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Descents

Let # = mymo ... m, be a sequence of positive integers.

i is a descent of 7 if m; > miy g or i =r.
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Descents

Definition
Let # = mymo ... m, be a sequence of positive integers.

i is a descent of 7 if m; > miy g or i =r.

des(m) = number of descents of 7.
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Descents

Let # = mymo ... m, be a sequence of positive integers.

i is a descent of 7 if m; > miy g or i =r.

des(m) = number of descents of 7.

des(36522131) = 5
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Eulerian polynomials

Sp = set of permutations of {1,2,...,n}.
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Eulerian polynomials

Sp = set of permutations of {1,2,...,n}.

Eulerian polynomials:

An(t) _ Z tdes(7r)

TESH
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Eulerian polynomials

Sp = set of permutations of {1,2,.

Eulerian polynomials:

t) _ Z tdes(7r)

TESH
Ai(t) =t
Ay(t) =t + ¢

As(t) = t + 412 + 3
Ag(t) =t 4 1182 + 1163 + ¢#
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Eulerian polynomials

Sp = set of permutations of {1,2,.

Eulerian polynomials:

t) _ Z tdes(7r)

TESH
Ai(t) =t
Ay(t) =t + ¢

As(t) = t + 412 + 3
Ag(t) =t 4 1182 + 1163 + ¢#

These polynomials appear in work of Euler from 1755.
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Eulerian polynomials

1
Q= ——
1(p-1) L. Buler, 1755.
6 = —L_+ I>’ Eulerian Polynomials
12(p-1 )
_ Pi‘f(zi 4_P_’_*"__{ 7;!4(;’)(5)17;" (1<n<7)
r= 123 (p-1)°
) =P5+“P2+”.P+I
12341}

p4+26pa + 66p= +z€p+x
L2343 (p—1F
— P35 s7pt-302p® t 302p> + s7p 1
1.2.3-4.5. 6 (p—1)*©
n = PCLX20p3 L IIQIP4] 24TI6p3 L TIOIP2 L 120p . 1

1.2.3.4. 5. 6.7 (p—1)7
Sc.
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Eulerian polynomials

Euler was considering the series

m_ t
2" =

m>0
Z 2gm _ EF t2
- _ 3
e (1—1)
Zm3t’"— t+4t2 4¢3
- 4
=6 (1-1)
Z am _ EH 1162 4+ 1143 + ¢4
e’ (1—1t)°
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Eulerian polynomials

Euler was considering the series

:E: mt™ t)

m>0
Z 2gm _ EF t2

- _ 3
e (1—1)

t+A4t2 4+ 3

:E: m" = +i 4;
e’ (1-1)
Z am _ EH 1162 4+ 1143 + ¢4
e’ (1—1t)°

In general,

An(t
EE: m"t™ 1_}£)Z+1.

m>0
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Stirling numbers

The Stirling number of the second kind S(n, k) is the number of
partitions of the set {1,2,...,n} into k blocks.
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Stirling numbers

Definition
The Stirling number of the second kind S(n, k) is the number of
partitions of the set {1,2,...,n} into k blocks.

In 1978, Gessel and Stanley were interested in the series

t
mz>:05 (m+1,m)t (1—t)

m_ t+2t?
rnz;oS(m—i-Zm)t D
Zg(m+3’m)tmzm
o (1—1t)

S S(m 4 4,m) e _ t+22t% 4 58¢° 4 24t
m>0 (1—t)
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Stirling numbers

Definition
The Stirling number of the second kind S(n, k) is the number of
partitions of the set {1,2,...,n} into k blocks.

In 1978, Gessel and Stanley were interested in the series

t
mz>:05 (m+1,m)t (1—t)

m_ t+2t?
rnz;oS(m—i-Zm)t D
Zg(m+3’m)tmzm
o (1—1t)

S S(m 4 4,m) e _ t+22t% 4 58¢° 4 24t
m>0 (1—t)

What are the polynomials in the numerator?
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Stirling permutations

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset
{1,1,2,2,..., n, n} that avoids the pattern 212.
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Stirling permutations

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset
{1,1,2,2,..., n, n} that avoids the pattern 212.

In other words, Stirling permutations w75 . .. w5, satisfy that,
if i <j < kand m = my, then 7; > m;.
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Stirling permutations

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset
{1,1,2,2,..., n, n} that avoids the pattern 212.

In other words, Stirling permutations w75 . .. w5, satisfy that,
if i <j < kand m = my, then 7; > m;.

Q, = set of Stirling permutations of {1,1,2,2,...,n, n}.
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Stirling permutations

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset
{1,1,2,2,..., n, n} that avoids the pattern 212.

In other words, Stirling permutations w75 . .. w5, satisfy that,
if i <j < kand m = my, then 7; > m;.

Q, = set of Stirling permutations of {1,1,2,2,...,n, n}.

Q, = {1122,1221,2211}
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Stirling permutations

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset
{1,1,2,2,..., n, n} that avoids the pattern 212.

In other words, Stirling permutations w75 . .. w5, satisfy that,
if i <j < kand m = my, then 7; > m;.

Q, = set of Stirling permutations of {1,1,2,2,...,n, n}.

Q, = {1122,1221,2211}

We have |Q,|=(2n—-1)'=(2n—-1)-(2n—3)----- 3-1, since
every permutation in Q, can be obtained by inserting nn into one
of the 2n — 1 spaces of a permutation in Q,_1.
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Stirling polynomials

Definition (Gessel-Stanley '78)

Stirling polynomials:

Qn(t) _ Z tdes(w)

e
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Stirling polynomials
Definition (Gessel-Stanley '78)

Stirling polynomials:
Qn(t) _ Z tdes(w)

WEQn
Qi(t) =t

Q(t) =t +2t°
@s(t) = t +8t% + 6t
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Stirling polynomials
Definition (Gessel-Stanley '78)

Stirling polynomials:
Qn(t) _ Z tdes(n)

WEQn
Qi(t) =t

Q(t) =t +2t°
@s(t) = t +8t% + 6t

Theorem (Gessel-Stanley '78)

m Qn
ZS(m—I—n,m)t zﬁ.

m>0
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Literature on Stirling permutations

There is an extensive literature on Stirling permutations. Some
work relevant to this talk:

@ Bona '08: Qu(t) also gives the enumeration of Q, by the
number of plateaus, that is, positions i such that m; = ;1.
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Literature on Stirling permutations

There is an extensive literature on Stirling permutations. Some
work relevant to this talk:

@ Bona '08: Qu(t) also gives the enumeration of Q, by the
number of plateaus, that is, positions i such that m; = ;1.

e Brenti '89, Béna '08: Qn(t) has only real roots, and the
distribution of des on Q,, is asymptotically normal.
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Literature on Stirling permutations

There is an extensive literature on Stirling permutations. Some
work relevant to this talk:

@ Bona '08: Qu(t) also gives the enumeration of Q, by the
number of plateaus, that is, positions i such that m; = ;1.

e Brenti '89, Béna '08: Qn(t) has only real roots, and the
distribution of des on Q,, is asymptotically normal.

@ Janson '08: The joint distribution of ascents, descents and
plateaus on Q,, is asymptotically normal.
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Literature on Stirling permutations

There is an extensive literature on Stirling permutations. Some
work relevant to this talk:

@ Bona '08: Qu(t) also gives the enumeration of Q, by the
number of plateaus, that is, positions i such that m; = ;1.

e Brenti '89, Béna '08: Qn(t) has only real roots, and the
distribution of des on Q,, is asymptotically normal.

@ Janson '08: The joint distribution of ascents, descents and
plateaus on Q,, is asymptotically normal.

@ The coefficients of Q,(t) are sometimes called second-order
Eulerian numbers.
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Stirling permutations and trees

I, = set of increasing edge-labeled plane rooted trees with n edges.




Stirling permutations and trees

I, = set of increasing edge-labeled plane rooted trees with n edges.

i> 4664112775885332

Theorem (Koganov '96, Janson '08)

There is a bijection ¢ : T, —> Q,, obtained by traversing the edges

of the tree along a depth-first walk from left to right, and recording
their labels.
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Stirling permutations and trees

I, = set of increasing edge-labeled plane rooted trees with n edges.

i> 4664112775885332

Theorem (Koganov '96, Janson '08)

There is a bijection ¢ : T, —> Q,, obtained by traversing the edges
of the tree along a depth-first walk from left to right, and recording
their labels.

If we remove the increasing condition on the trees, what is the
image of ¢©?
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Quasi-Stirling permutations and trees

» = set of edge-labeled plane rooted trees with n edges.




Quasi-Stirling permutations and trees

» = set of edge-labeled plane rooted trees with n edges.

i> 4114663775885223
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Quasi-Stirling permutations and trees

T, = set of edge-labeled plane rooted trees with n edges.

i> 4114663775885223

Definition (Archer-Gregory—Pennington—-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset
{1,1,2,2,...,n,n} that avoids the patterns 1212 and 2121.
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Quasi-Stirling permutations and trees

T, = set of edge-labeled plane rooted trees with n edges.

i> 4114663775885223

Definition (Archer-Gregory—Pennington—-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset
{1,1,2,2,...,n,n} that avoids the patterns 1212 and 2121.

In other words, it does not have four positions i < j < k < £ with
T = Tk and T; = 7.
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Quasi-Stirling permutations

Q,, = set of quasi-Stirling permutations of {1,1,2,2,...,n,n}.

Qp = {1122,1221,2211,2112}
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Quasi-Stirling permutations

Q,, = set of quasi-Stirling permutations of {1,1,2,2,...,n,n}.

Example

Qp = {1122,1221,2211,2112}

Theorem (Archer—Gregory—Pennington—Slayden '19)

@ is a bijection between T, and Q,,.
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Quasi-Stirling permutations

Q,, = set of quasi-Stirling permutations of {1,1,2,2,...,n,n}.

Example

Qp = {1122,1221,2211,2112}

Theorem (Archer—Gregory—Pennington—Slayden '19)

@ is a bijection between T, and Q,,.

The number of unlabeled plane rooted trees with n edges is the
Catalan number C,.
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Quasi-Stirling permutations

Q,, = set of quasi-Stirling permutations of {1,1,2,2,...,n,n}.

Example

Qp = {1122,1221,2211,2112}

Theorem (Archer—Gregory—Pennington—Slayden '19)

@ is a bijection between T, and Q,,.

The number of unlabeled plane rooted trees with n edges is the
Catalan number C,.

[t follows that
|@n| =nlC, =
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Descents on quasi-Stirling permutations

Conjecture (Archer—Gregory—Pennington—Slayden '19)

The number of ™ € Q,, with des(r) = n is equal to (n 4 1)""L.
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Descents on quasi-Stirling permutations

Conjecture (Archer—Gregory—Pennington—Slayden '19)

The number of ™ € Q,, with des(r) = n is equal to (n 4 1)""L.

Example
Set of 7 € Q3 with des(7) = 1. {112233} 1
with des(7) = 2: 13

{112332,113223,113322,122133,122331,133122,211233,221133,
223113,223311,233112,311223,331122}

with des(7) = 3: 16
{123321,132231, 133221, 211332, 213312, 221331, 231132, 233211,
311322,312213,321123,322113,322311, 331221, 332112,332211}

Descents on quasi-Stirling permutations



Descents on quasi-Stirling permutations

Conjecture (Archer—Gregory—Pennington—Slayden '19)

The number of ™ € Q,, with des(r) = n is equal to (n 4 1)""L.

Example
Set of 7 € Q3 with des(7) = 1. {112233} 1
with des(7) = 2: 13

{112332,113223,113322,122133,122331,133122,211233,221133,
223113,223311,233112,311223,331122}

with des(7) = 3: 16
{123321,132231, 133221, 211332, 213312, 221331, 231132, 233211,
311322,312213,321123,322113,322311, 331221, 332112,332211}

One can show that des(7) < n for all 7 € Q,,.
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Descents on quasi-Stirling permutations

Conjecture (Archer—Gregory—Pennington—Slayden '19)

The number of ™ € Q,, with des(r) = n is equal to (n 4 1)""L.

Example
Set of m € Q3 with des(r) = 1: {112233} 1
with des(7) = 2: 13

{112332,113223,113322,122133,122331,133122,211233,221133,
223113,223311,233112,311223,331122}

with des(7) = 3: 16
{123321,132231, 133221, 211332, 213312, 221331, 231132, 233211,
311322,312213,321123, 322113, 322311, 331221, 332112, 332211}
One can show that des(7) < n for all 7 € Q,,.

To prove this conjecture, we look at how descents are transformed
by the bijection ¢.



Descents on quasi-Stirling permutations

IfFT €T,and 7= (T) € Q,, then

des(m) = cdes(T),

where cdes(T) is obtained by adding the number of cyclic descents
of the edge labels counterclockwise around each vertex of T.
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Descents on quasi-Stirling permutations

IfFT €T,and 7= (T) € Q,, then

des(m) = cdes(T),

where cdes(T) is obtained by adding the number of cyclic descents
of the edge labels counterclockwise around each vertex of T.

2 i> 4114663775885223



Descents on quasi-Stirling permutations

If T €T,andm=(T) € Qp,, then

des(m) = cdes(T),

where cdes(T) is obtained by adding the number of cyclic descents
of the edge labels counterclockwise around each vertex of T.

2 i) 4114663775885223

des(m) =6
cdes(T)=1+2+14+2=6
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Descents on quasi-Stirling permutations

If T €T,andm=(T) € Qp,, then

des(m) = cdes(T),

where cdes(T) is obtained by adding the number of cyclic descents
of the edge labels counterclockwise around each vertex of T.

2 i) 4114663775885223

des(m) =6
cdes(T)=14+2+1+2=6
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Descents on quasi-Stirling permutations

If T €T,andm=(T) € Qp,, then

des(m) = cdes(T),

where cdes(T) is obtained by adding the number of cyclic descents
of the edge labels counterclockwise around each vertex of T.

2 i) 4114663775885223

des(m) =6
cdes(T)=14+2+14+2=6
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Descents on quasi-Stirling permutations

If T €T,andm=(T) € Qp,, then

des(m) = cdes(T),

where cdes(T) is obtained by adding the number of cyclic descents
of the edge labels counterclockwise around each vertex of T.

2 i) 4114663775885223

des(m) =6
cdes(T)=14+2+1+2=6
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Descents on quasi-Stirling permutations

If T €T,andm=(T) € Qp,, then

des(m) = cdes(T),

where cdes(T) is obtained by adding the number of cyclic descents
of the edge labels counterclockwise around each vertex of T.

2 i) 4114663775885223

des(m) =6
cdes(T)=14+2+1+2=6
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Quasi-Stirling permutations with most descents

The number of m € Q, with des(r) = n is equal to (n+1)""1.
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Quasi-Stirling permutations with most descents

The number of m € Q, with des(r) = n is equal to (n+1)""1.

Proof sketch.

Equivalent to counting T € 7T, with cdes(T) = n,

Descents on quasi-Stirling permutations



Quasi-Stirling permutations with most descents

The number of m € Q, with des(r) = n is equal to (n+1)""1.

Proof sketch.

Equivalent to counting T € T, with cdes(T) = n, i.e., trees where
the number of cyclic descents around each vertex is maximized.
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Quasi-Stirling permutations with most descents

The number of m € Q, with des(r) = n is equal to (n+1)""1.

Proof sketch.

Equivalent to counting T € T, with cdes(T) = n, i.e., trees where
the number of cyclic descents around each vertex is maximized.
Such trees are in bijection with unordered trees:

unordered having cdes(T) = n
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Quasi-Stirling permutations with most descents

The number of m € Q, with des(r) = n is equal to (n+1)""1.

Proof sketch.

Equivalent to counting T € T, with cdes(T) = n, i.e., trees where
the number of cyclic descents around each vertex is maximized.
Such trees are in bijection with unordered trees:

unordered having cdes(T) = n

By Cayley’s formula, there are (n 4 1)"~! such trees. Ol
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Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on 9,.
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Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on 9,.

Define the quasi-Stirling polynomials

5n(t) — Z tdes(rr).

WG@n

Descents on quasi-Stirling permutations



Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on 9,.

Define the quasi-Stirling polynomials

6,7(1') — Z tdes(rr).

WG@n
Qi(t) =t

Qa(t) = t + 312
Qs(t) = t +13t% + 16¢°
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Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on 9,.

Define the quasi-Stirling polynomials

6,7(1') — Z tdes(rr).

Wéén
Qi(t) =t

Qa(t) = t + 312
Qs(t) = t +13t% + 16¢°

Define their exponential generating function (EGF):

At =Y A0

n>0
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EGF for Eulerian polynomials

Recall the Eulerian polynomials

An(t) _ Z tdes(w)‘

7T€Sn
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EGF for Eulerian polynomials

Recall the Eulerian polynomials

An(t) _ Z tdes(w)‘

7T€Sn

Their EGF ,
z
Alt,z) = ZAn(t)F

n>0
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EGF for Eulerian polynomials

Recall the Eulerian polynomials

An(t) — Z tdes(w)‘

TESH
Their EGF ,
z
Alt,z) = ZAn(t)H

n>0
has a well-known closed form

1—t

A(t,Z) = m
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EGF for Eulerian polynomials

Recall the Eulerian polynomials

An(t) _ Z tdes(w)‘

’7T€Sn

Their EGF ,
z
Alt,z) = ZAn(t)F

n>0
has a well-known closed form

1—t

A(t,Z) = m

Now we are ready to give an expression for Q(t, z).
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Descents on quasi-Stirling permutations

Theorem

The EGF Q(t,z) for quasi-Stirling permutations by the number of
descents satisfies the implicit equation

Q(t,z) = A(t, zQ(t, 2)),

that is, .
— —t
Q)= 1 — te(l-1)zQ(t,z) "
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Descents on quasi-Stirling permutations

Theorem

The EGF Q(t,z) for quasi-Stirling permutations by the number of
descents satisfies the implicit equation

Q(t,z) = A(t, zQ(t, 2)),

that is,
1-—1t

1 — te(1-0)zQ(t,2)”

6( t, Z) =
Its coefficients satisfy

Qn(t) = [2"A(, 2)™*.

n+1

Here [z"]F(z) denotes the coefficient of z" in F(z).
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By the bijection ¢,

Z Z des(ﬂ)z Z z tcdes(T
n>0 70, '

n>0 TeT,
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By the bijection ¢,
Z Z tdes(ﬂ)z Z z tcdes(T
n>0 cQ, n>0TeT,

Decompose trees in 7, as

Descents on quasi-Stirling permutations



By the bijection ¢,
Z Z tdes(ﬂ)z Z z tcdes(T
n>0 €0, n>0TeT,

Decompose trees in 7, as

and use that

ai

cdes(T Z(cdes( ) — 1) +des(araz. .. a,).
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ch

The EGF for each piece is zQ(t, z).
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ch

The EGF for each piece is zQ(t, z).

Combining the pieces while keeping track of cdes and using the
Compositional Formula, we get

Q(t,z) = A(t, zQ(t, 2)).

Descents on quasi-Stirling permutations



ch

The EGF for each piece is zQ(t, z).

Combining the pieces while keeping track of cdes and using the
Compositional Formula, we get

Q(t,z) = A(t, zQ(t, 2)).

Finally, extracting its coefficients using Lagrange inversion gives

Gt = - A2
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Consequences

Recall the formulas:

Z m"t™ = (1@75;)1“ (Eulerian)

m>0
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Consequences

Recall the formulas:

E:O m"t™ = (1@75;)1“ (Eulerian)
> S(m+n,m)t" = af"t()?m (Stirling)

m>0
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Consequences

Recall the formulas:

Z m"t™ = An(t) (Eulerian)

— A\l
= (1—1¢)"

> S(m+n,m)t" = af"t()?m (Stirling)

m>0

> tm_(Q”(t) (quasi-Stirling)

1— t)2n+1
m>0
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Consequences

Recall the formulas:

E:O m"t™ = (;Lén,(g)tr)wrl (Eulerian)
> S(m+n,m)t" = (1?"15()?”“ (Stirling)

m>0

m_(mn) i Qult) -
r;) n+1 ( m ) = (1— t)2n+1 (quasi-Stirling)
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Consequences

Recall the formulas:

2:0 m"t™ = (;Lén,(g)tr)wrl (Eulerian)
> S(m+n,m)t" = (1?"15()?”“ (Stirling)

m>0

m_(mn) i Qult) -
r;) n+1 ( m ) = (1— t)2n+1 (quasi-Stirling)

Open: Find a combinatorial proof.
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Properties of quasi-Stirling polynomials

Recall: i is a plateau of 7 if m; = 711,
i is an ascent of wif m; < mwjy1 or i =0.
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Properties of quasi-Stirling polynomials

Recall: i is a plateau of 7 if m; = 711,
i is an ascent of wif m; < mwjy1 or i =0.

Theorem (Béna '08)

On average, Stirling permutations in Q, have (2n+ 1)/3 ascents,
(2n + 1)/3 descents, and (2n + 1)/3 plateaus.
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Properties of quasi-Stirling polynomials

Recall: i is a plateau of 7 if m; = 711,
i is an ascent of wif m; < mwjy1 or i =0.

Theorem (Béna '08)

On average, Stirling permutations in Q, have (2n+ 1)/3 ascents,
(2n + 1)/3 descents, and (2n + 1)/3 plateaus.

On average, quasi-Stirling permutations in Q,, have (3n+ 1)/4
ascents, (3n+ 1)/4 descents, and (n+ 1)/2 plateaus.
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Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials A,(t) are real, distinct, and
nonpositive.
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Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials A,(t) are real, distinct, and

nonpositive.

Theorem (Brenti’89, B6na'08)

The same holds for the Stirling polynomials Qn(t).
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Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials A,(t) are real, distinct, and

nonpositive.

Theorem (Brenti’89, B6na'08)
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Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials A,(t) are real, distinct, and
nonpositive.

Theorem (Brenti’89, B6na'08)
The same holds for the Stirling polynomials Qn(t).

The same holds for the quasi-Stirling polynomials Q(t).

Corollary

o The coefficients of Q,(t) are unimodal and log-concave.
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Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials A,(t) are real, distinct, and
nonpositive.

Theorem (Brenti’89, B6na'08)

The same holds for the Stirling polynomials Q,(t).

The same holds for the quasi-Stirling polynomials @,(t).

Corollary

o The coefficients of Q,(t) are unimodal and log-concave.

@ The distribution of the number of descents on O, converges
to a normal distribution as n — oo.
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Properties of quasi-Stirling polynomials

Proving real-rootedness of Q,(t) is more complicated than for
An(t) or Qn(t), because for quasi-Stirling permutations there is no
simple recursive description relating @, and Q1.
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Properties of quasi-Stirling polynomials

Proving real-rootedness of Q,(t) is more complicated than for
An(t) or Qn(t), because for quasi-Stirling permutations there is no
simple recursive description relating @, and Q1.

Our proof expresses Q,(t) in terms of r-Eulerian polynomials,
defined by Riordan and Foata—Schiitzenberger.
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Properties of quasi-Stirling polynomials

Proving real-rootedness of Q,(t) is more complicated than for
An(t) or Qn(t), because for quasi-Stirling permutations there is no
simple recursive description relating @, and Q1.

Our proof expresses Q,(t) in terms of r-Eulerian polynomials,
defined by Riordan and Foata—Schiitzenberger.

In the process, we show that

#{m € Q, with m+ 1 descents}
= #{injections [n — 1] — [2n] with m excedances}.
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Properties of quasi-Stirling polynomials

Proving real-rootedness of Q,(t) is more complicated than for
An(t) or Qn(t), because for quasi-Stirling permutations there is no
simple recursive description relating @, and Q1.

Our proof expresses Q,(t) in terms of r-Eulerian polynomials,
defined by Riordan and Foata—Schiitzenberger.

In the process, we show that

#{m € Q, with m+ 1 descents}
= #{injections [n — 1] — [2n] with m excedances}.

Open: Find a bijective proof.
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k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling
permutations by allowing k copies of each element in [n]:
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k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling
permutations by allowing k copies of each element in [n]:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset
{1k 2k ... nk} that avoids the pattern 212.
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k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling
permutations by allowing k copies of each element in [n]:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset
{1k 2k ... nk} that avoids the pattern 212.

QK = set of k-Stirling permutations.

n—
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k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling
permutations by allowing k copies of each element in [n]:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset
{1k 2k ... nk} that avoids the pattern 212.

QK = set of k-Stirling permutations.

n—

Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.
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k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling
permutations by allowing k copies of each element in [n]:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset
{1k 2k ... nk} that avoids the pattern 212.

QK = set of k-Stirling permutations.

Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.

Definition

A k-quasi-Stirling permutation is a permutation of the multiset
{1k 2k ... nk} that avoids the patterns 1212 and 2121.
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k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling
permutations by allowing k copies of each element in [n]:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset
{1k 2k ... nk} that avoids the pattern 212.

QK = set of k-Stirling permutations.

Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.

Definition

A k-quasi-Stirling permutation is a permutation of the multiset
{1k 2k ... nk} that avoids the patterns 1212 and 2121.

—k e s .
Q, = set of k-quasi-Stirling permutations.
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k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling
permutations by allowing k copies of each element in [n]:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset
{1k 2k ... nk} that avoids the pattern 212.

QK = set of k-Stirling permutations.

Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.

Definition

A k-quasi-Stirling permutation is a permutation of the multiset
{1k 2k ... nk} that avoids the patterns 1212 and 2121.

—k e s .
Q, = set of k-quasi-Stirling permutations.

For k=10 =0, =S, Fork=2 Q2=Q,and O, = O,.



Enumeration of k-Stirling and k-quasi-Stirling permutations

Counting k-Stirling permutations is easy, since every permutation in
QX can be obtained by inserting the string n = nn...n into one of
the (n — 1)k + 1 spaces of a permutation in Qﬁ_l, so

108 = (k+1)(2k+1)----- ((n—1)k+1).
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Enumeration of k-Stirling and k-quasi-Stirling permutations

Counting k-Stirling permutations is easy, since every permutation in
QX can be obtained by inserting the string n = nn...n into one of
the (n — 1)k + 1 spaces of a permutation in Qﬁ_l, so

108 = (k+1)(2k+1)----- ((n—1)k+1).

Theorem
Forn>1and k > 1,

(kn)!
((k=1)n+1)!

1 kn
Q*_(k—nn+1(n>

is the nth k-Catalan number.

Descents on quasi-Stirling permutations

08| =

= n! Cn,k7

where



k-quasi-Stirling permutations and trees

Gessel'94 & Janson—Kuba—Panholzer'11 describe bijections between
k-Stirling permutations and two kinds of decorated increasing trees.
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k-quasi-Stirling permutations and trees

Gessel'94 & Janson—Kuba—Panholzer'11 describe bijections between
k-Stirling permutations and two kinds of decorated increasing trees.

We have extended them to bijections between k-quasi-Stirling
permutations and certain trees.
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k-quasi-Stirling permutations and trees

Gessel'94 & Janson—Kuba—Panholzer'11 describe bijections between
k-Stirling permutations and two kinds of decorated increasing trees.

We have extended them to bijections between k-quasi-Stirling
permutations and certain trees.

Example

A bijection between compartmented trees and 3-quasi-Stirling
permutations:

i> 622266355537744471113
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Ascents, descents and plateaus on k-quasi-Stirling

permutations

Let asc(m) and plat(7) be the number of ascents and plateaus of .
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Ascents, descents and plateaus on k-quasi-Stirling

permutations

Let asc(m) and plat(7) be the number of ascents and plateaus of .

Define the multivariate k-quasi-Stirling polynomials

ﬁ(k)((% t, U) _ Z qasc(7r) tdes(7r) uplat(Tr)’

n
—k
T€eQ,

and their EGF
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Ascents, descents and plateaus on k-quasi-Stirling

permutations

This is the most general version of our main result:

ﬁ(k)(q, t,u; z) satisfies the implicit equation

q(q —t)
q— te(q*t)z(ﬁ(k)(q7t,U;z)71+u)k_1 .

ﬁ(k)(qa t, U;Z) =1- q+
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Ascents, descents and plateaus on k-quasi-Stirling

permutations

This is the most general version of our main result:

ﬁ(k)

(g, t, u; z) satisties the implicit equation

q(g—t)
q— te(q*t)Z(ﬁ(k)(ﬁht,U;z)flJru)k—l

Pq.tuz)=1-q+
Extracting its coefficients using Lagrange inversion,

(k—1)n+1
5(K) _ m(. q(qg —t)
Pn (q7 t: U) - ( 1)n+1 [ ] <U q+ q . te(q—t)z> .
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Ascents, descents and plateaus on k-quasi-Stirling

permutations

This is the most general version of our main result:

ﬁ(k)(q, t,u; z) satisfies the implicit equation

q(g—t)
q— te(q*t)z(ﬁ(k)(ﬁht,U;z)flJru)k—l

PNg tuiz)=1— g+

Extracting its coefficients using Lagrange inversion,

(k—1)n+1
5(K) _ m(. q(qg —t)
Pn (q7 t: U) - ( 1)n+1 [ ] <U q+ q . te(q—t)z> .

The proof follows ascents, descents and plateaus through the
bijection ¢, and it uses a decomposition of compartmented trees.

Descents on quasi-Stirling permutations



