph co-point-determining if no two vertices have the
same closed neighborhood.

It is not hard to see that if G is the complement of the graph G
then the closed neighborhood of v in G is the complement of
the neighborhood of v in G.

Thus a graph is co-point-determining if and only if its
complement is point-determining. So co-point-determining
graphs are easy to count.

Closed neighborhoods

Instead of neighborhoods we might consider closed
neighborhoods which are defined by

N(v) = N(v) ∪ {v}.

We call a graph co-point-determining if no two vertices have the
same closed neighborhood.

It is not hard to see that if G is the complement of the graph G
then the closed neighborhood of v in G is the complement of
the neighborhood of v in G.

Thus a graph is co-point-determining if and only if its
complement is point-determining. So co-point-determining
graphs are easy to count.

What about graphs that are both point-determining and
co-point-determining? (Bi-point-determining)

We can count them using the decomposition approach but it is
fairly complicated. They can be counted more easily by
inclusion-exclusion. The generating function is
G
(
2 log(1 + x)− x

)
.

What about graphs that are both point-determining and
co-point-determining? (Bi-point-determining)

We can count them using the decomposition approach but it is
fairly complicated. They can be counted more easily by
inclusion-exclusion. The generating function is
G
(
2 log(1 + x)− x

)
.

More combinations

There are four restrictions on neighborhoods of graphs that we
can work with using inclusion-exclusion:
I distinct neighborhoods
I noncomplementary neighboroods
I distinct closed neighborhoods
I noncomplementary closed neighborhoods

There are 24 subsets of these conditions, but by considering
graph complements, they reduce (e.g., by Burnside’s Lemma)
to only 10 inequivalent subsets, of which one is the empty set.
So there are 9 nontrival problems that can be solved by the
inclusion-exclusion method.

Unlabeled graphs

The decomposition method also enables us to count unlabeled
point-determining and bi-point-determining graphs. (This was
done by Ronald Read for point-determining graphs by Ji Li and
me for bi-point-determining graphs.)

Open question:

Is there any way to count unlabeled noncomplementary
neighborhood graphs?

Unlabeled graphs

The decomposition method also enables us to count unlabeled
point-determining and bi-point-determining graphs. (This was
done by Ronald Read for point-determining graphs by Ji Li and
me for bi-point-determining graphs.)

Open question:

Is there any way to count unlabeled noncomplementary
neighborhood graphs?

