Twisting (and braiding ?) open positroid varieties Chris Fraser, MSU, Combinatorics & Graph Mean seminar Nov . I $|2|$

Grassmannian
$$
Gr(kn):= \frac{1}{2} \cdot Wc \cdot d^n
$$
 dim $W \in k \cdot \frac{1}{2}$ \n $e^{n k x} \cdot \frac{1}{4} = GL_{k} \setminus M a t^{\circ} (k, n) \ni M \quad (Mat^{o} \text{ means } rank \text{ equals } k)$ \nPlücker *costs*: $\Delta_{\mathbb{I}} = k \times k$ minor of M in $c \times s$.\n\n (n) $\#s$ which *conceine* your k -subspace; s of N in $c \times s$.\n\n (n) $\#s$ which *conceine* your k -subspace; s of k from S .\n\n $d \pm \frac{1}{8} \cdot \frac{1}{2} \cdot \frac{$

 \sim

The decompositions
$$
G_r(k; n)_{20} = \prod_{\substack{p \text{triangle} \text{triangle}}} \frac{1}{2} \times 6.6r(k; n)_{20}
$$
: motorized in the *behared*.
\n• each piece is the physically an open ball "provided cell", 0 of each cell is union of $\frac{q_{20}r}{dr}$ will be a real, and the *beh()* is a closed. $\frac{q_{20}r}{dr}$ will be a real, and the *beh* is a closed. $\frac{q_{20}r}{dr}$ will be a real, and the *beh* is a closed. $\frac{q_{20}r}{dr}$ will be a real, and the *beh* is a closed. $\frac{q_{20}r}{dr}$ will be a real. $\frac{q_{20}r}{dr}$ will be a real, and the *beh* is a real. $\frac{q_{20}r}{dr}$ will be a real, and the *beh* is a real. $\frac{q_{20}r}{dr}$ will be a real, and the *beh* is a real. $\frac{q_{20}r}{dr}$ will be a real, and the *beh* is a real. $\frac{q_{20}r}{dr}$ will be a real. $\frac{q_{20}$

\n
$$
\frac{C_{\text{lossive}}}{C_{\text{lossive}}}
$$
 \n $\frac{1}{C_{\text{lossive}}} = \frac{1}{C_{\text{lossive}}} \quad \text{where} \quad \frac{1}{C_{\text{lossive}}} = \frac{1}{C_{\text{lossive}}} \quad \text{for } C_{\text{lossive}} \neq 0$ \n

\n\n $\frac{1}{C_{\text{lossive}}} = \frac{C_{\text{lossive}}}{C_{\text{lossive}}} = \frac{C_{\text{lossive}}}{C_{\text{lossive}}} = \frac{C_{\text{lossive}}}{C_{\text{lossive}}}$ \n

\n\n $\frac{1}{C_{\text{lossive}}} = \frac{C_{\text{lossive}}}{C_{\text{lossive}}}$ \n

\n\n $\frac{1}{C_{\text{lossive}}}$ \n

\n\n $\frac{1}{C_{\text{lossive}}} = \frac{C_{\text{lossive}}}{C_{\text{lossive}}}$ \n

\n\n $\frac{1}{C_{\text{lossive}}} = \frac{C_{\text{lossive}}}{C_{\text{lossive}}}$ \n

\n\n $\frac{1}{C$

 $\boxed{\text{Im}\left(\frac{p_{\text{orb}}(x,y)}{6d_{\text{orb}}(x,y)}\right)}$ If $G \leq \longrightarrow M$ then its face collection is a TP test for cell (M) . w \longrightarrow w primid graph Defin $\mathbb{Z}, \mathbb{J} \in \mathbb{C}^{n \times 1}$ are weakly separated if $\mathbb{I} \backslash \mathbb{J}$ and $\mathbb{J} \backslash \mathbb{I}$ are cyclically separated. e. g. 13458 and 12459 Easy: Any such face otherion e is pairwise weakly separated and satisfies $\begin{array}{l} \n\text{ch } \text{free } \text{allection } C \text{ is pairwise weakly separated} \ \n\mathcal{I} \subseteq C \subseteq \mathcal{M} \qquad \text{where} \qquad \mathcal{I} \longleftrightarrow \mathcal{M} \ \n\mathcal{I} \subseteq \mathcal{I} \longrightarrow \mathcal{M} \ \n\end{array}$ $J \subseteq C \subseteq M$ where $J \longrightarrow M$ Gr. necklace positroid

Thus
$$
(0h - R_{\text{shrink}})
$$
) Every such C of $\text{max}[l]$ size is the face collection of some l for M .

\nIt follows that $\lim(\text{cell}(M)) + l$

\nIt follows that $C \subseteq M$ is needed (vars in C should be positive, i.e. in M).

\nThe condition $C \subseteq M$ is needed (vars in C should be positive, i.e. in M).

\nThe condition $\chi \subseteq C$ is the resulting relationship on $\{1, 0, \ldots, n\}$.

\nThe condition $\chi \subseteq C$ is the resulting number of edges of the M .

We relax this condition + find many more PIS TP tests.

Defin For a play a graph G with n 3 vertices and for
$$
p \in Sn
$$
, have

\n
$$
\frac{1}{1648} \times \frac{1}{1648} = \frac{1}{1648}
$$
\n3 $\frac{1}{4648}$

\n4 $\frac{1}{4648}$

\n5 $\frac{11}{1648}$

\n6 789

\n7 $\frac{1}{2469}$

\n8 $\frac{1}{22869}$

\n9 $\frac{1}{22869}$

\n10 $\frac{1}{1648}$

\n11 $\frac{1}{1169}$ permutations $\frac{1}{1169}$ (6 $\frac{1}{1169}$) $\frac{1}{1169}$

\n12 $\frac{1}{1169}$ means the $\frac{1}{1169}$ and the $\frac{1}{1169}$ is a $\frac{1}{1169}$ methods in which the $\frac{1}{1169}$ and the $\frac{1}{1169}$ is a $\frac{1}{1169}$ methods in which the $\frac{1}{1169}$ and the $\frac{1}{1169}$ is a $\frac{1}{1169}$ methods in which the $\frac{1}{1169}$ and the $\frac{1}{1169}$ is a $\frac{1}{1169}$ (i) $\frac{1}{1169}$ (ii) $\frac{1}{1169}$ (iii) $\frac{1}{1169}$ (iv) $\frac{1}{1169}$ (v) $\frac{1}{1169}$ (vi) $\frac{1}{1169}$ (v) $\frac{1}{1169}$ (

$$
\begin{array}{|l|l|l|}\n\hline\n3689 &7 &2) &3 \text{foeeg} &with & b \text{ a } \text{Garsmann} \text{ like}^{\prime} \text{ rectangle in which} \\
\hline\n8 &300 &5000 & 0.
$$

A graph related by
$$
\rho
$$
: 54 .
\nMe- ρ h⁺h In easily checkable si thations, 6^{ρ} determines α TP test for cell (11),
\nwhere μ \sim \sim

 \circ – \circ

2

2369 S

I ¹²³⁶

Posidroid variety
$$
\Pi_M = \frac{1}{3} \times e^{C_1C_2N} : \Delta_{\Pi}(x) = 0 \forall \Pi \notin M
$$

\n
$$
= 2arickic-cbsoc \text{ of cell}(M).
$$
\nOpen parifold var $\Pi_M^o = \frac{1}{3} \times e \Pi_M : \Delta_{\Pi}(x) \neq 0 \forall \Pi \in \mathbb{Z}$ $\left(\frac{\pi}{N} \leq M\right)$

\nHere, parifold var $\Pi_M^o = \frac{1}{M} \times e \Pi_M : \Delta_{\Pi}(x) \neq 0 \forall \Pi \in \mathbb{Z}$ $\left(\frac{\pi}{N} \leq M\right)$

\nHere, parifold

\nHere, parifold

\n
$$
G_1(C_1n) = \bigcup_{M} \Pi_M = \bigcup_{M} \Pi_M^o \text{ and this decomposition is nice for in probability. (2.1-6.16.16.16).
$$
\nIf $G \leq W$ then any choice of nonzero ∞ if S be faces (0) determines a point in Π_M^o , moreover, this recipe is injective. (part of def in of "cluster")

\nthen, there are only *in* values (over relas are independent, work, such order.

 \overline{D}

Thm(E,SB) Assume O)
$$
\pi \rho \leq \pi
$$
. (this guarantees that of faces of G^o are
\nnon-vanishing on π and where $\mu \leq \pi$).
\nThen TFAE: I) Faees (GP) are a cluster in a cluster structure on the open
\npostroid for: π_p^o (in a particular, a TP test).
\n2) of faces of G^o are pairwise weakly sepd. 2') all faces are ...
\n G^o has the
\n G^o has the
\n G^o has the
\n G^o has the
\n H has a
\n H has

R_{mk}	The cluster structure on	R_{M} coming from a reboldled pobic graph is not							
the same of	(muthio-equated + b)	the cluster sheet from ordinary pabi' graph.							
We can, that it is a certain "rescaling" of this structure.	c1. their authors of the two	$\pi_{n}^{0} \rightarrow \pi_{M}^{0}$ via the following "turb" is more phism" is	c1. their the x & fif" π_{m} be given by \ker matrix	$\Gamma_{n}^{1} \cdots \pi_{1}^{1}$	Ansch S ¹⁺				
Let $X \in \tilde{T}_{1}^{0} \Rightarrow \tilde{T}_{M}^{0}$ be given by \ker matrix	$\Gamma_{n}^{1} \cdots \pi_{1}^{1}$	Ansch S ¹⁺							
Let $\tilde{T}_{1} = \{p(i), i_{2},...,i_{k}\}$ be $i^{\frac{14}{10}}$ of one of G^{p} .	Ansch S ¹⁺								
Use uiling matrix. Use in	\tilde{T}_{M}^{0} and the B on "isomary phism.	Ansch S ¹⁺							
So $\frac{1}{2} \cdot 10^{18}$	6785	π_{M}^{0}	79	π_{M}^{0}	885				
So $\frac{1}{2} \cdot 10^{18}$	3685	7	8	10	10	11	11	10	10
So $\frac{1}{2} \cdot 10^{18}$	11	12	13	14					

 R mk In example above, the defining conditions of Π_{π} are that V4 C- span (V1 , V3 V3) V5 C- Sp (V34 > V4) Vg C- split,VgVz) V2 C- spcvs.ua,4) V91 / V1 Those for \mathbb{I}_M are V_{4} \in span (V_{2}, V_{3}) V_{5} \in sp (V_{1}, V_{2}, V_{3}) V_{8} \in $Sp(V_{5}, V_{4}, V_{7})$ V_{2} C sp (V_{8}, V_{9}, V_{1}) V_{9} $|V_{1}$

These complitions don't match up vicely, but the above isom. accomplishes this.

Bonus topic: auto morphisms of
$$
\pi_{M}
$$
 from braids.

\nFor $\mathbb{I} \in C_{K}^{(n)}$ with $i \in \mathbb{I}$ $\mathcal{J}i = 1$ define columns suching map

\n
$$
\nabla_{i} : \begin{bmatrix} \mathbf{v}_{i} & \mathbf{v}_{i-1} & \mathbf{v}_{i-1} \\ \mathbf{v}_{i-1} & \mathbf{v}_{i-2} & \mathbf{v}_{i-1} \\ \mathbf{v}_{i-1} & \mathbf{v}_{i-2} & \mathbf{v}_{i-1} \end{bmatrix} \implies \begin{bmatrix} \mathbf{v}_{1,1} & \mathbf{v}_{1,2} & \mathbf{v}_{1,2} \\ \mathbf{v}_{1,2} & \mathbf{v}_{1,2} & \mathbf{v}_{i-1} \end{bmatrix}
$$
\nWe'll apply this construction when $\mathbb{I} = \mathbb{I}$; is i^{\pm} term of G rectangle \mathcal{I} .

\nSimilarly, π_{i} depends on \mathcal{I} !

\nThen π_{i} is an automorphism of π_{i} where $\mathcal{I} \leq S_{n}$ perivative commute.

\nThen π_{i} is an automorphism of π_{i} where $\mathcal{I} \leq S_{n}$.

\nHere, since $\mathcal{I} \leq S_{n}$ is a non morphism of π_{i} where $\mathcal{I} \leq S_{n}$.

\nTheorem $\begin{bmatrix} \pi_{i} & \mathbf{v}_{i-1} \\ \mathbf{v}_{i-1} & \mathbf{v}_{i-1} \end{bmatrix}$ is an automorphism of π_{i} where $\mathcal{I} \leq S_{n}$.

e.g. π = 457983621 and $S = 225995$

 R_{k} ¹⁾ The π , is satisfy braid relns, so we get a subgroup of the baid group acting by automorphisms .

2) This generalizes an older than of mine from the top-dimensional par.
$$
var
$$
.
 $\pi = k+1, ..., n, b - k$

$$
\quad\hbox{for all}\quad \text{pos} \quad \text{vars} \; .
$$

3) THB thin can be used to easily construct many clusters / TP tests, 0 many Lagrangian fillings of Casals - Legendrian knots, . . . Gao

