On the f -vector of [flow polytopes](#page-99-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

and Final

On the *f*-vector of flow polytopes for complete graphs MSU Combinatorics and Graph Theory Seminar

William T. Dugan¹

¹University of Massachusetts Amherst

October 9, 2024

Outline

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

1 [Flow Polytopes](#page-7-0)

2 [Faces of Flow Polytopes](#page-32-0)

3 [Main Results](#page-40-0)

4 [Comments on Face Lattice and Final Remarks](#page-91-0)

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

The Chan-Robbins-Yuen polytope (CRY_n) of order *n* is defined as the convex hull of n -by- n permutation matrices π for which $\pi_{i,j} = 0$ for $j \geq i+2$.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

The Chan-Robbins-Yuen polytope (CRY_n) of order *n* is defined as the convex hull of n -by- n permutation matrices π for which $\pi_{i,j} = 0$ for $j \geq i+2$.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

- [Faces of Flow](#page-32-0)
- [Main Results](#page-40-0)

and Final Remarks

The Chan-Robbins-Yuen polytope (CRY_n) of order *n* is defined as the convex hull of n -by- n permutation matrices π for which $\pi_{i,j} = 0$ for $j \geq i+2$.

 \blacksquare CRY_n has normalized volume equal to the product of the first $n - 2$ Catalan numbers (Zeilberger, 1998)

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Polytopes](#page-7-0)

- [Faces of Flow](#page-32-0)
- [Main Results](#page-40-0)

[Comments on](#page-91-0) and Final Remarks

The Chan-Robbins-Yuen polytope (CRY_n) of order *n* is defined as the convex hull of n -by- n permutation matrices π for which $\pi_{i,j} = 0$ for $j \geq i+2$.

- \blacksquare CRY_n has normalized volume equal to the product of the first $n - 2$ Catalan numbers (Zeilberger, 1998)
	- Face of the Birkhoff polytope of doubly stochastic matrices having dimension $\binom{n}{2}$ $n \choose 2$ and 2^{n-1} vertices.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Polytopes](#page-7-0)

- [Faces of Flow](#page-32-0) Polytopes
- [Main Results](#page-40-0)

[Comments on](#page-91-0) and Final Remarks

The Chan-Robbins-Yuen polytope (CRY_n) of order *n* is defined as the convex hull of n -by- n permutation matrices π for which $\pi_{i,j} = 0$ for $j \geq i+2$.

- \blacksquare CRY_n has normalized volume equal to the product of the first $n - 2$ Catalan numbers (Zeilberger, 1998)
	- Face of the Birkhoff polytope of doubly stochastic matrices having dimension $\binom{n}{2}$ $n \choose 2$ and 2^{n-1} vertices.
- CRY_n is also an example of a flow polytope over the complete graph...

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Section 1

[Flow Polytopes](#page-7-0)

Integral (Convex) Polytopes

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final Remarks

Definition

A compact subset $P \subseteq \mathbb{R}^n$ is a **convex polytope** if P can be written as

- **1** the intersection of finitely many half spaces, or
- 2 the convex hull of finitely many vertices

f -vectors

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

The f-polynomial (or f-vector) of a polytope P is

$$
f_P(x) = \sum_{i=-1}^n |\{\text{faces of dim } i\}|x^{\dim i}.
$$

f -vectors

I

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

The f-polynomial (or f-vector) of a polytope P is

$$
f_P(x) = \sum_{i=-1}^{n} |\{\text{faces of dim } i\}|x^{\dim i}
$$

$$
f_P(x) = \frac{1}{x} + 3 + 3x^1 + x^2.
$$

.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

6
$$
G = (V, E)
$$
 be a directed, acyclic graph on the vertex set $V = [n+1] = \{1, ..., n+1\}.$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

- $G = (V, E)$ be a directed, acyclic graph on the vertex set $V = [n + 1] = \{1, \ldots, n + 1\}.$
- $\mathbf{a} = (a_1, \ldots, a_n, -\sum_{i=1}^n a_i)$ with each $a_i \in \mathbb{Z}$ be a $\mathbf{netflow}$ vector

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

- $G = (V, E)$ be a directed, acyclic graph on the vertex set $V = [n + 1] = \{1, \ldots, n + 1\}.$
- $\mathbf{a} = (a_1, \ldots, a_n, -\sum_{i=1}^n a_i)$ with each $a_i \in \mathbb{Z}$ be a $\mathbf{netflow}$ vector
- Flow polytope: \blacksquare

$$
\mathcal{F}_G(\mathbf{a}) := \{ \text{flows } f : E \to \mathbb{R}_{\geq 0} \mid \text{net flow vertex } i \text{ is } a_i \}
$$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

- $G = (V, E)$ be a directed, acyclic graph on the vertex set $V = [n + 1] = \{1, \ldots, n + 1\}.$
- $\mathbf{a} = (a_1, \ldots, a_n, -\sum_{i=1}^n a_i)$ with each $a_i \in \mathbb{Z}$ be a $\mathbf{netflow}$ vector
- Flow polytope: \blacksquare

$$
\mathcal{F}_G(\mathbf{a}) := \{ \text{flows } f : E \to \mathbb{R}_{\geq 0} \mid \text{net flow vertex } i \text{ is } a_i \}
$$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

- $G = (V, E)$ be a directed, acyclic graph on the vertex set $V = [n + 1] = \{1, \ldots, n + 1\}.$
- $\mathbf{a} = (a_1, \ldots, a_n, -\sum_{i=1}^n a_i)$ with each $a_i \in \mathbb{Z}$ be a $\mathbf{netflow}$ vector
- Flow polytope:

$$
\mathcal{F}_G(\mathbf{a}) := \{ \text{flows } f : E \to \mathbb{R}_{\geq 0} \mid \text{net flow vertex } i \text{ is } a_i \}
$$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

- $G = (V, E)$ be a directed, acyclic graph on the vertex set $V = [n + 1] = \{1, \ldots, n + 1\}.$
- $\mathbf{a} = (a_1, \ldots, a_n, -\sum_{i=1}^n a_i)$ with each $a_i \in \mathbb{Z}$ be a $\mathbf{netflow}$ vector
- Flow polytope:

$$
\mathcal{F}_G(\mathbf{a}) := \{ \text{flows } f : E \to \mathbb{R}_{\geq 0} \mid \text{net flow vertex } i \text{ is } a_i \}
$$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

- $G = (V, E)$ be a directed, acyclic graph on the vertex set $V = [n + 1] = \{1, \ldots, n + 1\}.$
- $\mathbf{a} = (a_1, \ldots, a_n, -\sum_{i=1}^n a_i)$ with each $a_i \in \mathbb{Z}$ be a $\mathbf{netflow}$ vector
- Flow polytope:

$$
\mathcal{F}_G(\mathbf{a}) := \{ \text{flows } f : E \to \mathbb{R}_{\geq 0} \mid \text{net flow vertex } i \text{ is } a_i \}
$$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

- $G = (V, E)$ be a directed, acyclic graph on the vertex set $V = [n + 1] = \{1, \ldots, n + 1\}.$
- $\mathbf{a} = (a_1, \ldots, a_n, -\sum_{i=1}^n a_i)$ with each $a_i \in \mathbb{Z}$ be a $\mathbf{netflow}$ vector
- Flow polytope:

$$
\mathcal{F}_G(\mathbf{a}) := \{ \text{flows } f : E \to \mathbb{R}_{\geq 0} \mid \text{net flow vertex } i \text{ is } a_i \}
$$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

- $G = (V, E)$ be a directed, acyclic graph on the vertex set $V = [n + 1] = \{1, \ldots, n + 1\}.$
- $\mathbf{a} = (a_1, \ldots, a_n, -\sum_{i=1}^n a_i)$ with each $a_i \in \mathbb{Z}$ be a $\mathbf{netflow}$ vector
- Flow polytope: \blacksquare

$$
\mathcal{F}_G(\mathbf{a}) := \{ \text{flows } f : E \to \mathbb{R}_{\geq 0} \mid \text{net flow vertex } i \text{ is } a_i \}
$$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

- $G = (V, E)$ be a directed, acyclic graph on the vertex set $V = [n + 1] = \{1, \ldots, n + 1\}.$
- $\mathbf{a} = (a_1, \ldots, a_n, -\sum_{i=1}^n a_i)$ with each $a_i \in \mathbb{Z}$ be a $\mathbf{netflow}$ vector
- Flow polytope: \blacksquare

$$
\mathcal{F}_G(\mathbf{a}) := \{ \text{flows } f : E \to \mathbb{R}_{\geq 0} \mid \text{net flow vertex } i \text{ is } a_i \}
$$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

- $G = (V, E)$ be a directed, acyclic graph on the vertex set $V = [n + 1] = \{1, \ldots, n + 1\}.$
- $\mathbf{a} = (a_1, \ldots, a_n, -\sum_{i=1}^n a_i)$ with each $a_i \in \mathbb{Z}$ be a $\mathbf{netflow}$ vector
- Flow polytope: \blacksquare

$$
\mathcal{F}_G(\mathbf{a}) := \{ \text{flows } f : E \to \mathbb{R}_{\geq 0} \mid \text{net flow vertex } i \text{ is } a_i \}
$$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

- $G = (V, E)$ be a directed, acyclic graph on the vertex set $V = [n + 1] = \{1, \ldots, n + 1\}.$
- $\mathbf{a} = (a_1, \ldots, a_n, -\sum_{i=1}^n a_i)$ with each $a_i \in \mathbb{Z}$ be a $\mathbf{netflow}$ vector
- Flow polytope:

$$
\mathcal{F}_G(\mathbf{a}) := \{ \text{flows } f : E \to \mathbb{R}_{\geq 0} \mid \text{net flow vertex } i \text{ is } a_i \}
$$

The polytope $Flow_n(a)$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

■ We can study families of flow polytopes by looking at families of graphs.

The polytope $Flow_n(a)$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

■ We can study families of flow polytopes by looking at families of graphs.

Definition

A flow polytope of the (transitively directed) complete graph \mathcal{K}_{n+1} having netflow vector $(\mathbf{a}, -\sum a_i)$ is denoted $\mathsf{Flow}_n(\mathbf{a})$.

The polytope $\mathsf{Flow}_n(\mathbf{a})$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

and Final Remarks

We can study families of flow polytopes by looking at families of graphs.

Definition

A flow polytope of the (transitively directed) complete graph \mathcal{K}_{n+1} having netflow vector $(\mathbf{a}, -\sum a_i)$ is denoted $\mathsf{Flow}_n(\mathbf{a})$.

$$
x_{12} + x_{13} + x_{14} = a_1
$$

$$
x_{23} + x_{24} - x_{12} = a_2
$$

$$
x_{34} - x_{13} - x_{23} = a_3
$$

Figure: The complete graph K_4 and the hyperplanes bounding Flow₃ (a_1, a_2, a_3)

An Abridged History of $Flow_n(a)$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

 CRY_n is realized as an instance of **Flow**_n(a) by setting \blacksquare $a = (1, 0, \ldots, 0).$

An Abridged History of **Flow**_n(a)

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

> William T. Dugan

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

and Final

- CRY_n is realized as an instance of **Flow**_n(a) by setting $a = (1, 0, \ldots, 0).$
- **The case of all** $a_i > 0$ **, such as** $a = (1, 1, \ldots, 1)$ **, is** combinatorially equivalent to a product of simplices $\Delta_n \times \Delta_{n-1} \times \ldots \times \Delta_1$ (Mészáros–Morales–Rhoades, 2015).

An Abridged History of **Flow**_n(a)

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

> William T. Dugan

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

and Final Remarks

- CRY_n is realized as an instance of **Flow**_n(a) by setting $a = (1, 0, \ldots, 0).$
- **The case of all** $a_i > 0$ **, such as** $a = (1, 1, \ldots, 1)$ **, is** combinatorially equivalent to a product of simplices $\Delta_n \times \Delta_{n-1} \times \ldots \times \Delta_1$ (Mészáros–Morales–Rhoades, 2015).
- \blacksquare The *f*-vector for other cases is harder to compute.

An Abridged History of $Flow_n(a)$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

> William T. Dugan

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

and Final

- CRY_n is realized as an instance of **Flow**_n(a) by setting $a = (1, 0, \ldots, 0).$
- **The case of all** $a_i > 0$ **, such as** $a = (1, 1, \ldots, 1)$ **, is** combinatorially equivalent to a product of simplices $\Delta_n \times \Delta_{n-1} \times \ldots \times \Delta_1$ (Mészáros–Morales–Rhoades, 2015).
- \blacksquare The *f*-vector for other cases is harder to compute.
- **Flow**_n $(1, 1, \ldots, 1)$ is simple, whereas general instances of **Flow**_n(a) (including the case of CRY_n) are not.

Main Goal

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Main Goal:

To compute the *f*-vector of **Flow**_n(a) for arbitrary (nonnegative) $a \in \mathbb{N}^n$.

Some Data

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Table: The first few f -vectors of CRY_n .

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Section 2

[Faces of Flow Polytopes](#page-32-0)

Faces of $\mathcal{F}_G(\mathbf{a})$ as subgraphs of G

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

■ One particularly powerful use of flow polytopes arises from the following theorem:

Faces of $\mathcal{F}_G({\bf a})$ as subgraphs of G

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

and Final Remarks

■ One particularly powerful use of flow polytopes arises from the following theorem:

Theorem (Hille 2003; Gallo–Sodini 1978)

The d-dimensional faces of $\mathcal{F}_G(\mathbf{a})$ correspond to subgraphs H of G that have 1st Betti number $(|E|-|V|+c)$ equal to d and which are the support of an a-valid flow, where c is the number of connected components of H.

Example of Faces as Subgraphs

Example of Faces as Subgraphs

Example of Faces as Subgraphs

Example (cont.)

Example (cont.)

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

However, other subgraphs do not correspond to faces as they are not $(1, 0, -1)$ -valid (i.e. their edges are not the support of some flow).

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Section 3

[Main Results](#page-40-0)

Andresen–Kjeldsen

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Faces of CRY_n correspond to graphs in the following set:

Andresen–Kjeldsen

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Example 3 Faces of CRY_n **correspond to graphs in the following set:** $\Omega_n := \{H \subseteq K_{n+1} \mid \text{every } v \in V(H) \text{ lies along }\}$

a direct path from v_1 to v_{n+1} }

Andresen–Kjeldsen

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

Faces of CRY_n **correspond to graphs in the following set:**

 $\Omega_n := \{H \subseteq K_{n+1} \mid \text{every } v \in V(H) \text{ lies along }$

a direct path from v_1 to v_{n+1} }

ON CERTAIN SUBGRAPHS OF A COMPLETE TRANSITIVELY DIRECTED GRAPH

E. ANDRESEN Institute of Mathematics. University of Oslo. Oslo. Norway

K. KJELDSEN Headquarters Defence Command Norway, Oslo, Norway

Received 3 June 1974

Let G_n be a complete transitively directed graph with $n + 1$ vertices $v_0, v_1, ..., v_m$. Let $\psi(n)$ be the number of subgraphs H of G_n where each vertex in H lies along a directed path from v_0 to v_n in H. $\psi(n)$ and some related quantities are calculated.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Andresen and Kjeldsen computed $|\Omega_n|$ by first enumerating the set of primitive subgraphs:

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

Andresen and Kjeldsen computed $|\Omega_n|$ by first enumerating the set of **primitive** subgraphs:

$$
\Omega'_n:=\{H\in\Omega_n\,|\,V(H)=\{v_1,\ldots,v_{n+1}\},\,
$$

and single connected component}.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

Andresen and Kjeldsen computed $|\Omega_n|$ by first enumerating the set of primitive subgraphs:

$$
\Omega'_n := \{ H \in \Omega_n \mid V(H) = \{ v_1, \ldots, v_{n+1} \},
$$

and single connected component}.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final Remarks

Andresen and Kjeldsen computed $|\Omega_n|$ by first enumerating the set of **primitive** subgraphs:

$$
\Omega'_n:=\{H\in\Omega_n\,|\,V(H)=\{v_1,\ldots,v_{n+1}\},\,
$$

and single connected component}.

This definition works for more general a as well!

Primitive f -vector

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

and Final

From Hille's theorem, the f -polynomial of a flow polytope is a generating function over the set of a-valid subgraphs which keeps track of first Betti number.

Primitive f -vector

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

Face Lattice and Final Remarks

From Hille's theorem, the f -polynomial of a flow polytope is a generating function over the set of a-valid subgraphs which keeps track of first Betti number.

Definition

The **primitive** *f*-**vector** of **Flow**_n(a), denoted $\widehat{f}^{(n)}(a)$ (or as $\widehat{f}^{(n)}(\mathbf{a};x)$ if written as a polynomial) is a generating function over the set of a-valid subgraphs of K_{n+1} that are primitive (use the entire vertex set) keeping track of the first Betti number.

Some more data

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

L,

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Table: The first few primitive f -vectors of CRY_n .

f -vectors and primitive f -vectors

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Figure: The elements of Ω_3 grouped by first Betti number, corresponding to the f-vector $(1, 4, 6, 4, 1)$ of CRY_3 . The primitive *f*-vector is $(0, 1, 4, 4, 1)$.

Obtaining \overline{f} -vector from primitive f -vector

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) **Polytopes**

[Main Results](#page-40-0)

and Final Remarks

Lemma (D. 2024)

For all $n \in \mathbb{N}$ and non-negative **a** of length n:

$$
f^{(n)}(\mathbf{a};x) = \frac{1}{x} + \sum_{\mathbf{b}\preceq \mathbf{a}} k_{\mathbf{a},\mathbf{b}} \widetilde{f}^{(\ell(\mathbf{b}))}(\mathbf{b};x)
$$
(1)

where **b** \prec **a** if **b** can be obtained from **a** by deleting some subset of the zeros in a, $\ell(\mathbf{b})$ is the length of **b** and where $k_{\mathbf{a},\mathbf{b}}$ is the number of ways of deleting 0 's from a to obtain **..**

Obtaining \overline{f} -vector from primitive f -vector

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

and Final Remarks

Lemma (D. 2024)

For all $n \in \mathbb{N}$ and non-negative **a** of length n:

$$
f^{(n)}(\mathbf{a};x) = \frac{1}{x} + \sum_{\mathbf{b}\preceq \mathbf{a}} k_{\mathbf{a},\mathbf{b}} \widetilde{f}^{(\ell(\mathbf{b}))}(\mathbf{b};x)
$$
(1)

where **b** \prec **a** if **b** can be obtained from **a** by deleting some subset of the zeros in a, $\ell(\mathbf{b})$ is the length of **b** and where $k_{\mathbf{a},\mathbf{b}}$ is the number of ways of deleting 0 's from a to obtain **..**

$$
f^{(6)}(1,0,0,1,1,0;x) = \frac{1}{x} + \widetilde{f}^{(6)}(1,0,0,1,1,0;x) + 2\widetilde{f}^{(5)}(1,0,1,1,0;x) + \widetilde{f}^{(5)}(1,0,0,1,1;x) + \widetilde{f}^{(4)}(1,1,1,0;x) + 2\widetilde{f}^{(4)}(1,0,1,1;x) + \widetilde{f}^{(3)}(1,1,1,x)_{23/43}
$$

Proof of Lemma

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

■ The set of graphs of all faces surjects on to the set of those that are primitive by restricting to the support of the netflow vector.

Proof of Lemma

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

■ The set of graphs of all faces surjects on to the set of those that are primitive by restricting to the support of the netflow vector.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Every non-negative netflow vector a determines an integer composition revcomp (a) as follows.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

Every non-negative netflow vector a determines an integer composition revcomp (a) as follows.

1 Read the entries of a from right to left

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final Remarks

- Every non-negative netflow vector a determines an integer composition revcomp (a) as follows.
	- **1** Read the entries of **a** from right to left
	- 2 Inductively create a block whenever a new nonzero entry is encountered

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

- Every non-negative netflow vector a determines an integer \mathbf{r} composition revcomp (a) as follows.
	- **1** Read the entries of **a** from right to left
	- 2 Inductively create a block whenever a new nonzero entry is encountered
	- **3** Return the tuple of sizes coming from the list of blocks

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

and Final

- Every non-negative netflow vector a determines an integer composition revcomp (a) as follows.
	- **1** Read the entries of **a** from right to left
	- 2 Inductively create a block whenever a new nonzero entry is encountered
	- **3** Return the tuple of sizes coming from the list of blocks

Example

If $a = (1, 1, 0, 0, 1, 0, 1, 0)$, we get blocks $(0, 1)$, $(0, 1)$, $(0, 0, 1)$, and (1). Hence revcomp(a) = $(2, 2, 3, 1)$.

Connection to Quasisymmetric Polynomials

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

Formulas for the f -vectors will rely on evaluations of a special polynomial.

Connection to Quasisymmetric Polynomials

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

and Final Remarks

Formulas for the f -vectors will rely on evaluations of a special polynomial.

Definition (D. 2024)

For α an integer composition of *n* with $\ell(\alpha)$ parts,

$$
P_{\alpha}(x_1,\ldots,x_n):=\sum_{\beta\succeq\alpha}(-1)^{\ell(\beta)-\ell(\alpha)}\mathbf{x}^{\beta}
$$
 (2)

where $\mathbf{x}^{\beta} := x_1^{\beta_1} \cdots x_{\ell(\beta)}^{\beta_{\ell(\beta)}}$ $\frac{\mathcal{S}(\mathcal{B})}{\ell(\beta)}$, and where the relation \succeq is the standard relation of reverse refinement on compositions.

Connection to Quasisymmetric Polynomials

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

and Final Remarks

Formulas for the f -vectors will rely on evaluations of a special polynomial.

Definition (D. 2024)

For α an integer composition of *n* with $\ell(\alpha)$ parts,

$$
P_{\alpha}(x_1,\ldots,x_n):=\sum_{\beta\succeq\alpha}(-1)^{\ell(\beta)-\ell(\alpha)}\mathbf{x}^{\beta}
$$
 (2)

where $\mathbf{x}^{\beta} := x_1^{\beta_1} \cdots x_{\ell(\beta)}^{\beta_{\ell(\beta)}}$ $\frac{\mathcal{S}(\mathcal{B})}{\ell(\beta)}$, and where the relation \succeq is the standard relation of reverse refinement on compositions.

Similar to the change-of-basis formula for writing a monomial quasisymmetric function in terms of Gessel's fundamental quasisymmetric functions.

Reverse Refinement Composition Poset

Formula for Primitive f -vector

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

and Final Remarks

Lemma (D. 2024)

For all $n \in \mathbb{N}$ and non-negative a of length n, let α be the composition of n given by α = revcomp(a). Then the primitive f-vector of $Flow_n(a)$ written as a polynomial is given by:

$$
\widetilde{f}^{(n)}(\mathbf{a}; x) = \frac{1}{x^n} P_\alpha(x, (x+1)^2 - 1, \dots, (x+1)^n - 1) \tag{3}
$$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

- Associate to $T \subseteq \{v_2, \ldots v_n\}$ its indicator set $S_T \subseteq [n-1]$ in the canonical way (namely $i \in S_T$ if and only if $v_{i+1} \in T$).
- For each such S, define R_S to be the set of primitive subgraphs of K_{n+1} such that:

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

> William T. Dugan

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

- For each such S, define R_S to be the set of primitive subgraphs of K_{n+1} such that:
	- 1 outdeg(v_i) > 0 for all $i \in [n]$, where outdeg is the out-degree of the vertex v_i , and

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

> William T. Dugan

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

- For each such S, define R_S to be the set of primitive subgraphs of K_{n+1} such that:
	- 1 outdeg(v_i) > 0 for all $i \in [n]$, where outdeg is the out-degree of the vertex v_i , and
	- 2 $i ∈ S^c$ implies $indeg(v_{i+1}) = 0$, where $indeg(v_{i+1})$ is the in-degree of vertex v_{i+1} .

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

- For each such S, define R_S to be the set of primitive subgraphs of K_{n+1} such that:
	- 1 outdeg(v_i) > 0 for all $i \in [n]$, where outdeg is the out-degree of the vertex v_i , and
	- 2 $i ∈ S^c$ implies $indeg(v_{i+1}) = 0$, where $indeg(v_{i+1})$ is the in-degree of vertex v_{i+1} .
- In other words, R_S is the set of primitive subgraphs of K_{n+1} for which all vertices have nonzero out-degree and for which S keeps track of vertices (indices shifted by 1) which are *allowed to have* non-zero in-degree.

Example of R_S

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

We can use inclusion-exclusion on these nested sets of graphs:

$$
|Prim_{\mathbf{a}}| = \sum_{S \in [\text{supp}(\mathbf{a}'), [n-1]]} (-1)^{|S|+n+1} |R_S|, \tag{4}
$$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

We can use inclusion-exclusion on these nested sets of graphs:

$$
|Prim_{\mathbf{a}}| = \sum_{S \in [\text{supp}(\mathbf{a}'), [n-1]]} (-1)^{|S|+n+1} |R_S|, \tag{4}
$$

We want to keep track of Betti number to get f .

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

and Final Remarks

We can use inclusion-exclusion on these nested sets of graphs:

$$
|Prim_{\mathbf{a}}| = \sum_{S \in [\text{supp}(\mathbf{a}'), [n-1]]} (-1)^{|S|+n+1} |R_S|, \tag{4}
$$

- We want to keep track of Betti number to get f .
- \blacksquare For primitive graph H with n vertices, first-Betti number is exactly $\beta_1(H) = -n + \sum_{i=1}^n \deg(v_i)$.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

and Final Remarks

We can use inclusion-exclusion on these nested sets of graphs:

$$
|Prim_{\mathbf{a}}| = \sum_{S \in [\text{supp}(\mathbf{a}'), [n-1]]} (-1)^{|S|+n+1} |R_S|, \tag{4}
$$

- We want to keep track of Betti number to get f .
- For primitive graph H with n vertices, first-Betti number is exactly $\beta_1(H) = -n + \sum_{i=1}^n \deg(v_i)$.
- Hence for each S, we can enumerate the number of graphs keeping track of their total out-degree.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Example of $r_S(x)$ from one set $S = \{2\}$ when $n = 3$:

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Example of $r_S(x)$ from one set $S = \{2\}$ when $n = 3$:

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

 $r_S(x) = x^5 + 4x^4 + 4x^3$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Figure: The sets of primitive graphs R_S for $n = 3$, as described in the proof of the Lemma.

Formula for Primitive f -vector (cont.)

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final

Specializing to the case of CRY_n :

Formula for Primitive f -vector (cont.)

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

and Final Remarks

Specializing to the case of CRY_n :

Corollary (D. 2024)

Let $f^{(n)}(x)$ be the primitive f-vector of CRY_n written as a polynomial. Then for all $n > 1$:

$$
\widetilde{f}^{(n)}(x) = \frac{1}{x^n} \sum_{m=0}^{n-1} (-1)^m \pi_{n-m}(x)
$$

$$
\cdot h_m((x+1)^1 - 1, (x+1)^2 - 1, \dots, (x+1)^{n-m} - 1)
$$

where $\pi_n(x) := x^n[n]_{x+1}! = \prod_{i=1}^n ((x+1)^i - 1)$ and where h_k is a complete homogeneous symmetric polynomial.

Main Result

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

> William T. Dugan

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

and Final

Theorem (D. 2024)

Given a netflow vector $(\mathbf{a}, -\sum_{i=1}^{n} a_i) = (a_1, \ldots a_n, -\sum_{i=1}^{n} a_i)$ with $a_i \in \mathbb{N}$, let α be the integer composition of n given by α = revcomp(a). Then the f-vector of **Flow**_n(a) written as a Laurent polynomial is given by:

$$
f(\mathbf{a};x)=\frac{1}{x}+\frac{1}{x^n}\sum_{\beta\succeq\alpha}(-1)^{\ell(\alpha)-\ell(\beta)}\pi_{\ell(\beta)}(x)\mathbf{x}^{\beta-1}|_{x_i=(x+1)^i-(x+1)}
$$

where $\pi_n(x) := x^n[n]_{x+1}! = \prod_{i=1}^n ((x+1)^i - 1)$.

f-vector of CRY_n

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final

Corollary (D. 2024)

Let $f^{(n)}(x)$ be the f-vector of $CRY_n = \text{Flow}_n(1,0,\ldots,0)$ written as a Laurent polynomial. Then for all $n > 1$:

$$
f^{(n)}(x) = \frac{1}{x} + \frac{1}{x^n} \sum_{m=0}^{n-2} (-1)^m (1+x)^m \pi_{n-m}(x)
$$

• $h_m((x+1)^1 - 1, (x+1)^2 - 1, ..., (x+1)^{n-m-1} - 1).$

f-vector of CRY_n

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

and Final Remarks

Corollary (D. 2024)

Let $f^{(n)}(x)$ be the f-vector of $CRY_n = \text{Flow}_n(1,0,\ldots,0)$ written as a Laurent polynomial. Then for all $n > 1$:

$$
f^{(n)}(x) = \frac{1}{x} + \frac{1}{x^n} \sum_{m=0}^{n-2} (-1)^m (1+x)^m \pi_{n-m}(x)
$$

• $h_m((x+1)^1 - 1, (x+1)^2 - 1, ..., (x+1)^{n-m-1} - 1).$

We recover Andresen–Kjeldsen's result by setting $x = 1$: $|\Omega_n| = \sum_{m=0}^{n-2} (-2)^m \pi_{n-m} \cdot h_m(2^1 - 1, 2^2 - 1, \dots, 2^{n-m-1} - 1)$ $m=0$

f-vector of CRY_n

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

[Comments on](#page-91-0) and Final Remarks

Corollary (D. 2024)

Let $f^{(n)}(x)$ be the f-vector of $CRY_n = \text{Flow}_n(1,0,\ldots,0)$ written as a Laurent polynomial. Then for all $n > 1$:

$$
f^{(n)}(x) = \frac{1}{x} + \frac{1}{x^n} \sum_{m=0}^{n-2} (-1)^m (1+x)^m \pi_{n-m}(x)
$$

• $h_m((x+1)^1 - 1, (x+1)^2 - 1, ..., (x+1)^{n-m-1} - 1).$

- We recover Andresen–Kjeldsen's result by setting $x = 1$: $|\Omega_n| = \sum_{m=0}^{n-2} (-2)^m \pi_{n-m} \cdot h_m(2^1 - 1, 2^2 - 1, \dots, 2^{n-m-1} - 1)$ $m=0$
- We also recover $f(1; x) = [n]_{x+1}!$ as was proven for the Tesler polytope. $36 / 43$

Primitive faces \longleftrightarrow primitive Fishburn matrices

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

- \blacksquare A Fishburn matrix is an upper-triangular matrix with natural number entries such that no column nor row is the zero vector (**primitive** if using only entries in $\{0, 1\}$).
- There is a bijection between primitive faces of CRY and primitive Fishburn matrices:

Figure: The correspondence between elements of Ω_n' and primitive Fishburn matrices.

A generating function

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

and Final

Theorem (D. 2024)

The number of d-dimensional faces of CRY_n is given by the coefficient $f_d^{(n)} = [t^n x^d] F(t, x)$, where $F(t, x)$ is defined by:

$$
F(t,x):=\frac{1}{x-xt}+\sum_{n=0}^{\infty}t^nx^{-n}\prod_{i=1}^n\frac{(1+x)^i-1}{1+((1+x)^i-1-x)tx^{-1}}.
$$

A generating function

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

> William T. Dugan

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

and Final Remarks

Theorem (D. 2024)

The number of d-dimensional faces of CRY_n is given by the coefficient $f_d^{(n)} = [t^n x^d] F(t, x)$, where $F(t, x)$ is defined by:

$$
F(t,x):=\frac{1}{x-xt}+\sum_{n=0}^{\infty}t^nx^{-n}\prod_{i=1}^n\frac{(1+x)^i-1}{1+((1+x)^i-1-x)tx^{-1}}.
$$

 \blacksquare $F(t, x)$ may be obtained using the results above, or by a careful evaluation of a multivariate formula counting Fishburn matrices due to Jelínek (2011).

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

Section 4

[Comments on Face Lattice and Final](#page-91-0) [Remarks](#page-91-0)

Another relationship between $f(x)$ and $f(x)$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

Theorem (D. 2024)

For all $n > 1$, the f-vector and primitive f-vector of CRY_n are related as:

$$
x \cdot f^{(n)}(x) = (1+x)^{n-1} \tilde{f}^{(n)}(x).
$$
 (5)

where the **primitive** f-**vector**, $f^{(n)}(x)$, enumerates subgraphs having all vertices v_1, \ldots, v_{n+1} in a single connected component.

Another relationship between $f(x)$ and $f(x)$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

Theorem (D. 2024)

For all $n > 1$, the f-vector and primitive f-vector of CRY_n are related as:

$$
x \cdot f^{(n)}(x) = (1+x)^{n-1} \tilde{f}^{(n)}(x).
$$
 (5)

where the **primitive** f-**vector**, $f^{(n)}(x)$, enumerates subgraphs having all vertices v_1, \ldots, v_{n+1} in a single connected component.

We believe this formula may lead to an understanding of the face lattice of CRY_n , which is current work in progress.

Another relationship between $f(x)$ and $f(x)$

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Polytopes](#page-7-0)

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

Theorem (D. 2024)

For all $n > 1$, the f-vector and primitive f-vector of CRY_n are related as:

$$
x \cdot f^{(n)}(x) = (1+x)^{n-1} \tilde{f}^{(n)}(x).
$$
 (5)

where the **primitive** f-**vector**, $f^{(n)}(x)$, enumerates subgraphs having all vertices v_1, \ldots, v_{n+1} in a single connected component.

- We believe this formula may lead to an understanding of the face lattice of CRY_n , which is current work in progress.
- We are also now working to extend our results to various families of subgraphs of K_{n+1} .

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

1 Find a combinatorial proof of the previous theorem.

Open Problems

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

- **1** Find a combinatorial proof of the previous theorem.
- 2 Does the expression as a (quasi-)symmetric polynomial before evaluating have some deeper meaning/correspond to some other combinatorial object? If so, what is this object? What do other evaluations mean?

Open Problems

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T. Dugan

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

- **1** Find a combinatorial proof of the previous theorem.
- 2 Does the expression as a (quasi-)symmetric polynomial before evaluating have some deeper meaning/correspond to some other combinatorial object? If so, what is this object? What do other evaluations mean?
- 3 Use the techniques in this talk (especially primitive f -vectors) to compute the f -vectors of other flow polytopes.

Selected References

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

William T.

Flow [Polytopes](#page-7-0)

[Faces of Flow](#page-32-0) Polytopes

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

Andresen, E. and Kjeldsen, K. (1976).

On certain subgraphs of a complete transitively directed graph.

Discrete Mathematics, 14(2):103–119.

Dugan, W. T. (2024).

On the f-vectors of flow polytopes for the complete graph. arXiv preprint arXiv:2409.15519.

靠 Gallo, G. and Sodini, C. (1978). Extreme points and adjacency relationship in the flow polytope. Calcolo, 15(3):277–288.

Hille, L. (2003).

Quivers, cones and polytopes.

Linear Algebra and its Applications, 365:215–237.

On the f -vector of [flow polytopes](#page-0-0) for complete graphs

Flow

[Faces of Flow](#page-32-0)

[Main Results](#page-40-0)

[Comments on](#page-91-0) Face Lattice and Final Remarks

Thank You!