Colored Schur-like bases and generalizations of the symmetric functions

Spencer Daugherty

NC STATE UNIVERSITY

MSU C> Seminar - April 3rd, 2024

Outline

Introduction

- Sym, QSym, and NSym
- Schur-like bases
- \blacksquare NSym_A and QSym_A

Colored generalizations of Schur-like bases

- Golored tableaux and bases of $QSym_A$
- Properties of Schur-like bases of $MSym_A$

Colored generalizations of Sym

- $PSym_A$ and Sym_A
- Colored Schur and dual Schur functions

INTRODUCTION

The Basics

Partition: $\lambda = (\lambda_1, \ldots, \lambda_\ell) \vdash n$ if $\lambda_1 \geq \lambda_2 \geq \ldots \lambda_\ell$ and $\sum \lambda_i = n$. **Composition:** $\alpha = (\alpha_1, \ldots, \alpha_\ell) \models n$ if $\sum \alpha_i = n$.

Example

 $(5, 3, 2)$ is a partition of 10, and $(1, 2, 4, 3)$ is a composition of 10.

A symmetric function $f(x)$ is a formal power series such that

$$
f(x_{\omega(1)}, x_{\omega(2),...}) = f(x_1, x_2, ...)
$$

for any permutation ω of $\mathbb N$.

Example

$$
f = x_1x_2^2 + x_1x_3^2 + \ldots + x_2x_1^2 + x_2x_3^2 + \ldots + x_3x_1^2 + x_3x_2^2 + x_3x_4^2 + \ldots
$$

Complete homogeneous basis:

$$
h_n = \sum_{i_1 \leq \cdots \leq i_n} x_{i_1} \cdots x_{i_n} \qquad h_\lambda = h_{\lambda_1} \cdots h_{\lambda_k}
$$

A quasisymmetric function $f(x)$ is a formal power series where the coefficients of monomials $x_i^{a_1}$ $\overline{a_1}$ \ldots \overline{x} _{i_k} $x_{i_k}^{a_k}$ and $x_{j_1}^{a_1}$ $x_{j_1}^{a_1} \ldots x_{j_k}^{a_k}$ $j_k^{a_k}$ are equal if $i_1 < \ldots < i_k$ and $i_1 < \ldots < i_k$.

Example

$$
f = x_1x_2^2 + x_1x_3^2 + x_1x_4^2 + \dots x_2x_3^2 + x_2x_4^2 + \dots x_3x_4^2 + \dots
$$

The ring of quasisymmetric functions is written QSym.

The monomial basis:

$$
M_{\alpha} = \sum_{i_1 < \ldots < i_k} x_{i_1}^{\alpha_1} \cdots, x_{i_k}^{\alpha_k}
$$

The Non-commutative Symmetric Functions

The ring of non-commutative symmetric functions, written NSvm. is defined on noncommutative generators H_1, H_2, \ldots as

 $NSym = \mathbb{Q}\langle H_1, H_2, \cdots \rangle$.

For a composition α , the complete homogeneous non-commutative symmetric function is defined $H_{\alpha}=H_{\alpha_1}\cdots H_{\alpha_{\ell(\alpha)}}.$

Definition

The forgetful map $\chi : NSym \rightarrow Sym$ maps complete homogeneous non-commutative symmetric functions to complete homogeneous symmetric functions

$$
\chi(H_{\alpha})=h_{\alpha_1}h_{\alpha_2}\cdots h_{\alpha_{\ell(\alpha)}}=h_{\mathsf{sort}(\alpha)}\in Sym.
$$

The Symmetric Functions and their Generalizations

Symmetric functions are generalized by noncommutative symmetric functions (NSym) and quasisymmetric functions (QSym). All three admit a Hopf algebra structure.

$$
Sym = \mathbb{Q}[h_n : n \in \mathbb{N}] \quad \text{where} \quad h_m h_n = h_n h_m
$$

$$
NSym = \mathbb{Q}\langle H_n : n \in \mathbb{N}\rangle \quad \text{where} \quad H_m H_n \neq H_n H_m
$$

Sym $NSym$ $-- -- OSym$ χ i

bases indexed by compositions

bases indexed by partitions

The forgetful map $\chi : NSym \to Sym$ is defined as $\chi(H_n) = h_n$. The map $i: Sym \rightarrow QSym$ is the inclusion of Sym into QSym.

Definition

A semistandard Young tableau (SSYT) of shape $\lambda \vdash n$ is a filling of the diagram of λ with positive integers such that the numbers are weakly increasing in rows and strictly increasing in columns.

The monomial $\mathsf{x}^\mathcal{T}$ corresponding with the SSYT to the right is $x_1x_2^2x_3$.

Definition

The Schur symmetric functions are defined as

$$
s_{\lambda} = \sum_{\mathcal{T}} x^{\mathcal{T}},
$$

where the sum runs over all semistandard Young tableaux T of shape λ with entries in $\mathbb{Z}_{>0}$.

$$
s_{(2,2)} = x_1^2 x_2^2 + x_1^2 x_2 x_3 + x_1^2 x_3^2 + x_1 x_2^2 x_3 + \cdots
$$

A basis $\{S_\alpha\}_\alpha$ of NSym is **Schur-like** if $\chi(S_\lambda) = s_\lambda$.

The dual basis $\{\mathcal{S}^*_\alpha\}_\alpha$ in $\mathcal{Q}Sym$ is also considered Schur-like, and is usually defined via tableaux that generalize SSYT.

Primary Schur-like Bases

lmmaculate $\{\mathfrak{S}_\alpha\}_\alpha$ and dual immaculate $\{\mathfrak{S}_\alpha^*\}_\alpha$

Shin $\{\pmb{\mathbb{v}}_\alpha\}_\alpha$ and extended Schur $\{\pmb{\mathbb{v}}_\alpha^*\}_\alpha$

Young noncommutative Schur $\{\hat{\mathbf{s}}_{\alpha}\}_\alpha$ and Young quasisymmetric Schur $\{\mathbf{\hat{s}}_\alpha^*\}$

Dual immaculate:

weakly increasing rows, strictly increasing first column

Extended Schur (dual shin):

weakly increasing rows, strictly increasing columns

Young quasisymmetric Schur:

weakly increasing rows, strictly increasing first column, triple rule

	ч	Δ.	5

Immaculate Shin SSYCT

Dual immaculate: If $\ell(\lambda) = k$,

$$
s_{\lambda} = \sum_{\sigma \in S_k} (-1)^{\sigma} \mathfrak{S}^*_{\lambda_{\sigma_1 + 1 - \sigma_1}, \dots, \lambda_{\sigma_k} + k - \sigma_k}
$$

where the sum runs over σ such that $\lambda_{\sigma_i} + i - \sigma_i > 0$.

Young quasisymmetric Schur: $s_\lambda = -\sum_{\hat{\mathbf{s}}_\alpha^*}\hat{\mathbf{s}}_\alpha^*$ sort $(\alpha)=\lambda$

Extended Schur: $s_{\lambda} = \mathbf{w}_{\lambda}^*$

Let $A = \{a_1, \ldots a_m\}$ be a finite alphabet of colors.

Word: a finite string of colors from A

Sentence: a finite sequence of words

Example

Let $A = \{a, b, c\}$. The sentence (aba, cc, bcab) is composed of the words aba, cc, and bcab.

If A contains only one color, sentences are in bijection with compositions. For example, $(aaa, a, aa) \leftrightarrow (3, 1, 2)$.

Consider partially commutative variables $x_{a_i,j}$ for $a_i \in A$ and $j \in \mathbb{N}$.

The Symmetric Functions and their Generalizations

 $Sym = \mathbb{Q}[h_n : n \in \mathbb{N}]$ where $h_m h_n = h_n h_m$ $NSym = \mathbb{Q}\langle H_n : n \in \mathbb{N}\rangle$ where $H_mH_n \neq H_nH_m$ $NSym_A = \mathbb{Q}\langle H_w : \text{words } w \rangle$ where $H_w H_v \neq H_v H_w$

COLORED GENERALIZATIONS OF SCHUR-LIKE BASES

Colored diagrams:

$$
(ab, bca) \longrightarrow \begin{array}{|c|c|c|c|} \hline a & b \\ \hline b & c & a \end{array}
$$

Definition

Colored tableaux of shape I are colored diagrams of I filled with positive integers.

Definition

The type of a colored tableau is a sentence $C = (u_1, ..., u_g)$ where u_i lists the colors in boxes filled with *i*'s in a particular order.

For a colored tableau T of type (u_1, u_2, \dots, u_g) , we say that

$$
x_T = x_{u_1,1}x_{u_2,2}\cdots x_{u_g,g}
$$

Example

Definition

The colored dual immaculate functions, the colored extended Schur functions, and the colored Young quasisymmetric Schur functions are defined by

$$
\mathfrak{S}_J^* = \sum_T x_T, \qquad \mathbf{w}_J^* = \sum_T x_T, \qquad \text{and} \qquad \mathbf{\hat{s}}_J^* = \sum_T x_T,
$$

where the sums run over colored immaculate tableaux T of shape J, colored shin tableaux T of shape J, and colored Young composition tableaux T of shape J , respectively.

Other results on the colored Schur-like bases in $QSym_A$ include:

- Expansions into the colored monomial basis
- Expansions into the colored fundamental basis \Box
- Definition of skew functions
- **Posets, inverse expansions, and comultiplication**

Each of the three colored Schur-like bases in $NSym_A$ is defined differently, either using creation operators, a Pieri rule, or duality.

Results on these bases include:

- **Expansions to and from bases**
- **Pieri rules**
- Structure coefficients
- **Multiplicative properties**

Definition

The colored non-commutative Bernstein operator \mathbb{B}_{w} is defined as

$$
\mathbb{B}_w = \sum_u \sum_Q (-1)^i H_{w \cdot u}(\sum_{Q \preceq S} M_S^{\perp}),
$$

where the sum runs over all $Q = (q_1, ..., q_i)$ such that $q_i \cdots q_2 q_1 = u.$

Example

 $\mathbb{B}_{abc}(H_{def})=H_{abc,def}-H_{abcf,de}+H_{abcfe,d}-H_{abcef,d}-H_{abcdef}+$ $H_{abcdefd} + H_{abcdefd} - H_{abcdefd}$

Definition

For sentence $J = (v_1, ..., v_h)$, we define the **colored immaculate** function as

$$
\mathfrak{S}_J=\mathbb{B}_{v_1}\mathbb{B}_{v_2}...\mathbb{B}_{v_h}(1).
$$

Equivalently, we have

$$
\mathfrak{S}_{(\nu_1,\nu_2,\dots,\nu_h)}=\mathbb{B}_{\nu_1}(\mathfrak{S}_{(\nu_2,\dots,\nu_h)}).
$$

$$
\mathfrak{S}_{(abc,def)} = \mathbb{B}_{abc}(\mathfrak{S}_{def}) = \mathbb{B}_{abc}(H_{def}) = H_{abc,def} - H_{abcf,de} + H_{abcefe,d} - H_{abcefe,d} - H_{abcefe} + H_{abcefe} + H_{abcefe}
$$

The Colored Immaculate Descent Graph

Definition

The colored immaculate descent $\operatorname{\mathsf{graph}}\mathfrak D_A^n$ is the directed graph whose vertices are sentences of size n in alphabet A and there is an edge from I to J (weighted with $L_{I,J}$) if there exists a standard colored immaculate tableau of shape I with colored descent composition J.

Example

Corollary [D. 2023]

For a sentence J,

$$
\mathfrak{S}_J=\sum_l b_{l,J}R_l,
$$

where the sum runs over all sentences *l* and

$$
b_{I,J}=\sum_{P}(-1)^{k-1}L_{(J_1,J_2)}L_{(J_2,J_3)}\cdots L_{(J_{k-1},J_k)},
$$

where the sum runs over all paths $\mathcal{P}=\{J=J_k\leftarrow J_{k-1}\leftarrow \ldots\leftarrow J_2\leftarrow J_1=I\}$ from I to J in $\mathfrak{D}^{|J|}_A$ $\mathcal{A}^{\vert J \vert}$.

Corollary [D. 2023]

For a composition $\beta \models n$ and a partition $\lambda \vdash n$,

$$
\mathfrak{S}_{\beta} = \sum_{\alpha \models n} L_{\alpha,\beta}^{-1} R_{\alpha} \quad \text{with} \quad L_{\alpha,\beta}^{-1} = \sum_{\mathcal{P}} (-1)^{\ell(\mathcal{P}-1)} \mathsf{prod}(\mathcal{P}),
$$

where the sum runs over directed paths ${\mathcal P}$ from α to β in \mathfrak{D}^n , and

$$
s_{\lambda} = \sum_{\alpha \models n} L_{\alpha,\lambda}^{-1} r_{\alpha} \quad \text{with} \quad L_{\alpha,\lambda}^{-1} = \sum_{\mathcal{P}} (-1)^{\ell(\mathcal{P}-1)} \text{prod}(\mathcal{P}),
$$

where the sum runs over directed paths ${\cal P}$ from α to λ in $\mathfrak{D}^n.$

Colored Shin Functions

We write $J\subset_u^{\!\boldsymbol{v}} I$ if I can be obtained by adding boxes to J such that we do not create a row in I such that the original row in J is shorter than any row in I below it. These added boxes must form the word u when read from left to right, bottom to top.

Definition

The shin functions $\{\vartheta_l\}_l$ are the unique set of functions satisfying

$$
\mathbf{w}_I H_{\mathbf{w}} = \sum_{J \subset \mathbf{w}_I} \mathbf{w}_J.
$$

$$
I = (\text{abac, cab, b, bc})
$$

$$
w = acb
$$

example non-example

The colored Young noncommutative Schur functions are the duals to the colored Young quasisymmetric Schur functions.

Theorem [D. 2024]

Let I be a sentence and w a word. Then,

$$
\check{\mathbf{s}}_I H_{\mathsf{w}} = \sum_J \check{\mathbf{s}}_J,
$$

where the sum runs over J obtained by adding boxes to the right side of I such that no two boxes are added in the same column and a box can only be added to a row if there is no lower row of the same length. The colors in the new boxes should form the word w when read from left to right, bottom to top.

Colored Noncommutative Schur Functions

$$
\hat{\textbf{s}}_{(a,ba,c)}\mathcal{H}_{(bc)}=\hat{\textbf{s}}_{(a,ba,c,bc)}+\hat{\textbf{s}}_{(a,ba,cbc)}+\hat{\textbf{s}}_{(a,bac,c,b)}+\hat{\textbf{s}}_{(a,babc,b)}.
$$

COLORED GENERALIZATIONS OF THE SYMMETRIC FUNCTIONS

We introduce two new algebras that complete this picture:

A sentence is called a p-sentence if its words are sorted first in decreasing order by length and second lexicographically. Given a sentence I, we write sort(I) for the unique associated p-sentence.

Example

$$
P = (aba, bcc, ab, a, c)
$$

$$
P = sort(c, bcc, a, ab, aba) = sort(ab, bcc, a, aba, c) = \cdots
$$

P-sentences are analogous to partitions as sentences are analogous to compositions. When A is an alphabet of size one, p-sentences are in bijection with partitions: $(aaa, aaa, aa) \leftrightarrow (3, 3, 2)$.

Colored Generalizations of $Sym:PSym_A$

Definition

For an alphabet A, the **algebra of p-sentences** is defined

 $PSym_A = \mathbb{O}[h_w : words w].$

Compared to Sym , $NSym$, and $NSym_A$:

 $Sym = \mathbb{Q}[h_n : n \in \mathbb{N}]$ $PSym_A = \mathbb{Q}[h_w : words w]$ $NSym = \mathbb{Q}\langle H_n : n \in \mathbb{N} \rangle$ $NSym_A = \mathbb{Q}\langle H_w : \text{words } w \rangle$

 NS_Ym_A maps to PS_Ym_A by the colored forgetful map:

 $\chi: {\sf NSym}_{\sf A} \to {\sf PSym}_{\sf A}$ defined $\chi(H_{\sf I}) = h_{{\sf sort}({\sf I})}.$

Definition

Let Sym_A denote the set of **colored symmetric functions** $f \in \mathbb{Q}[x_A]$ such that for any permutation σ of N,

$$
f(x_{A,1}, x_{A,2}, \ldots) = f(x_{A,\sigma(1)}, x_{A,\sigma(2)}, \ldots).
$$

In other words, if two monomials are associated with the same p-sentence, then they have the same coefficients.

Example

$$
f = x_{a,1}x_{bc,2} + x_{bc,1}x_{a,2} + \cdots + x_{a,5}x_{bc,7} + x_{bc,5}x_{a,7} + \cdots \in Sym_A
$$

$$
g = x_{a,1}x_{bc,2} + 3x_{bc,1}x_{a,2} + \cdots \notin Sym_A
$$

 $PSym_A$ and Sym_A are dual Hopf algebras.

Proposition [D. 2024]

If A is an alphabet of size one, then $PSym_A$ and Sym_A are both isomorphic to Sym.

Colored Schur and Dual Schur Functions

For a p-sentence P , the **colored dual Schur function** is defined as

$$
\mathsf{s}_P^* = \sum_Q \mathcal{K}_{P,Q} m_Q.
$$

where $\mathcal{K}_{P,Q}$ denotes the number of colored semistandard Young tableaux of shape P and type Q .

$$
s_{(abb, ca)}^{*} = m_{(abb, ca)} + m_{(ab, cb, a)} + m_{(ab, ca, b)}
$$
\n
$$
a, 1 \mid b, 1 \mid b, 1
$$
\n
$$
c, 2 \mid a, 2
$$
\n
$$
a, 1 \mid b, 1 \mid b, 2
$$
\n
$$
c, 2 \mid a, 3
$$
\n
$$
a, 1 \mid b, 1 \mid b, 3
$$
\n
$$
c, 2 \mid a, 2
$$

The **colored Schur functions** $\{s_p\}_p$ are defined as the duals in $PSym_A$ to the colored dual Schur functions in Sym_A .

- Which properties of the Schur functions do the colored Schur and colored dual Schur functions generalize?
- **How do the colored Schur and colored dual Schur bases relate** to the various colored Schur-like bases of NS_Vm_A and QS_Vm_A ?
- What are the commutative images of the colored Schur-like bases? Do any subsets of these images form bases of $PSym_A$ that generalize the Schur functions?

THANK YOU!

- Berg, Bergeron, Saliola, Serrano, Zabrocki. A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions. 2014.
- Campbell, Feldman, Light, Shuldiner, Xu. A Schur-like basis of NSym defined by a Pieri rule. 2014.
- **Luoto, Mykytiuk, van Willigenburg.** An introduction to quasisymmetric Schur functions. 2013.
- **Doliwa.** Hopf algebra structure of generalized quasi-symmetric functions in partially commutative variables. 2021.