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Symmetric Functions

A symmetric function is a member of the ring R[[x1, x2, . . .]] of
formal power series of bounded degree over countably infinite
indeterminates, invariant under permutations of its subscripts.
Famous bases of the symmetric functions include:

The homogeneous symmetric functions:

hn :=
∑

i1≤i2≤...≤in

xi1 . . . xin .

The elementary symmetric functions:

en :=
∑

i1<i2<...<in

xi1 . . . xin

The power sum symmetric functions:

pn :=
∑
i

xni
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Symmetric Functions

For a partition λ = (λ1, . . . , λk), and f ∈ Sym, we let
fλ = f(λ1,...,λk ) signify:

fλ = fλ1 . . . fλk
.

There is yet another basis for Sym, specially relevant due to its
connection to the representation theory of the symmetric group;
namely, that of Schur functions:

s(3,2)(x1, x2, x3) = x21x2 + x21x3 + x1x
2
2 + x1x2x3 + x1x3x2 + x1x

2
3+

x22x3 + x2x
2
3
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Symmetric Functions

s(3,2)(x1, x2, x3) = x21x2 + x21x3 + x1x
2
2 + x1x2x3 + x1x3x2 + x1x

2
3+

x22x3 + x2x
2
3

These monomials correspond to the tableaux:

1 1

2

(a) Tableau for
x2
1 x2.

1 1

3

(b) Tableau for
x2
1 x3.

1 2

2

(c) Tableau for
x1x

2
2 .

1 2

3

(d) Tableau for
x1x2x3.

1 3

2

(e) Tableau for
x1x3x2.

1 3

3

(f) Tableau for
x1x

2
3 .

2 2

3

(g) Tableau for
x2
2 x3.

2 3

3

(h) Tableau for
x2x

2
3 .
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Combinatorial Link between Pλ and sλ
Analogous to the combinatorial definition of sλ, we have that

P(2,1)(x1, x2, x3) = x21x2 + x21x3 + 2(x1x2x3) + x1x
2
2 + x22x3 + x2x

2
3

1 1

2

(a) Tableau for
x2
1 x2.

1 1

3

(b) Tableau for
x2
1 x3.

1 2

3

(c) Tableau for
x1x2x3.

1 2′

3

(d) Tableau for
x1x2x3.

1 2′

2

(e) Tableau for
x1x

2
2 .

2 2

3

(f) Tableau for
x1x

2
3 .

2 3′

3

(g) Tableau for
x2x

2
3 .
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Back to Symmetric Functions

We want to count cνλ,µ, the structure coefficients in

sλ · sµ =
∑
ν

cνλ,µsν .

An algorithm constructed by Schensted paves the way for the
solution of this problem.
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Schensted’s Insertion Algorithm

Schensted developed an insertion algorithm to study the
increasing (decreasing) subsequences of a permutation.

2 3 ← 1

4
= 1 3

4 ← 2
= 1 3

2

4

Theorem (Schensted 1961)

Let π ∈ Sn be a permutation. Then the longest increasing
(decreasing) subsequence of π is of length equal to the length of
the first row (column) of P(π).
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The Plactic Monoid

Lascoux and Schützenberger noticed that the set of Schensted
equivalence classes forms a monoid.

For instance, [4213] · [65] can be calculated as follows:

1 3

2

4

← 6← 5 = 1 3 6

2

4

← 5 = 1 3 5

2 6

4
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Plactic Littlewood–Richardson Rule

Theorem (Schützenberger 1977)

The Littlewood-Richardson coefficient cλµ,ν is equal to the number
of pairs (Tµ,Tν) such that

Tµ · Tν = Tλ

for a fixed plactic class Tλ of shape λ.
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Haiman’s Mixed Insertion

It can be regarded as an insertion algorithm for shifted
tableaux:

1 3 6′ ← 2

4 7

8

= 4′y
1 2 6′

3 7

8

= 1 2 4′ 6′

3 7

8

Theorem (Sagan, Serrano)

The length of the longest hook subword of a word w is equal to
the length of the top row of Pmix(w).

Santiago Estupiñán Salamanca An New Shifted Littlewood–Richardson Rule



Symmetric Functions
The Plactic Monoid

Shifted Plactic Monoid
A new Shifted Littlewood–Richardson Rule

Haiman’s Mixed Insertion

It can be regarded as an insertion algorithm for shifted
tableaux:

1 3 6′ ← 2

4 7

8

= 4′y
1 2 6′

3 7

8

= 1 2 4′ 6′

3 7

8

Theorem (Sagan, Serrano)

The length of the longest hook subword of a word w is equal to
the length of the top row of Pmix(w).
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The Shifted Plactic Monoid and Representation Theory

Theorem (Serrano 2009)

The shifted Littlewood-Richardson coefficient f λµ,ν is equal to the
number of pairs (Tµ,Tν) such that

Tµ · Tν = Tλ

for a fixed shifted plactic class Tλ of shape λ.
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Plactic Littlewood–Richardson Rule

Recalling Schensted’s result and its generalizations, given a shape
λ, for instance λ = (4, 3, 1) the word

3 222 1111

with content equal to λ inserts to T of shape λ.

This is from that perspective the most natural candidate for that
shape. Let Tλ = T . Then, if

Tµ · Tν = Tλ

we also have that

Tν = P( ℓ(ν)νℓ(ν) (ℓ(ν)− 1)νℓ(ν)−1 . . . 1ν1 )
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Plactic Littlewood–Richardson Rule

Theorem (Schützenberger 1977)

The Littlewood-Richardson coefficient cλµ,ν is equal to the number
of pairs (Tµ,Tν) such that

Tµ · Tν = Tλ

for a fixed plactic class Tλ of shape λ.

If Tλ is Yamanouchi, it follows that Tν is Yamanouchi too.
Then cλµ,ν is equal to the number of tableaux Tµ such that

Tµ · Yν = Yλ
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Motivation

Once the fact that the shifted plactic monoid is the right monoid
has been confirmed, it remains to see its LR–rule.

Take again
λ = (4, 3, 1) and consider the Yamanouchi word

3 222 1111.

It does not have the right factor property, as

Pmix(32221111) =
1 1 1 1 2′ 3′

2 2

= Pmix(3211) · Pmix(2211)

But 2211 is not a word with partition content. So certain classes
that project to the Yamanouchi class in the plactic monoid do not
have the right factor property!
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Santiago Estupiñán Salamanca An New Shifted Littlewood–Richardson Rule



Symmetric Functions
The Plactic Monoid

Shifted Plactic Monoid
A new Shifted Littlewood–Richardson Rule

Motivation

Once the fact that the shifted plactic monoid is the right monoid
has been confirmed, it remains to see its LR–rule. Take again
λ = (4, 3, 1) and consider the Yamanouchi word

3 222 1111.

It does not have the right factor property, as

Pmix(32221111) =
1 1 1 1 2′ 3′

2 2

= Pmix(3211) · Pmix(2211)

But 2211 is not a word with partition content. So certain classes
that project to the Yamanouchi class in the plactic monoid do not
have the right factor property!
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New Yamanouchi Analogues

Definition (Serrano):

Let w = w1w2 . . .wn ∈ N∗
>0 be a word. We say that it is a hook

word if there exists 1 ≤ k ≤ n such that

w1 > w2 > . . . > wk ≤ wk+1 ≤ wk+2 ≤ . . . ≤ wn

where k is possibly 1 or n.

Theorem (Serrano):

Let w ∈ N∗
>0 and T = Pmix(w) be a shifted tableau. Then, the

shape λ of T is completely determined by the tuple
(I1(w), I2(w), . . . , Iℓ(λ)(w)). Furthermore,

Ik(w) = λ1 + . . .+ λk +

(
k

2

)
.
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Frame Title

Theorem (Serrano):

Let w ∈ N∗
>0 and T = Pmix(w) be a shifted tableau. Then, the

shape λ of T is completely determined by the tuple
(I1(w), I2(w), . . . , Iℓ(λ)(w)). Furthermore,

Ik(w) = λ1 + . . .+ λk +

(
k

2

)
.

This is an analogue of Schensted’s theorem and Greene’s
generalization for the shifted context.

So if we can find a word that
generalizes the increasing (decreasing) properties of Yamanouchi
words for the shifted setting we have a good candidate!
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Barely Yamanouchi Words

Let again λ = (7, 3, 1) and consider

1 321 7654321.

It is an union of 3 hook subwords whose lengths are equal to the
parts of the partition.

With the previous result in mind, do words
like these insert to the appropriate shape in general? We denote
words constructed like this by ŷν for the respective strict partition
ν.
Then

Pmix(ŷ(4,3,1)) =
1 1 1 3′ 5′ 6′ 7′

2 2 4′

3

ŷν := (νℓ(ν))(νℓ(ν)−1) · · · 1(νℓ(ν)−1)(νℓ(ν)−1−1) · · · 1 · · · (ν1)(ν1−1) · · · 1
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Barely Yamanouchi Words

Do the canonical barely Yamanouchi words ŷν always insert to the
appropriate shape?

Theorem (E.-Pechenik)

Let ν be a strict partition, then Pmix(ŷν) has shape ν.
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Barely Yamanouchi Words

We say that a word in the shifted plactic class of ŷν is a barely
Yamanouchi word.

Do these satisfy the right factor property?

Theorem (E.- Pechenik)

A word w ∈ N∗
>0 is barely Yamanouchi if and only if as we read

from right to left either of these two conditions:

i(w) = i(w + 1) or

i(w) = i(w + 1) + 1.

Note that all of these words are also Yamanouchi!
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Examples

The word 76453421321 is barely Yamanouchi.

The word 76454321321 is not barely Yamanouchi because of the
entry highlighted in red.
All barely Yamanouchi words of the same content, with the same
number of primed entries insert to the same tableaux.
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A Shifted Plactic LR–Rule

Recall the LR–rule for the shifted plactic monoid:

Theorem (Serrano 2009)

The shifted Littlewood-Richardson coefficient f λµ,ν is equal to the
number of pairs (Tµ,Tν) such that

Tµ · Tν = Tλ

for a fixed shifted plactic class Tλ of shape λ.

Since barely Yamanouchi words have the right factor property, it is
enough to count the tableaux of shape µ such that

Tµ · Ŷν = Ŷλ
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A Shifted Plactic LR–Rule

Recall the LR–rule for the shifted plactic monoid:

Theorem (Serrano 2009)

The shifted Littlewood-Richardson coefficient f λµ,ν is equal to the
number of pairs (Tµ,Tν) such that

Tµ · Tν = Tλ

for a fixed shifted plactic class Tλ of shape λ.

Since barely Yamanouchi words have the right factor property, it is
enough to count the tableaux of shape µ such that

Tµ · Ŷν = Ŷλ
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Combinatorial Description of Left Factors

A word that can be realized as the left factor of a barely
Yamanouchi word is called scarcely Yamanouchi.

Finding the reading word of shifted tableaux is difficult, even for
scarcely Yamanouchi tableaux.
Is there a more restricted class of tableaux that lends itself to a
better combinatorial description?
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Santiago Estupiñán Salamanca An New Shifted Littlewood–Richardson Rule



Symmetric Functions
The Plactic Monoid

Shifted Plactic Monoid
A new Shifted Littlewood–Richardson Rule

Combinatorial Description of Left Factors

Is there a more restricted class of tableaux that lends itself to a
better combinatorial description?

Let w be the word
w = 76453421321.

This is its shrinking decomposition. The decreasing sequences of
w are called its shrinking sequences.
Moreover, we say that a barely Yamanouchi word w is interlacing if
whenever i is in the j–th shrinking sequence of w , it is to the left
of i + 1 in the j − 1–th shrinking sequence of w .
Interlacing words have a compact combinatorial description.
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Example of an Interlacing Tableau

Let ν = (10, 9, 5), λ = (9, 6, 4), and µ = (3, 2).
Then,

ℓ(ν)⋃
i=1

(µi , νi ]∩Z = {10, 9, 8, 7, 6, 5, 4}∪{9, 8, 7, 6, 5, 4, 3}∪{5, 4, 3, 2, 1}

Interlacing tableaux can be constructed by steps, laying down
entries from each segment first forming an unprimed vertical strip
and then a horizontal primed strip.

1 2′ 3′ 4′ 5′
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Example of an Interlacing Tableau

Let ν = (10, 9, 5), λ = (9, 6, 4), and µ = (3, 2). Then,

ℓ(ν)⋃
i=1

(µi , νi ]∩Z = {10, 9, 8, 7, 6, 5, 4}∪{9, 8, 7, 6, 5, 4, 3}∪{5, 4, 3, 2, 1}

Interlacing tableaux can be constructed by steps, laying down
entries from each segment first forming an unprimed vertical strip
and then a horizontal primed strip.

1 2′ 3′ 3 4′ 5′ 8′ 9′

4 5′ 6′ 7′
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Example of an Interlacing Tableau

Let ν = (10, 9, 5), λ = (9, 6, 4), and µ = (3, 2). Then,

ℓ(ν)⋃
i=1

(µi , νi ]∩Z = {10, 9, 8, 7, 6, 5, 4}∪{9, 8, 7, 6, 5, 4, 3}∪{5, 4, 3, 2, 1}

Interlacing tableaux can be constructed by steps, laying down
entries from each segment first forming an unprimed vertical strip
and then a horizontal primed strip.

1 2′ 3′ 3 4′ 5′ 8′ 9′ 10′

4 4 5′ 6′ 7′ 9′

5 6′ 7′ 8′
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Combinatorial Description of Left Factors

Is there a way to count interlacing words instead of scarcely
Yamanouchi ones?

Lemma (E.-Pechenik)

If the canonical word ŷν is fixed as a right factor, then the left
factor in the product

TλŶµ = Ŷν

is interlacing. That is, it is the insertion of an interlacing word.
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Main Theorem

Theorem (E.-Pechenik):

The coefficient bνλ,µ is equal to the tableaux Tλ on the set of

letters
⋃ℓ(ν)

i=1 (µi , νi ] ∩ N such that:

For every j , the letters of (µj , νj ] ∩ N in Tλ consist of a
vertical strip of unprimed letters increasing downwards, and a
horizontal strip of primed letters increasing from left to right,
all of whose entries are on columns greater than those
containing the vertical strip.

The unprimed entries of (µj , νj ]∩N occur before the unprimed
entries of (µk , νk ] ∩ N for all k < j when on the same row.

The primed entries of (µj , νj ] ∩ N occur before the primed
entries of (µk , νk ] ∩N for all k < j when on the same column.

None of the sequences can be extended in Tλ.
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Example

Let ν = (5, 3, 2), λ = (3, 1), and µ = (4, 2). Then,⋃ℓ(ν)
i=1 (µi , νi ] ∩ Z = {5} ∪ {3} ∪ {2, 1}, and there are 4 tableaux

that can be constructed from these letters by placing each segment
as a union of a vertical strip of unprimed letters and a horizontal
strip of primed letters:

1 2′ 3

5

(a) First valid
tableau.

1 2′ 5

3

(b) Second valid
tableau.

1 2′ 5′

3

(c) Third valid
tableau.

1 2′ 3′

5′

(d) Invalid tableau.

Of these, the last tableau is invalid.Santiago Estupiñán Salamanca An New Shifted Littlewood–Richardson Rule
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Example

For the same partitions λ, µ, and ν as in Example 4, Stembridge’s
rule requires the consideration of 8 tableaux as shown below.

1

1

1 2

(a) First valid
tableau.

1

1′

1 2

(b) Second valid
tableau.

1′

1

1 2

(c) Third valid
tableau.

1′

1′

1 2

(d) Invalid
tableau.

1′

1′

1 2′

(e) Invalid
tableau.

1

1

1 2′

(f) Invalid
tableau.

1

1′

1 2′

(g) Invalid
tableau.

1′

1

1 2′

(h) Invalid
tableau.
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Example

To better illustrate the condition that the sequences of the
tableaux should be such that none of them can be extended,
further consider the invalid tableau.

1 2′ 3′ 3 4′ 5′ 8′ 9′ 10′

4 4 5′ 6′ 7′ 9′

5 6′ 7′ 8′

→ 1 2′ 3′ 3 4′ 5′ 8′ 9′ 10′

4 4 5′ 6′ 7′ 9′

5 6′ 7′ 8′
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The End

Thank you!
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