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Motivation

The Chan-Robbins-Yuen polytope (CRYn) of order n is
defined as the convex hull of n-by-n permutation matrices
π for which πi ,j = 0 for j ≥ i + 2.

CRYn has normalized volume equal to the product of the
first n − 2 Catalan numbers (Zeilberger, 1998)

Face of the Birkhoff polytope of doubly stochastic
matrices having dimension

(n
2

)
and 2n−1 vertices.

CRYn is also an example of a flow polytope over the
complete graph...

3 / 43



On the
f -vector of

flow polytopes
for complete

graphs

William T.
Dugan

Flow
Polytopes

Faces of Flow
Polytopes

Main Results

Comments on
Face Lattice
and Final
Remarks

Motivation

The Chan-Robbins-Yuen polytope (CRYn) of order n is
defined as the convex hull of n-by-n permutation matrices
π for which πi ,j = 0 for j ≥ i + 2.

CRYn has normalized volume equal to the product of the
first n − 2 Catalan numbers (Zeilberger, 1998)

Face of the Birkhoff polytope of doubly stochastic
matrices having dimension

(n
2

)
and 2n−1 vertices.

CRYn is also an example of a flow polytope over the
complete graph...

3 / 43



On the
f -vector of

flow polytopes
for complete

graphs

William T.
Dugan

Flow
Polytopes

Faces of Flow
Polytopes

Main Results

Comments on
Face Lattice
and Final
Remarks

Motivation

The Chan-Robbins-Yuen polytope (CRYn) of order n is
defined as the convex hull of n-by-n permutation matrices
π for which πi ,j = 0 for j ≥ i + 2.

CRYn has normalized volume equal to the product of the
first n − 2 Catalan numbers (Zeilberger, 1998)

Face of the Birkhoff polytope of doubly stochastic
matrices having dimension

(n
2

)
and 2n−1 vertices.

CRYn is also an example of a flow polytope over the
complete graph...

3 / 43



On the
f -vector of

flow polytopes
for complete

graphs

William T.
Dugan

Flow
Polytopes

Faces of Flow
Polytopes

Main Results

Comments on
Face Lattice
and Final
Remarks

Motivation

The Chan-Robbins-Yuen polytope (CRYn) of order n is
defined as the convex hull of n-by-n permutation matrices
π for which πi ,j = 0 for j ≥ i + 2.

CRYn has normalized volume equal to the product of the
first n − 2 Catalan numbers (Zeilberger, 1998)

Face of the Birkhoff polytope of doubly stochastic
matrices having dimension

(n
2

)
and 2n−1 vertices.

CRYn is also an example of a flow polytope over the
complete graph...

3 / 43



On the
f -vector of

flow polytopes
for complete

graphs

William T.
Dugan

Flow
Polytopes

Faces of Flow
Polytopes

Main Results

Comments on
Face Lattice
and Final
Remarks

Motivation

The Chan-Robbins-Yuen polytope (CRYn) of order n is
defined as the convex hull of n-by-n permutation matrices
π for which πi ,j = 0 for j ≥ i + 2.

CRYn has normalized volume equal to the product of the
first n − 2 Catalan numbers (Zeilberger, 1998)

Face of the Birkhoff polytope of doubly stochastic
matrices having dimension

(n
2

)
and 2n−1 vertices.

CRYn is also an example of a flow polytope over the
complete graph...

3 / 43



On the
f -vector of

flow polytopes
for complete

graphs

William T.
Dugan

Flow
Polytopes

Faces of Flow
Polytopes

Main Results

Comments on
Face Lattice
and Final
Remarks

Section 1

Flow Polytopes

4 / 43



On the
f -vector of

flow polytopes
for complete

graphs

William T.
Dugan

Flow
Polytopes

Faces of Flow
Polytopes

Main Results

Comments on
Face Lattice
and Final
Remarks

Integral (Convex) Polytopes

Definition

A compact subset P ⊆ Rn is a convex polytope if P can be
written as

1 the intersection of finitely many half spaces, or

2 the convex hull of finitely many vertices
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f -vectors

The f -polynomial (or f -vector) of a polytope P is

fP(x) =
n∑

i=−1

|{faces of dim i}|xdim i .

fP(x) = 1
x + 3 + 3x1 + x2.
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Flow Polytopes

G = (V ,E ) be a directed, acyclic graph on the vertex set
V = [n + 1] = {1, . . . , n + 1}.

a = (a1, . . . , an,−
∑n

i=1 ai ) with each ai ∈ Z be a netflow
vector

Flow polytope:

FG (a) := {flows f : E → R≥0 | net flow vertex i is ai}
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The polytope Flown(a)

We can study families of flow polytopes by looking at
families of graphs.

Definition

A flow polytope of the (transitively directed) complete graph
Kn+1 having netflow vector (a,−

∑
ai ) is denoted Flown(a).

Figure: The complete graph K4 and the hyperplanes bounding
Flow3(a1, a2, a3)
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An Abridged History of Flown(a)

CRYn is realized as an instance of Flown(a) by setting
a = (1, 0, . . . , 0).

The case of all ai > 0, such as a = (1, 1, . . . , 1), is
combinatorially equivalent to a product of simplices
∆n ×∆n−1 × . . .×∆1 (Mészáros–Morales–Rhoades,
2015).

The f -vector for other cases is harder to compute.

Flown(1, 1, . . . , 1) is simple, whereas general instances of
Flown(a) (including the case of CRYn) are not.
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Main Goal

Main Goal:

To compute the f -vector of Flown(a) for arbitrary
(nonnegative) a ∈ Nn.
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Some Data

n f -vector of CRYn

1 1, 1
2 1, 2, 1
3 1, 4, 6, 4, 1
4 1, 8, 26, 45, 45, 26, 8, 1
5 1, 16, 98, 327, 681, 944, 897, 588, 262, 76, 13, 1
6 1, 32, 342, 1943, 6982, 17326, 31236, 42198, 43521, 34601,

21249, 10020, 3571, 933, 169, 19, 1
7 1, 64, 1138, 10275, 58093, 228396, 664200, 1486921,

2633161, 3759650, 4386239, 4218971, 3363558, 2227042,
1222927, 554147, 205256, 61206, 14351, 2550, 323, 26, 1

Table: The first few f -vectors of CRYn.
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Section 2

Faces of Flow Polytopes
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Faces of FG (a) as subgraphs of G

One particularly powerful use of flow polytopes arises from
the following theorem:

Theorem (Hille 2003; Gallo–Sodini 1978)

The d-dimensional faces of FG (a) correspond to subgraphs H
of G that have 1st Betti number (|E |−|V |+c) equal to d
and which are the support of an a-valid flow, where c is the
number of connected components of H.
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Example of Faces as Subgraphs
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Example (cont.)
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Example (cont.)

However, other subgraphs do not correspond to faces as
they are not (1, 0,−1)-valid (i.e. their edges are not the
support of some flow).
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Main Results
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Andresen–Kjeldsen

Faces of CRYn correspond to graphs in the following set:

Ωn := {H ⊆ Kn+1 | every v ∈ V (H) lies along

a direct path from v1 to vn+1}
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Primitive Subgraphs

Andresen and Kjeldsen computed |Ωn| by first
enumerating the set of primitive subgraphs:

Ω′n := {H ∈ Ωn |V (H) = {v1, . . . , vn+1},
and single connected component}.

This definition works for more general a as well!
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Primitive f -vector

From Hille’s theorem, the f -polynomial of a flow polytope
is a generating function over the set of a-valid subgraphs
which keeps track of first Betti number.

Definition

The primitive f -vector of Flown(a), denoted f̃ (n)(a) (or as
f̃ (n)(a; x) if written as a polynomial) is a generating function
over the set of a-valid subgraphs of Kn+1 that are primitive (use
the entire vertex set) keeping track of the first Betti number.
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Some more data

n f̃ of CRYn

1 0, 1
2 0, 1, 1
3 0, 1, 4, 4, 1
4 0, 1, 11, 33, 42, 26, 8, 1
5 0, 1, 26, 171, 507, 840, 865, 584, 262, 76, 13, 1
6 0, 1, 57, 718, 4017, 12866, 26831, 39268, 42211, 34221, 21184,

10015, 3571, 933, 169, 19, 1
7 0, 1, 120, 2682, 25531, 138080, 490079, 1242533, 2375965,

3553184, 4258940, 4158866, 3342132, 2221444, 1221913,
554033, 205250, 61206, 14351, 2550, 323, 26, 1

Table: The first few primitive f -vectors of CRYn.

21 / 43



On the
f -vector of

flow polytopes
for complete

graphs

William T.
Dugan

Flow
Polytopes

Faces of Flow
Polytopes

Main Results

Comments on
Face Lattice
and Final
Remarks

f -vectors and primitive f -vectors

Figure: The elements of Ω3 grouped by first Betti number,
corresponding to the f -vector (1, 4, 6, 4, 1) of CRY3. The primitive
f -vector is (0, 1, 4, 4, 1).
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Obtaining f -vector from primitive f -vector

Lemma (D. 2024)

For all n ∈ N and non-negative a of length n:

f (n)(a; x) =
1

x
+
∑
b�a

ka,bf̃
(`(b))(b; x) (1)

where b � a if b can be obtained from a by deleting some
subset of the zeros in a, `(b) is the length of b and where ka,b

is the number of ways of deleting 0’s from a to obtain b..

f (6)(1, 0, 0, 1, 1, 0; x) =
1

x
+ f̃ (6)(1, 0, 0, 1, 1, 0; x)

+ 2f̃ (5)(1, 0, 1, 1, 0; x) + f̃ (5)(1, 0, 0, 1, 1; x)

+ f̃ (4)(1, 1, 1, 0; x) + 2f̃ (4)(1, 0, 1, 1; x) + f̃ (3)(1, 1, 1; x)
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Proof of Lemma

The set of graphs of all faces surjects on to the set of
those that are primitive by restricting to the support of the
netflow vector.
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The Reverse Composition

Every non-negative netflow vector a determines an integer
composition revcomp(a) as follows.

1 Read the entries of a from right to left
2 Inductively create a block whenever a new nonzero entry is

encountered
3 Return the tuple of sizes coming from the list of blocks

Example

If a = (1, 1, 0, 0, 1, 0, 1, 0), we get blocks (0, 1), (0, 1), (0, 0, 1),
and (1). Hence revcomp(a) = (2, 2, 3, 1).
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Connection to Quasisymmetric Polynomials

Formulas for the f -vectors will rely on evaluations of a
special polynomial.

Definition (D. 2024)

For α an integer composition of n with `(α) parts,

Pα(x1, . . . , xn) :=
∑
β�α

(−1)`(β)−`(α)xβ (2)

where xβ := xβ1
1 · · · x

β`(β)

`(β) , and where the relation � is the
standard relation of reverse refinement on compositions.

Similar to the change-of-basis formula for writing a
monomial quasisymmetric function in terms of Gessel’s
fundamental quasisymmetric functions.
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Reverse Refinement Composition Poset
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Formula for Primitive f -vector

Lemma (D. 2024)

For all n ∈ N and non-negative a of length n, let α be the
composition of n given by α = revcomp(a). Then the primitive
f -vector of Flown(a) written as a polynomial is given by:

f̃ (n)(a; x) =
1

xn
Pα(x , (x + 1)2 − 1, . . . , (x + 1)n − 1) (3)
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Proof Sketch 1

Associate to T ⊆ {v2, . . . vn} its indicator set ST ⊆ [n− 1]
in the canonical way (namely i ∈ ST if and only if
vi+1 ∈ T ).

For each such S , define RS to be the set of primitive
subgraphs of Kn+1 such that:

1 outdeg(vi ) > 0 for all i ∈ [n], where outdeg is the
out-degree of the vertex vi , and

2 i ∈ Sc implies indeg(vi+1) = 0, where indeg(vi+1) is the
in-degree of vertex vi+1.

In other words, RS is the set of primitive subgraphs of
Kn+1 for which all vertices have nonzero out-degree and
for which S keeps track of vertices (indices shifted by 1)
which are allowed to have non-zero in-degree.
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Example of RS

Figure: An example of RS when n = 3 and S = {1}

30 / 43



On the
f -vector of

flow polytopes
for complete

graphs

William T.
Dugan

Flow
Polytopes

Faces of Flow
Polytopes

Main Results

Comments on
Face Lattice
and Final
Remarks

Proof Sketch 2

We can use inclusion-exclusion on these nested sets of
graphs:

|Prima|=
∑

S∈[supp(a′),[n−1]]

(−1)|S |+n+1|RS |, (4)

We want to keep track of Betti number to get f̃ .

For primitive graph H with n vertices, first-Betti number is
exactly β1(H) = −n +

∑n
i=1 deg(vi ).

Hence for each S , we can enumerate the number of graphs
keeping track of their total out-degree.
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Proof Sketch 3

Example of rS(x) from one set S = {2} when n = 3:

In general, rS(x) =
∏`(αS )

xi
(x + 1)αi − 1 = xαS |xi=(x+1)i−1.
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Proof Sketch 4

Figure: The sets of primitive graphs RS for n = 3, as described in the
proof of the Lemma.
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Formula for Primitive f -vector (cont.)

Specializing to the case of CRYn:

Corollary (D. 2024)

Let f̃ (n)(x) be the primitive f -vector of CRYn written as a
polynomial. Then for all n ≥ 1:

f̃ (n)(x) =
1

xn

n−1∑
m=0

(−1)mπn−m(x)

· hm((x + 1)1 − 1, (x + 1)2 − 1, . . . , (x + 1)n−m − 1)

where πn(x) := xn[n]x+1! =
∏n

i=1((x + 1)i − 1) and where hk
is a complete homogeneous symmetric polynomial.
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Main Result

Theorem (D. 2024)

Given a netflow vector (a,−
∑n

i=1 ai ) = (a1, . . . an,−
∑n

i=1 ai )
with ai ∈ N, let α be the integer composition of n given by
α = revcomp(a). Then the f -vector of Flown(a) written as a
Laurent polynomial is given by:

f (a; x) =
1

x
+

1

xn

∑
β�α

(−1)`(α)−`(β)π`(β)(x)xβ−1|xi=(x+1)i−(x+1)

where πn(x) := xn[n]x+1! =
∏n

i=1((x + 1)i − 1).
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f -vector of CRYn

Corollary (D. 2024)

Let f (n)(x) be the f -vector of CRYn = Flown(1, 0, . . . , 0)
written as a Laurent polynomial. Then for all n ≥ 1:

f (n)(x) =
1

x
+

1

xn

n−2∑
m=0

(−1)m(1 + x)mπn−m(x)

· hm((x + 1)1 − 1, (x + 1)2 − 1, . . . , (x + 1)n−m−1 − 1).

We recover Andresen–Kjeldsen’s result by setting x = 1:

|Ωn|=
n−2∑
m=0

(−2)mπn−m · hm(21− 1, 22− 1, . . . , 2n−m−1− 1)

We also recover f (1; x) = [n]x+1! as was proven for the
Tesler polytope.
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Primitive faces ←→ primitive Fishburn matrices

A Fishburn matrix is an upper-triangular matrix with
natural number entries such that no column nor row is the
zero vector (primitive if using only entries in {0, 1}).

There is a bijection between primitive faces of CRY and
primitive Fishburn matrices:

Figure: The correspondence between elements of Ω′
n and primitive

Fishburn matrices.
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A generating function

Theorem (D. 2024)

The number of d-dimensional faces of CRYn is given by the

coefficient f
(n)
d = [tnxd ]F (t, x), where F (t, x) is defined by:

F (t, x) :=
1

x − xt
+
∞∑
n=0

tnx−n
n∏

i=1

(1 + x)i − 1

1 + ((1 + x)i − 1− x)tx−1
.

F (t, x) may be obtained using the results above, or by a
careful evaluation of a multivariate formula counting
Fishburn matrices due to Jeĺınek (2011).
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Section 4

Comments on Face Lattice and Final
Remarks
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Another relationship between f (x) and f̃ (x)

Theorem (D. 2024)

For all n ≥ 1, the f -vector and primitive f -vector of CRYn are
related as:

x · f (n)(x) = (1 + x)n−1f̃ (n)(x). (5)

where the primitive f -vector, f̃ (n)(x), enumerates subgraphs
having all vertices v1, . . . , vn+1 in a single connected
component.

We believe this formula may lead to an understanding of
the face lattice of CRYn, which is current work in progress.

We are also now working to extend our results to various
families of subgraphs of Kn+1.
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Open Problems

1 Find a combinatorial proof of the previous theorem.

2 Does the expression as a (quasi-)symmetric polynomial
before evaluating have some deeper meaning/correspond
to some other combinatorial object? If so, what is this
object? What do other evaluations mean?

3 Use the techniques in this talk (especially primitive
f -vectors) to compute the f -vectors of other flow
polytopes.
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Thank You!
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