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New applications      New mathematics

Internet      
Random Graphs

VLSI      Graph Drawing

Self-assembly       Graphical Assembly Design.

https://en.wikipedia.org/wiki/Random_graph

https://www.nature.com/articles/s41467-019-08647-7



Remember how DNA works:

Create fragments of DNA with carefully 
designed ‘sticky ends’, or unsatisfied bases.

These will stick to each other, self-assembling 
into the target structure.

DNA self-replicates, so can create more 
and more of the targets.

In Nature In The Lab



Controlling shapes with engineered DNA

http://www.youtube.com/watch?v=6_ewP22n2mg&feature=related

Nano Lett., 2010, 10 (12), 
pp 5065–5069



Why self-assembling nanostructures?

Nano-circuitry

http://shell.cas.usf.edu/~jonoska
/bio-comp/node4.html

Reconfiguration of DNA molecular arrays driven by information 
relay. Song, Li, Wang, Mayer, Mao, Ke
Science 28 Jul 2017: Vol. 357, Issue 6349

Complex
wireframe DNA
origami
nanostructures
with multi-arm
junction vertices.
Zhang, Jiang,
Wu, Li, Mao,
Liu, Yan.
Nature
Nanotechnology
volume10, pages
779–784 (2015)https://www.microsoft.com/en-us/research/blog/researchers-

build-nanoscale-computational-circuit-boards-dna/

Nano-scale meshes and filters

Biomolecular computing (Hamilton 
Cycle/3-Sat/Graph Coloring)

Nano-robotics



How might this work in the body?

https://www.eurekalert.org/multimedia/pub/162624.php

Targeted Drug Delivery



Some state of the art (3D) DNA nano-objects
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Han, Pal, Nangreave, Deng, Liu, and Yan, 
Science, 333, 342

Dietz, Douglas and Shih, Science, 325, 725

Benson, Mohammed, Gardell, Masich, Czeizler,  Orponen , Högberg. 
Nature 523, 441–444 (23 July 2015)

Linko, Kostiainen. Nature Biotechnology volume34, pages826–
827 (2016)



Our Objectives

 Several assembly paradigms:
Tile-based assembly  DNA origami  Reporter strands

 For each assembly method, usually we get:
 Problem formulation and mathematical formalism
 Proofs that design strategies are NP-Hard
 Pragmatic approaches
 New mathematical directions arising from the problem

Create new mathematical and computation tools for 
laboratories producing self-assembled DNA 
nanostructures.



Branched Junction Molecules
A self-assembled octahedron

22 nanometers
http://www.scripps.edu/news/press/2004/021104.html

http://onlinelibrary.wil
ey.com/doi/10.1002/
anie.200904513/pdf



A visualization model

https://www.youtube.com/watch?v=X-8MP7g8XOE



Short and long

https://www.flickr.com/photo
s/edbierman/7383798192/

https://gulfspecimen.org/specimen/echino
dermata/brittle-stars-and-serpent-stars/



What is a tile? 12

Schematic of a tile The branched junction molecule

D. Luo, “The road from biology to materials,” Materials Today, 6 (2003), 38-
43

ATTCG
TAAGCCCATTG

GGTAACATTCG
TAAGC

With the bases specified

A-T (adenine - thymine) and G-C 
(guanine - cytosine).



Combinatorial formulation
Both complete complexes and incomplete complexes can be 

constructed from the this pot P with 4 tiles:

A pot P:
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Different paradigms:

 Abstract graphs
 E.g. only care about the connectivity of nodes and 

edges, not physical location

 Examples: graphs for biocomputation of colorability.

 Geometric graphs
 Specific embeddings in space

 Examples: skeletons of Platonic or Archimedian solids, 
or crystallographic lattices.

 Constraints
 The incidental assembly of graphs smaller than the 

target is acceptable
 Any graph incidentally assembled must be larger than 

the target

1 2
3

4
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New graph invariants in each setting

Given a graph G,
1. what is T(G), the minimum number of k-armed branched 

junction molecules (tiles) that must be designed to create 
the graph?

2. What is B(G), the minimum number of bond types (size of 
alphabet) needed?

For rigid tiles, description of the pot must also specify the 
geometric structures of each tile.  



Branched junction methods
 Objectives:

 Given a graph G, find an optimal pot P that realizes G,  i.e. minimize 
the number of branched junction molecules required to assemble 
the target structure and give their combinatorial specifications.

 Given a pot P, find the set of graphs (up to isomorphism) realized 
by P.

 In both cases need:
 General theory
 Optimal solutions or algorithms for application-relevant graphs
 Computational complexity results

 Existing tools don’t help:
 Coloring?  No….
 List coloring?  No….
 Automorphism group?  No….

Again opens new areas of mathematical investigation



Basic Design Strategy

Such a labeled/colored orientation of a graph G is called an 
assembly design of G and denoted λ, where λ maps half edges to 
labels.

Find an edge labeled/colored orientation of the graph, using a 
minimal number of colors, with as few different labelings of the 
half edges about the vertices as possible, and furthermore 
specifying the set of different vertex types (the resulting tiles). 



A little linear algebra
Let P be a pot with n tiles labeled t1 . . . tn, and let zi,j be the 

net number of sticky ends of type i on tile tj

Theorem:   Some graph G with m vertices may be constructed from 
the pot P if and only if <r1 . . . rn> is a solution of the construction 
matrix M(P) and m <r1 . . . rn>  has integer entries.
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Example
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Thus, there is an 8-vertex complete complex 
realized by this pot with 3 T1’s, 1 T2, 3 T3’s, and 1 T4.

(Example from Harsy group)



Integer linear programing
If we ask for a complete complex of a specific size k, this becomes an 

integer programing problem, since a solution <r1 . . . rn>  now is in Zn

All variables are restricted to be non-negative 
ILP is NP hard in general, but this is a special case.  Is it hard?
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The decision question

 Given a pot P and a positive integer k, does P realize an 
assembly design for a graph G with k vertices.

[It is fast, linear in fact, to check that an assembly design is 
realized by a pot P, since you only need to check that each 
vertex configuration appears as a tile in P.]



Three coloring

 ILP is know to be NP hard in general, but this is a 
special case, so requires an independent proof of 
hardness—we do this by reduction to 3-coloring.

3-coloring is NP-complete even 
for 4-regular plane graphs

3-coloring a graph means coloring the 
vertices with 3 colors so that no pair of 
adjacent vertices get the same color.



3-coloring reduction to pot problem

Now assume we have a polynomial time algorithm that will 
tell us if a pot P will assemble a graph on k vertices, and that 
we are given a 4-regular plane graph G that we want to 3-
color.

[If we are able to use this hypothetical algorithm to come 
up with a 3-coloring, that would mean there is a polynomial 
time algorithm for 3-coloring.  But unless P=NP, there isn’t 
one.]



3-coloring 4-regular plane graphs

(This follows essential ideas of Jonoska, Sa-
Ardyen, Seeman ‘03  , but adapted to our 
application and notation)

G, with vertices and 
edges labeled

A

FE
D

C
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g
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h
i

k

l

j

bc



Create a pot
 For each vertex, create three tiles, one for each color, with sticky 

end labels recording vertex, edge, and color, e.g. for the vertex A:
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 For each edge create six tiles, one for each proper coloring of the 
edge’s endpoints, with complementary sticky ends, e.g. for edge c:
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A unique smallest complete complex from 
this pot

 The original graph (subdivided) is the unique smallest 
complete complex built from this pot, and that only if it is 
three-colorable:

cA r cC b



Complexity summary

 The pot decision problem is in NP, since it is easy to 
check a solution.

 3-coloring a 4-regular plane graph is NP-Complete and 
polynomial reduces to the pot decision problem.

 Therefor the pot-decision problem is also NP-Complete.



Ramifications

 This complexity result has ramifications for both of the 
fundamental objectives:
 If you have a pot P, in general you can’t efficiently determine 

what graphs it will construct.
 If you have a graph G, in general you can’t efficiently determine 

a pot that will assemble G, but not anything smaller.

 This stinks for the labs, as they would really prefer a fast, general 
purpose algorithm.

 But it is great for mathematicians, since it means this area is a whole 
new playground of problems: complexity for special classes, 
pragmatic solutions, approximation algorithms, explicit minimal pots 
for high-utility graphs, etc.  

 Also, exploration of the new graph parameters—what do they 
reveal about the structure of graphs?  Girth?  Tree-width?



Pragmatic code

 We can use existing integer linear programing tools for 
small examples.

 We have specialized code that will handle 2-3 degrees of 
freedom and can determine if a graph is the unique 
smallest construct assembled by a pot.

 Lot of sporadic ad hoc cases, but quite difficult to prove 
optimality.

 More algorithms are needed– for special classes, in 
restricted settings, and for approximate solutions.



Table A:  Minimum Tile Types

Scenario 1 T1(G) = Minimum number of tile types required if complexes of smaller size than 
the target graph are allowed

General 
graph G

The number of different vertex degrees ≤ T1(G) ≤  The number of different even 
vertex degrees + 2*(The number of different odd vertex degrees).  

Trees The number of different vertex degrees ≤ T1(T ) ≤  The number of different vertex 
degrees + 1

Cn T1(Cn) = 1

Kn T1(Kn) = 1 if n is even, and T1(Kn) = 2 if n is odd

Kn,m T1(Kn,m) = 1 if n=m and even, and T1(Kn,m) = 2 otherwise

K-regular 
graphs

T1(G) = 1 if n is even, and T1(G) = 2 if n is odd

Scenario 2 T2(G) = Minimum number of tile types required if allow complexes of the same size 
as, but not smaller than, the target graph

Trees T2(T) = The number of different lesser size subtree sequences

Cn T2(Cn) = ceiling(n/2)+1

Kn T2(Kn) = 2 if n is even, and T2(Kn) = 3 if n is odd

Kn,m T2(Kn,m) = 2 if gcd(m,n)=1, and T2(Kn,m) = 3 if gcd(m,n)>1

Scenario 3 T3(G) = Minimum number of tile types required if do not allow complexes of the 
same size as (or smaller than) the target graph

Trees T3(T) = the number of induced subtree isomorphisms

Cn T3(Cn) = ceiling(n/2)+1

Kn T3(Kn) = n

Kn,m T3(Kn,m) = min(n,m)+1

Also the 
Platonic and 
Archimedean 
solids



Rigid Tiles

The octet truss as an ideal 
framework for this problem =  a 

new setting for grid graph 
drawing.   

1. Arms are straight and rigid
2. Arms have integer lengths
3. The positions of the arms are fixed
4. The arms do not bend or twist in order to bond.
5. No molecule has more than 12 or less than 2 

arms (branched junction molecules with 2, 4, 5, 6, 
8, and 12 arms have been fabricated) .

6. Final DNA structures must be complete.
7. No design may allow structures smaller than the 

target structure to form.

Science 4 April 2014: 
Vol. 344 no. 6179 pp. 65-69



Rigid tiles are especially challenging

We have developed a novel half-lap splice joint model, inspired by wood-
working techniques to accurately model DNA origami assembly with rigid 
tiles, and used it to determine provably optimal design strategies for various 
regular polyhedral cages. (Joint with M. Ferrari and N. Seeman, and students)

Lap joint cheek



DNA Origami Paul W. K. Rothemund  Nature 440, 297-302 (16 March 2006) 

http://www.youtube.com/watch?v=5yH5LTXxFzk&feature=related



DNA Origami—new challenges

There are techniques, and even software, for flat, filled, 
objects (which actually come from paper origami) 
Woo and Rothemund, Nature Chemistry, 3, 620

Designs for open 
structures, e.g.
cages, graph-like 
objects, are much 
more challenging.  
This is where our 
work focuses.

Douglas SM, Dietz H, Liedl T, et al (2009) Self-assembly of DNA into nanoscale three-
dimensional shapes. Nature 459:414–418. doi: 10.1038/nature08016



Basic design process for DNA origami

Represent the 
target as a 

graph
Find an optimal route for 

the scaffolding strand

Locate the 
staple strands

The target
MANY constraints: 
 Just an Eulerian circuit 

if the target happens to 
be an Eulerian graph. 

 For non-Eulerian graphs, 
must adapt either the 
graph or the circuit to 
enable the construction.

 Identify structurally 
appropriate augmenting 
edges.

 Constraints on turnings
 No interwoven strands
 Symmetry preferred
 Commensurable edge 

lengths (full turns of 
DNA)

 Overall length of strand

The design steps
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Scaffolding and staple constraints
a) Each edge is covered by a scaffolding and staple strand.

b) Scaffolding and staples must run in opposite directions (DNA is 
directed).

c) Scaffolding and staples cannot cross over each other (DNA 
strands don’t naturally interweave).

d) The configuration must not disconnect the vertex.

Good Bad Bad (crosses and 
disconnects)



The generic problem from the lab

 We want to build a molecule with the structure of this 
graph in three space using DNA origami

 We want the scaffolding strand to follow faces as much as 
possible, but if it can’t, we want it at least not to cross-
over or interweave.  (And, well, these other bizarre configuration 
are no good either…)

Please provide the best possible route for 
the scaffolding strand through the graph.



Again, we prove the problem is NP-hard

Reduction to 3-SAT.

Origami methods may not be suitable for efficient biomolecular 
computing, since they may shift the complexity issue from the 
computation to the input.

Telling the lab folks that their problem is provably hard doesn’t 
really help them conduct the next experiment.  

Need pragmatic solutions.

General Principle:  An NP-Hard problem is often a ‘place 
marker’ for a rich field of related problems– approximation 
algorithms, special classes that are tractable, tractable 
variations of the problem, etc. 



Other complications: no knotting…

 Designs are increasingly complex
 As are topologies

 Knots can confound assembly, so need to be sure they 
aren’t inadvertently introduced.

39

Veneziano et al.  
Designer nanoscale 
DNA assemblies 
programmed from the 
top down, Science 2016

Truncated Dodecahedron



New DNA-driven area:
knotted Eulerian circuits

 The Eulerian circuit needed for DNA origami traces each 
edge exactly once, but can end up knotted.

40

Can we prevent this?



Settings for new area of origami knotting
Trail No trail All trails 

unknotted
At least one 
unknotted 
trail

At least one 
knotted trail

All trails 
knotted

Cellularly 
embedded

A-trail Incon-
structable

Strongly origami 
constructable

Origami 
constructable

Origami 
surface
knotted

Strongly
origami surface 
knotted

Straight-edge O-trail Inconstruct
able

Strongly origami 
constructable

Origami 
constructable

Origami stick
knotted

Strongly
origami stick 
knotted

Spatially 
embed-
ded

O-trail Inconstruct
able

Strongly origami 
constructable

Origami 
constructable

Origami 
knotted

Strongly 
origami knotted

Abstract 
Graph

Euler 
Circuit

Non
Eulerian

There exists an 
embedding with 
no knotted O-
trails: Intrinsically 
strongly origami 
constructable

Every 
embedding has 
at least one 
unknotted O-
trail: Intrinsically 
origami 
constructable

Every 
embedding has 
at least one 
knotted O-
trail: 
Intrinsically 
Origami 
knotted

Every 
embedding has 
all O-trails 
knotted:  
Intrinsically 
strongly origami 
knotted
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The routing problem on the backend

 The preceding were examples of ‘front end’ design 
problems.

 But we also need good routes, called reporter strands
for reading the output from biomolecular computing or 
other experiments.

 Reporter strands may be used following other assembly 
methods, e.g. branched junction molecules, or tiles.

 The graph may not be Eulerian, and in this case, some 
edges may need to be repeated.

42



Example

Corresponding edge-outer embedding in the torus, with facial walks around the outer face.

Reporter strand walks 
in K4

. Double traced 
edges are highlighted

• We want the shortest possible reporter strands 
• For cubic graphs, the theoretical minimum is |E| + ½ |V|

GOOD BEST

43



This problem also generated many new 
questions in graph theory

 For both scaffolding and reporting, we need a walk that covers 
every edge at least once, at most twice, and if twice, once in 
each direction (DNA is directed).

 Existing results in the literature are not quite what we need 
for the DNA application.
 Outer planar graphs?  No… (need edges, not vertices on the outer face)

 Upper embeddable graphs?  No… (covers every edge twice, and we 
want as few as possible double covered)

 So we need new theory and new results. 

An outer planar 
graph: vertices all 
on one face

Upper embedding 
of the theta graph 
on a torus: only 
one face



New directions
Edge outer embeddability is a natural area of 
investigation with many open questions:
1. Approximation algorithms?  Is there an algorithm that will 

return a route that is within x% of minimum length?
2. Special classes of graphs?  Are there classes of graphs where 

it is polynomial time to find a minimum solution?  Eulerian 
graphs are one such class.  What others might there be? 

3. What can be said about the genus range of embeddings that 
yield reporter strand walks, or reporter strand walks of 
minimum length? Are these ranges intervals? (All the usual 
genus questions can be reformulated for edge outer 
embeddings)

4. For a given graph, what is the minimum genus surface on 
which it is edge outer embeddable? 

45



Graphical self-assembly design 
is a rich new area

 DNA self-assembly opens whole new mathematical 
vistas--
 Algorithms, approximations, tractable classes, 
 General theory (need much more of this!) in several settings

 The work involves broad synthesis
 Mathematics (topology, combinatorics, algebra, geometry, knot 

theory…)
 Operations research and computer science
 Chemistry, biology, and physics
 Art
 Sheer creative ingenuity

NASA ATLAS 
Utilizing the Octet 
Truss in the Design 
of Lateral Transfer 
Retroreflectors



PI’s & senior personnel (design problems)

47

Bill Goddard (PI)

Jim Canary

Ned Seeman
Paul Chaikin John Rossi

Jo Ellis-Monaghan   Si-Ping Han Julian Voss-Andreae

Lisa Scherer

Greta Pangborn



Get to collaborate with a sculptor!
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https://julianvossand
reae.com/



Current collaboration

Microsystems and MechanoBiology Lab
• Rebecca Taylor (Carnegie Melon University)

• http://www.andrew.cmu.edu/user/bex/
• PNA assembly (a synthetic molecule that bonds more strongly than DNA).

https://www.meche.engineering.cmu.edu/directory/bios/taylor-rebecca.html



ICERM-supported REUF 
Junior Faculty

Jessica Williams
Cory Johnson
Leyda Almodovar Velazquez 
Amanda Harsy
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Some recent graduate and undergraduate 
students
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Brenna Smith, Anna Cook, David 
Perry, Jessica Greene 

Rebecca Rouleau, 
Margherita Ferrari

Ada Morse
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THANK YOU!


