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first n — 2 Catalan numbers (Zeilberger, 1998)

m Face of the Birkhoff polytope of doubly stochastic
matrices having dimension ('2’) and 271 vertices.
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complete graph...
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A flow polytope of the (transitively directed) complete graph

e Kn+1 having netflow vector (a, — > a;) is denoted Flow,(a).
olytopes

xr
ZT12 + Z13 + 14 =1 G 4

23 + Taq4 — T12 =02 mm

T34 — T13 — T3 =
34 13 23 3 aq a9 as —a1 — a2 — as

Figure: The complete graph K, and the hyperplanes bounding
F|0W3(317 az, 33)
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Polytopes combinatorially equivalent to a product of simplices

Apx Ap_1 X ...x Ay (Mészdros—Morales—Rhoades,
2015).

m The f-vector for other cases is harder to compute.

m Flow,(1,1,...,1) is simple, whereas general instances of
Flow,(a) (including the case of CRY/,) are not.
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Polytopes

DOl WN LS

1,1
1,2,1

1,4,6,4,1

1,8,26,45,45,26,8, 1

1,16, 98,327,681, 944, 897, 588, 262, 76, 13, 1

1,32, 342, 1943, 6982, 17326, 31236, 42198, 43521, 34601,
21249, 10020, 3571,933, 169, 19, 1

1,64,1138, 10275, 58093, 228396, 664200, 1486921,
2633161, 3759650, 4386239, 4218971, 3363558, 2227042,
1222927, 554147, 205256, 61206, 14351, 2550, 323, 26, 1

Table: The first few f-vectors of CRY,,.
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Faces of F(a) as subgraphs of G

On the
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for complete
graphs

U m One particularly powerful use of flow polytopes arises from
the following theorem:

Theorem (Hille 2003; Gallo-Sodini 1978)

Faces of Flow

e The d-dimensional faces of Fg(a) correspond to subgraphs H
of G that have 1st Betti number (|E|—|V/|+c) equal to d

and which are the support of an a-valid flow, where c is the

number of connected components of H.
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m However, other subgraphs do not correspond to faces as
they are not (1,0, —1)-valid (i.e. their edges are not the
support of some flow).
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[ Oon the m Faces of CRY,, correspond to graphs in the following set:

flow polytopes
for complete

sraphs Q,:={H C Ky41|every v € V(H) lies along

Y

William T a direct path from vy to vq1}

ON CERTAIN SUBGRAPHS OF A COMPLETE TRANSITIVELY
DIRECTED GRAPH

E. ANDRESEN

Institute of Mathomatics, Uni-ersity of Oslo, Oslo, Norway

K. KJELDSEN

Headquarters Defence Command Norway. Oslo, Norway

Main Results

Received 3 June 1974
Let G,, be a complete transitively directed graph with 1 + 1 vertices vy, vy, ..., vy, Let

w(n) be the number of subgraphs K of G, where each vertex in H lies along a directed
path from vy 10 vy, in H. ¥(n) and some related quantities are calculaied,
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Q :={HeQ,|V(H)={v1,...,Vas1},
and single connected component}.

@ m
1 0 0 0 0 -1 1 0 0 0 0 -1

m This definition works for more general a as well!
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f-vector of
flow polytopes
for complete
graphs

S m From Hille's theorem, the f-polynomial of a flow polytope
Bugen is a generating function over the set of a-valid subgraphs
which keeps track of first Betti number.

Definition

The primitive f-vector of Flow,(a), denoted F(n)(a) (or as
f(")(a; x) if written as a polynomial) is a generating function
over the set of a-valid subgraphs of K11 that are primitive (use
the entire vertex set) keeping track of the first Betti number.
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0,1

0,1,1

0,1,4,4,1

0,1,11,33,42,26,8,1

0,1,26,171,507, 840, 865, 584, 262, 76, 13, 1

0,1,57,718,4017, 12866, 26831, 39268, 42211, 34221, 21184,

10015, 3571, 933, 169, 19, 1

7 0,1,120,2682, 25531, 138080, 490079, 1242533, 2375965,
3553184, 4258040, 4158866, 3342132, 2221444, 1221913,
554033, 205250, 61206, 14351, 2550, 323, 26, 1

William T

Dugan

SOl WD =S

Main Results

Table: The first few primitive f-vectors of CRY/,.
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f-vectors and primitive f-vectors
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/:1\5 j—

Figure: The elements of Q3 grouped by first Betti number,
corresponding to the f-vector (1,4,6,4,1) of CRY3. The primitive
f-vector is (0,1,4,4,1).
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For all n € N and non-negative a of length n:

\‘\M)Iii.ygnl . 1 .
- F@ix) = =+ kanf ) (bix) (1)

b=<a

where b < a if b can be obtained from a by deleting some
subset of the zeros in a, {(b) is the length of b and where kj,
is the number of ways of deleting 0's from a to obtain b..

Main Results

1 ~
£()(1,0,0,1,1,0;x) = = + £)(1,0,0,1, 1, 0; x)
X

+2f®)(1,0,1,1,0;x) + F®)(1,0,0,1, 1; x)
+ F(L,1,1,00x) +2FH(1,0,1, 1;x) + FO(1,1,1; %)
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The Reverse Composition

On the
f-vector of
flow polytopes
for complete
graphs

m Every non-negative netflow vector a determines an integer
William T composition revcomp(a) as follows.

Dugan
Read the entries of a from right to left
Inductively create a block whenever a new nonzero entry is
encountered
Return the tuple of sizes coming from the list of blocks

Ifa=(1,1,0,0,1,0,1,0), we get blocks (0,1), (0,1), (0,0,1),
and (1). Hence revcomp(a) = (2,2, 3,1).

Main Results
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Definition (D. 2024)

For « an integer composition of n with ¢(«a) parts,

Po(x1,...,xp) = Z(_l)f(ﬁ)*f(a)xﬁ (2)
Main Results Bra
where x? = xlﬂ1 . -XZ%I;), and where the relation > is the

standard relation of reverse refinement on compositions.

m Similar to the change-of-basis formula for writing a
monomial quasisymmetric function in terms of Gessel's
fundamental quasisymmetric functions.
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Formula for Primitive f-vector
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f-vector of
flow polytopes
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graphs

William T Lemma (D. 2024)

Dugan

For all n € N and non-negative a of length n, let o be the
composition of n given by o = revcomp(a). Then the primitive
f-vector of Flow,(a) written as a polynomial is given by:

Main Results

A aix) = - Palx, (x + 17— 1., (x +1)" 1) (3)
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in the canonical way (namely i € St if and only if
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Proof Sketch 1

On the
f-vector of

Mo polyiopes m Associate to T C {wo,...V,} its indicator set St C [n — 1]

graphs in the canonical way (namely i € St if and only if

vir1 € T).

m For each such S, define Rs to be the set of primitive

subgraphs of K11 such that:

outdeg(v;) > 0 for all i € [n], where outdeg is the

out-degree of the vertex v;, and

Main Results i € S¢ implies indeg(vi+1) = 0, where indeg(vi11) is the
in-degree of vertex vji1.

m In other words, Rs is the set of primitive subgraphs of
K1 for which all vertices have nonzero out-degree and
for which S keeps track of vertices (indices shifted by 1)
which are allowed to have non-zero in-degree.
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Figure: An example of Rs when n=3 and S = {1}
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for complete
graphs

We can use inclusion-exclusion on these nested sets of

William T graphS:
Dugan
|Prima|= > (-DFF™Rs ()
S€[supp(a’),[n—1]]
Main Results m We want to keep track of Betti number to get £l

m For primitive graph H with n vertices, first-Betti number is
exactly S1(H) = —n+ Y7, deg(v;).

m Hence for each S, we can enumerate the number of graphs
keeping track of their total out-degree.
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for ot m Example of rs(x) from one set S = {2} when n = 3:
graphs

o S

Main Results

re(z) =2+ '+ 4= (x)  (z+1)? = 1) - (x +1)* = 1)

m In general, rs(x) = H){EQS)(X + D)% =1 = x| _(xy1)i-1-
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William T

Dugan

VENS
Main Results / » %% e NN /%g »/JH;A

Figure: The sets of primitive graphs Rs for n = 3, as described in the
proof of the Lemma.
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Formula for Primitive f-vector (cont.)

On the
f-vector of Lo
fitey palliapes m Specializing to the case of CRY/;:
for complete

graphs

Corollary (D. 2024)

William T.
Dugan

Let f(")(x) be the primitive f-vector of CRY, written as a
polynomial. Then for all n > 1:

n—1

Main Results F(n)(x) = i Z(—l)mﬂ-nfm(x)

Xn
m=0

chm((x+ D) =1, (x+1)2—1,...,(x+1)""—1)

where ,(x) := x"[n]x11! = [T—;((x + 1)’ — 1) and where hy
is a complete homogeneous symmetric polynomial.
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Main Result

On the
f-vector of
flow polytopes
for complete

Eraphs Theorem (D. 2024)

William T.
Dugan Given a netflow vector (a,— Y i1 a;) = (a1,...an, — 2 11 ai)

with a; € N, let « be the integer composition of n given by

a = revcomp(a). Then the f-vector of Flow,(a) written as a

Laurent polynomial is given by:

Main Results

1 1 o)— _
f(a;x) = x + s Z(—l)g( ) E(ﬁ)ﬂe(ﬁ)(X)X’B 1’x;:(x+1)i—(x+1)
Bra

where ,(x) := x"[n]x41! = [T ((x + 1) = 1).
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m=0
Main Results : hm((X + 1)1 - 1’ (X + 1)2 7 1; ey (X + 1)n_m_1 - 1)

m We recover Andresen—Kjeldsen's result by setting x = 1:
n—2
‘Qn‘: Z(_2)m7rn—m ° hm(21 — ]_7 22 — ]_7 . 72’7-!"7—1 _ 1)

m=0
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f-vector of CRY,

romanc: Il Corollary (D. 2024)

flow polytopes

for complete Let (") (x) be the f-vector of CRY, = Flow,(1,0,...,0)

graphs

William T. written as a Laurent polynomial. Then for all n > 1:
Dugan
1 1 n—2
FD() = = + = > (=1)"(L + %)™ n-m(x)
m=0
Main Results : hm((X + 1)1 - 1’ (X + 1)2 7 1; ey (X + 1)n_m_1 - 1)

m We recover Andresen—Kjeldsen's result by setting x = 1:
n—2
Q=D (=2)"Tnm- hm(2' = 1,22 —1,..., 2" "1~ 1)
m=0
m We also recover f(1;x) = [n]x+1! as was proven for the
Tesler polytope. 3643



Primitive faces «— primitive Fishburn matrices

On the
f-vector of m A Fishburn matrix is an upper-triangular matrix with

flow polytopes

for complete natural number entries such that no column nor row is the
graphs s o
zero vector (primitive if using only entries in {0,1}).

William T
. m There is a bijection between primitive faces of CRY and

primitive Fishburn matrices:

Main Results < »

oo oo
[l olNoNall
[Nl o N
oo oo
— =0 = O

1 0 0 0 0 -1

Figure: The correspondence between elements of Q/, and primitive
Fishburn matrices.
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A generating function
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f-vector of
flow polytopes

for complete Theorem (D 2024‘)

graphs

William T
Dugan

The number of d-dimensional faces of CRY,, is given by the
coefficient fd(n) = [t"x9]F(t, x), where F(t,x) is defined by:

1 > : (1+x) -1
F(t,x) = t"x™" . .
(£,%) X—Xt+;) X 1_‘[1+((1+x)'_1—x)tx—1
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The number of d-dimensional faces of CRY,, is given by the
coefficient fd(n) = [t"x9]F(t, x), where F(t,x) is defined by:

1 > : (1+x) -1
F(t,x) = t"x™" . .
(£,%) X—Xt+;) X 1_‘[1+((1+x)'_1—x)tx—1

Main Results

m F(t,x) may be obtained using the results above, or by a
careful evaluation of a multivariate formula counting
Fishburn matrices due to Jelinek (2011).
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Dugan re/ated as.

x - FM(x) = (1+x)" " (x). (5)
where the primitive f-vector, ?(”)(x), enumerates subgraphs
having all vertices v1, ..., vpt1 in a single connected
component.

Comments on
Face Lattice

and Final
Remarks

m We believe this formula may lead to an understanding of
the face lattice of CRY,, which is current work in progress.

m We are also now working to extend our results to various
families of subgraphs of K 1.
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Open Problems

On the
f-vector of
flow polytopes
for complete
graphs

William T Find a combinatorial proof of the previous theorem.

Does the expression as a (quasi-)symmetric polynomial
before evaluating have some deeper meaning/correspond
to some other combinatorial object? If so, what is this
object? What do other evaluations mean?

Comments on Use the techniques in this talk (especially primitive
Face Lattice f-vectors) to compute the f-vectors of other flow
Remarks polytopes
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