Colored Schur-like bases and generalizations of the symmetric functions

Spencer Daugherty

NC STATE UNIVERSITY

MSU C> Seminar - April 3rd, 2024

Outline

Introduction

- Sym, QSym, and NSym
- Schur-like bases
- NSym_A and QSym_A

Colored generalizations of Schur-like bases

- Colored tableaux and bases of QSym_A
- Properties of Schur-like bases of NSym_A

Colored generalizations of Sym

- PSym_A and Sym_A
- Colored Schur and dual Schur functions

INTRODUCTION

The Basics

Partition: $\lambda = (\lambda_1, ..., \lambda_\ell) \vdash n \text{ if } \lambda_1 \ge \lambda_2 \ge ... \lambda_\ell \text{ and } \sum \lambda_i = n.$ **Composition**: $\alpha = (\alpha_1, ..., \alpha_\ell) \models n \text{ if } \sum \alpha_i = n.$

Example

(5,3,2) is a partition of 10, and (1,2,4,3) is a composition of 10.

A symmetric function f(x) is a formal power series such that

$$f(x_{\omega(1)}, x_{\omega(2),\dots}) = f(x_1, x_2, \dots)$$

for any permutation ω of \mathbb{N} .

Example

$$f = x_1 x_2^2 + x_1 x_3^2 + \ldots + x_2 x_1^2 + x_2 x_3^2 + \ldots + x_3 x_1^2 + x_3 x_2^2 + x_3 x_4^2 + \ldots$$

Complete homogeneous basis:

$$h_n = \sum_{i_1 \leq \cdots \leq i_n} x_{i_1} \cdots x_{i_n} \qquad h_\lambda = h_{\lambda_1} \cdots h_{\lambda_k}$$

A quasisymmetric function f(x) is a formal power series where the coefficients of monomials $x_{i_1}^{a_1} \dots x_{i_k}^{a_k}$ and $x_{j_1}^{a_1} \dots x_{j_k}^{a_k}$ are equal if $i_1 < \dots < i_k$ and $j_1 < \dots < j_k$.

Example

$$f = x_1 x_2^2 + x_1 x_3^2 + x_1 x_4^2 + \dots x_2 x_3^2 + x_2 x_4^2 + \dots x_3 x_4^2 + \dots$$

The ring of quasisymmetric functions is written *QSym*. The monomial basis:

$$M_{\alpha} = \sum_{i_1 < \ldots < i_k} x_{i_1}^{\alpha_1} \cdots , x_{i_k}^{\alpha_k}$$

The Non-commutative Symmetric Functions

The ring of non-commutative symmetric functions, written NSym, is defined on noncommutative generators H_1, H_2, \ldots as

 $NSym = \mathbb{Q} \langle H_1, H_2, \cdots \rangle.$

For a composition α , the complete homogeneous non-commutative symmetric function is defined $H_{\alpha} = H_{\alpha_1} \cdots H_{\alpha_{\ell(\alpha)}}$.

Definition

The forgetful map $\chi: NSym \to Sym$ maps complete homogeneous non-commutative symmetric functions to complete homogeneous symmetric functions

$$\chi(H_{\alpha}) = h_{\alpha_1}h_{\alpha_2}\cdots h_{\alpha_{\ell(\alpha)}} = h_{sort(\alpha)} \in Sym.$$

The Symmetric Functions and their Generalizations

Symmetric functions are generalized by **noncommutative symmetric functions** (NSym) and **quasisymmetric functions** (QSym). All three admit a **Hopf algebra** structure.

$$Sym = \mathbb{Q}[h_n : n \in \mathbb{N}]$$
 where $h_m h_n = h_n h_m$
 $NSym = \mathbb{Q}\langle H_n : n \in \mathbb{N} \rangle$ where $H_m H_n \neq H_n H_m$

NSym _____ QSym

bases indexed by compositions

bases indexed by partitions

The forgetful map $\chi : NSym \to Sym$ is defined as $\chi(H_n) = h_n$. The map $i : Sym \to QSym$ is the inclusion of Sym into QSym.

Definition

A semistandard Young tableau (SSYT) of shape $\lambda \vdash n$ is a filling of the diagram of λ with positive integers such that the numbers are weakly increasing in rows and strictly increasing in columns.

The monomial x^T corresponding with the SSYT to the right is $x_1x_2^2x_3$.

T =	1	2
	2	3

Definition

The Schur symmetric functions are defined as

$$s_{\lambda} = \sum_{T} x^{T},$$

where the sum runs over all semistandard Young tableaux T of shape λ with entries in $\mathbb{Z}_{>0}$.

$$s_{(2,2)} = x_1^2 x_2^2 + x_1^2 x_2 x_3 + x_1^2 x_3^2 + x_1 x_2^2 x_3 + \cdots$$

A basis $\{S_{\alpha}\}_{\alpha}$ of *NSym* is **Schur-like** if $\chi(S_{\lambda}) = s_{\lambda}$.

The dual basis $\{S^*_{\alpha}\}_{\alpha}$ in *QSym* is also considered Schur-like, and is usually defined via tableaux that generalize SSYT.

Primary Schur-like Bases

Immaculate $\{\mathfrak{S}_{\alpha}\}_{\alpha}$ and dual immaculate $\{\mathfrak{S}_{\alpha}^*\}_{\alpha}$

Shin $\{\mathbf{v}_{\alpha}\}_{\alpha}$ and extended Schur $\{\mathbf{v}_{\alpha}^*\}_{\alpha}$

Young noncommutative Schur $\{\hat{s}_{\alpha}\}_{\alpha}$ and Young quasisymmetric Schur $\{\hat{s}_{\alpha}^*\}$

Dual immaculate:

weakly increasing rows, strictly increasing first column

Extended Schur (dual shin):

weakly increasing rows, strictly increasing columns

Young quasisymmetric Schur:

weakly increasing rows, strictly increasing first column, triple rule

Immaculate

Shin

1	1	4					
2	3	3	5				
SSYCT							

Dual immaculate: If $\ell(\lambda) = k$,

$$s_{\lambda} = \sum_{\sigma \in \mathcal{S}_k} (-1)^{\sigma} \mathfrak{S}^*_{\lambda_{\sigma_1+1-\sigma_1},...,\lambda_{\sigma_k}+k-\sigma_k}$$

where the sum runs over σ such that $\lambda_{\sigma_i} + i - \sigma_i > 0$.

Young quasisymmetric Schur: $s_{\lambda} = \sum_{sort(\alpha)=\lambda} \hat{s}^*_{\alpha}$

Extended Schur: $s_{\lambda} = \boldsymbol{u}_{\lambda}^*$

Let $A = \{a_1, \ldots a_m\}$ be a finite alphabet of *colors*.

Word: a finite string of colors from A

Sentence: a finite sequence of words

Example

Let $A = \{a, b, c\}$. The sentence (*aba*, *cc*, *bcab*) is composed of the words *aba*, *cc*, and *bcab*.

If A contains only one color, sentences are in bijection with compositions. For example, $(aaa, a, aa) \leftrightarrow (3, 1, 2)$.

Consider partially commutative variables $x_{a_i,j}$ for $a_i \in A$ and $j \in \mathbb{N}$.

The Symmetric Functions and their Generalizations

 $Sym = \mathbb{Q}[h_n : n \in \mathbb{N}] \quad \text{where} \quad h_m h_n = h_n h_m$ $NSym = \mathbb{Q}\langle H_n : n \in \mathbb{N} \rangle \quad \text{where} \quad H_m H_n \neq H_n H_m$ $NSym_A = \mathbb{Q}\langle H_w : \text{ words } w \rangle \quad \text{where} \quad H_w H_v \neq H_v H_w$

COLORED GENERALIZATIONS OF SCHUR-LIKE BASES

Colored diagrams:

$$(ab, bca) \longrightarrow egin{array}{c|c} a & b \\ \hline b & c & a \end{array}$$

Definition

Colored tableaux of shape *I* are colored diagrams of *I* filled with positive integers.

a, 1	<i>b</i> ,1		a, 1	<i>b</i> , 2		a, 1	<i>b</i> , 3		a, 1	<i>b</i> , 4	
<i>b</i> ,2	<i>c</i> ,2	<i>a</i> , 2	<i>b</i> , 2	<i>c</i> ,2	<i>a</i> ,2	<i>b</i> , 2	<i>c</i> ,2	<i>a</i> ,4	<i>b</i> , 2	<i>c</i> ,2	<i>a</i> , 3

Definition

The **type** of a colored tableau is a sentence $C = (u_1, ..., u_g)$ where u_i lists the colors in boxes filled with *i*'s in a particular order.

For a colored tableau T of type (u_1, u_2, \cdots, u_g) , we say that

$$x_T = x_{u_1,1} x_{u_2,2} \cdots x_{u_g,g}$$

Example

The type of this colored immaculate tableau is	a, 1	<i>b</i> ,2	
(a, cb, b) which corresponds to $x_{a,1}x_{cb,2}x_{b,3}$	<i>c</i> ,2	<i>b</i> ,3	

Definition

The colored dual immaculate functions, the colored extended Schur functions, and the colored Young quasisymmetric Schur functions are defined by

$$\mathfrak{S}_J^* = \sum_T x_T, \qquad \mathfrak{U}_J^* = \sum_T x_T, \qquad ext{and} \qquad \hat{\mathbf{s}}_J^* = \sum_T x_T,$$

where the sums run over colored immaculate tableaux T of shape J, colored shin tableaux T of shape J, and colored Young composition tableaux T of shape J, respectively.

Other results on the colored Schur-like bases in QSym_A include:

- Expansions into the colored monomial basis
- Expansions into the colored fundamental basis
- Definition of skew functions
- Posets, inverse expansions, and comultiplication

Each of the three colored Schur-like bases in $NSym_A$ is defined differently, either using creation operators, a Pieri rule, or duality.

Results on these bases include:

- Expansions to and from bases
- Pieri rules
- Structure coefficients
- Multiplicative properties

Definition

The colored non-commutative Bernstein operator \mathbb{B}_w is defined as

$$\mathbb{B}_{w} = \sum_{u} \sum_{Q} (-1)^{i} H_{w \cdot u} (\sum_{Q \leq S} M_{S}^{\perp}),$$

where the sum runs over all $Q = (q_1, ..., q_i)$ such that $q_i \cdots q_2 q_1 = u$.

Example

 $\mathbb{B}_{abc}(H_{def}) = H_{abc,def} - H_{abcf,de} + H_{abcfe,d} - H_{abcef,d} - H_{abcdef} + H_{abcefd} + H_{abcfde} - H_{abcfed}$

Colored Immaculate Functions

Definition

For sentence $J = (v_1, ..., v_h)$, we define the **colored immaculate** function as

$$\mathfrak{S}_J = \mathbb{B}_{\nu_1} \mathbb{B}_{\nu_2} ... \mathbb{B}_{\nu_h}(1).$$

Equivalently, we have

$$\mathfrak{S}_{(v_1,v_2,\ldots,v_h)} = \mathbb{B}_{v_1}(\mathfrak{S}_{(v_2,\ldots,v_h)}).$$

Example

$$\mathfrak{S}_{(abc,def)} = \mathbb{B}_{abc}(\mathfrak{S}_{def}) = \mathbb{B}_{abc}(H_{def}) = H_{abc,def} - H_{abcf,de} + H_{abcfe,d} - H_{abcef,d} - H_{abcdef} + H_{abcefd} + H_{abcfde} - H_{abcfed}$$

The Colored Immaculate Descent Graph

Definition

The **colored immaculate descent graph** \mathfrak{D}_A^n is the directed graph whose vertices are sentences of size *n* in alphabet *A* and there is an edge from *I* to *J* (weighted with $L_{I,J}$) if there exists a standard colored immaculate tableau of shape *I* with colored descent composition *J*.

Example

Corollary [D. 2023]

For a sentence J,

$$\mathfrak{S}_J = \sum_I b_{I,J} R_I,$$

where the sum runs over all sentences I and

$$b_{I,J} = \sum_{\mathcal{P}} (-1)^{k-1} L_{(J_1,J_2)} L_{(J_2,J_3)} \cdots L_{(J_{k-1},J_k)},$$

where the sum runs over all paths $\mathcal{P} = \{J = J_k \leftarrow J_{k-1} \leftarrow \ldots \leftarrow J_2 \leftarrow J_1 = I\}$ from I to J in $\mathfrak{D}_A^{|J|}$.

Corollary [D. 2023]

For a composition $\beta \models n$ and a partition $\lambda \vdash n$,

$$\mathfrak{S}_{eta} = \sum_{lpha \models n} L_{lpha,eta}^{-1} R_{lpha} \qquad ext{with} \qquad L_{lpha,eta}^{-1} = \sum_{\mathcal{P}} (-1)^{\ell(\mathcal{P}-1)} extsf{prod}(\mathcal{P}),$$

where the sum runs over directed paths \mathcal{P} from α to β in \mathfrak{D}^n , and

$$s_{\lambda} = \sum_{\alpha \models n} L_{\alpha,\lambda}^{-1} r_{\alpha} \quad \text{with} \quad L_{\alpha,\lambda}^{-1} = \sum_{\mathcal{P}} (-1)^{\ell(\mathcal{P}-1)} \operatorname{prod}(\mathcal{P}),$$

where the sum runs over directed paths \mathcal{P} from α to λ in \mathfrak{D}^n .

Colored Shin Functions

We write $J \subset_{u}^{w} I$ if I can be obtained by adding boxes to J such that we do not create a row in I such that the original row in J is shorter than any row in I below it. These added boxes must form the word u when read from left to right, bottom to top.

Definition

The **shin functions** $\{\boldsymbol{w}_l\}_l$ are the unique set of functions satisfying

$$\boldsymbol{w}_{I}H_{w}=\sum_{J\subset_{w}^{\boldsymbol{w}}I}\boldsymbol{w}_{J}.$$

$$I = (abac, cab, b, bc)$$

 $w = acb$

example

non-example

The **colored Young noncommutative Schur functions** are the duals to the colored Young quasisymmetric Schur functions.

Theorem [D. 2024]

Let I be a sentence and w a word. Then,

$$\check{\mathbf{s}}_J H_w = \sum_J \check{\mathbf{s}}_J,$$

where the sum runs over J obtained by adding boxes to the right side of I such that no two boxes are added in the same column and a box can only be added to a row if there is no lower row of the same length. The colors in the new boxes should form the word wwhen read from left to right, bottom to top.

Colored Noncommutative Schur Functions

$$\hat{\mathbf{s}}_{(a,ba,c)}H_{(bc)} = \hat{\mathbf{s}}_{(a,ba,c,bc)} + \hat{\mathbf{s}}_{(a,ba,cbc)} + \hat{\mathbf{s}}_{(a,bac,c,b)} + \hat{\mathbf{s}}_{(a,babc,b)}.$$

COLORED GENERALIZATIONS OF THE SYMMETRIC FUNCTIONS

We introduce two new algebras that complete this picture:

A sentence is called a **p-sentence** if its words are sorted first in decreasing order by length and second lexicographically. Given a sentence I, we write *sort*(I) for the unique associated p-sentence.

Example

P = (aba, bcc, ab, a, c)

 $P = sort(c, bcc, a, ab, aba) = sort(ab, bcc, a, aba, c) = \cdots$

P-sentences are analogous to partitions as sentences are analogous to compositions. When A is an alphabet of size one, p-sentences are in bijection with partitions: $(aaa, aaa, aa) \leftrightarrow (3, 3, 2)$.

Colored Generalizations of Sym: PSymA

Definition

For an alphabet A, the algebra of p-sentences is defined

 $PSym_A = \mathbb{Q}[h_w : words w].$

Compared to Sym, NSym, and NSym_A:

 $Sym = \mathbb{Q}[h_n : n \in \mathbb{N}] \qquad PSym_A = \mathbb{Q}[h_w : words w]$ $NSym = \mathbb{Q}\langle H_n : n \in \mathbb{N} \rangle \qquad NSym_A = \mathbb{Q}\langle H_w : words w \rangle$

 $NSym_A$ maps to $PSym_A$ by the **colored forgetful map**:

 $\chi: NSym_A \rightarrow PSym_A$ defined $\chi(H_I) = h_{sort(I)}$.

Definition

Let Sym_A denote the set of **colored symmetric functions** $f \in \mathbb{Q}[x_A]$ such that for any permutation σ of \mathbb{N} ,

$$f(x_{A,1}, x_{A,2}, \ldots) = f(x_{A,\sigma(1)}, x_{A,\sigma(2)}, \ldots).$$

In other words, if two monomials are associated with the same p-sentence, then they have the same coefficients.

Example

$$f = x_{a,1}x_{bc,2} + x_{bc,1}x_{a,2} + \dots + x_{a,5}x_{bc,7} + x_{bc,5}x_{a,7} + \dots \in Sym_A$$
$$g = x_{a,1}x_{bc,2} + 3x_{bc,1}x_{a,2} + \dots \notin Sym_A$$

Theorem [D. 2024]

 $PSym_A$ and Sym_A are dual Hopf algebras.

Proposition [D. 2024]

If A is an alphabet of size one, then $PSym_A$ and Sym_A are both isomorphic to Sym.

Colored Schur and Dual Schur Functions

For a p-sentence P, the colored dual Schur function is defined as

$$s_P^* = \sum_Q \mathcal{K}_{P,Q} m_Q.$$

where $\mathcal{K}_{P,Q}$ denotes the number of colored semistandard Young tableaux of shape P and type Q.

$$s^{*}_{(abb,ca)} = m_{(abb,ca)} + m_{(ab,cb,a)} + m_{(ab,ca,b)}$$

$$a,1 \ b,1 \ b,1$$

$$c,2 \ a,2$$

$$a,1 \ b,1 \ b,2$$

$$c,2 \ a,3$$

$$a,1 \ b,1 \ b,3$$

$$c,2 \ a,2$$

The **colored Schur functions** $\{s_P\}_P$ are defined as the duals in $PSym_A$ to the colored dual Schur functions in Sym_A .

- Which properties of the Schur functions do the colored Schur and colored dual Schur functions generalize?
- How do the colored Schur and colored dual Schur bases relate to the various colored Schur-like bases of NSym_A and QSym_A?
- What are the commutative images of the colored Schur-like bases? Do any subsets of these images form bases of PSym_A that generalize the Schur functions?

THANK YOU!

- Berg, Bergeron, Saliola, Serrano, Zabrocki. A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions. 2014.
- Campbell, Feldman, Light, Shuldiner, Xu. A Schur-like basis of NSym defined by a Pieri rule. 2014.
- Luoto, Mykytiuk, van Willigenburg. An introduction to quasisymmetric Schur functions. 2013.
- Doliwa. Hopf algebra structure of generalized quasi-symmetric functions in partially commutative variables. 2021.