Permutations without non-reduced co-BPDs

Adam Gregory joint work with Josh Arroyo (UF)

Combinatorics & Graph Theory Seminar Michigan State University

4 December 2024

Pipe dreams

A pipe dream is a filling of $(n-1, \ldots, 2, 1)$ staircase using

so that pipes enter from the top and exit out of the left.

Billey-Bergeron (1993) // Fomin-Kirillov (1994) // Knutson-Miller (2004)

PD(2143)

co-PD

For P in PD(w), corresponding co-PD is

"Traces" out the permutation v on the left read top-to-bottom

Grothendieck into Schubert

Theorem (Lenart, 1999)

Let $a_{w,v} = \#\{P \in PD(w) : co(P) \text{ reduced } \mathcal{E} \text{ traces out } v\}$. Then

$$\mathfrak{G}_w = \sum_{v} (-1)^{\ell(v) - \ell(w)} a_{w,v} \cdot \mathfrak{S}_v.$$

$$\mathfrak{G}_{2143} = \mathfrak{S}_{2143} - (\mathfrak{S}_{2341} + \mathfrak{S}_{3142}) + \mathfrak{S}_{3241}$$

$a_{2143,3241} = 1$

 $a_{2143,3241} = \#\{P \in PD(2143) : co(P) \text{ reduced & traces } 3241\}$

Schubert into Grothendieck

Write $pd(w) \subseteq PD(w)$ for the reduced PDs of w.

Theorem (Lascoux, 2004)

Let $b_{w,v} = \#\{P \in pd(w) : co(P) \text{ traces out } v\}$. Then

$$\mathfrak{S}_w = \sum_v b_{w,v} \cdot \mathfrak{G}_v.$$

$$\mathfrak{S}_{2143} = \mathfrak{G}_{2143} + \mathfrak{G}_{2341} + \mathfrak{G}_{3142}$$

$b_{2143,v} = \#\{P \in pd(2143) : co(P) \text{ traces out } v\}$

co-pd(2143)

$$\mathfrak{S}_{2143} = \mathfrak{G}_{2143} + \mathfrak{G}_{2341} + \mathfrak{G}_{3142}$$

Bumpless pipe dreams

A marked bumpless pipe dream is a $n \times n$ filling using the tiles

so that pipes enter from the bottom and exit out of the right.

Lam-Lee-Shimozono (2018) // Weigandt (2021)

MBPD(2143)

$$\mathfrak{G}_{2143} = x_1 x_3 + x_1 x_2 + x_1^2 - (x_1 x_2 x_3 + x_1^2 x_3 + x_1^2 x_2) + x_1^2 x_2 x_3$$

co-BPD

Only care about $BPD(w) \subseteq MBPD(w)$ with no \square tiles

For B in BPD(w), corresponding co-BPD is

"Traces" out the permutation v on the right read top-to-bottom

co-BPD

Equivalently $B \leftrightarrow co(B)$ via the mapping

$$\longleftrightarrow$$

$$\longrightarrow \longleftrightarrow \coprod$$

$$\leftrightarrow$$

Grothendieck into Schubert (revisited)

Theorem (Weigandt, 2024+)

Let $a_{w,v} = \#\{B \in BPD(w) : co(B) \text{ reduced & traces out } v\}$. Then

$$\mathfrak{G}_w = \sum_{v} (-1)^{\ell(v) - \ell(w)} a_{w,v} \cdot \mathfrak{S}_v.$$

$$\mathfrak{G}_{1423} = \mathfrak{S}_{1423} - \mathfrak{S}_{2413}$$

$a_{1423,v} = \#\{B \in BPD(1423) : co(B) \text{ reduced & traces } v\}$

Schubert into Grothendieck

Write $bpd(w) \subseteq BPD(w)$ for the *reduced* BPDs of w.

Theorem (Weigandt, 2024+)

Let $b_{w,v} = \#\{B \in bpd(w) : co(B) \text{ traces out } v\}$. Then

$$\mathfrak{S}_w = \sum_v b_{w,v} \cdot \mathfrak{G}_v.$$

$$\mathfrak{S}_{2143} = \mathfrak{G}_{2143} + \mathfrak{G}_{2341} + \mathfrak{G}_{3142}$$

$b_{2143,v} = \#\{B \in bpd(2143) : co(B) \text{ traces } v\}$

$$\mathfrak{S}_{2143} = \mathfrak{G}_{2143} + \mathfrak{G}_{2341} + \mathfrak{G}_{3142}$$

Question

Open problem (Weigandt 2024)

Characterize w for which co(B) is *reduced* for every $B \in BPD(w)$.

For pipe dreams it's dominant (i.e., 132-avoiding) permutations

Answer through S₉

w has this property if and only if *w* avoids the seven patterns 1423, 12543, 13254, 25143, 215643, 216543, and 241653.

Observation

What does a double-crossing in a co-BPD look like?

More generally,

$$\begin{array}{cccc}
q & \cdots & p \\
p & \cdots & \vdots & \vdots \\
q & \cdots & p \\
p & p
\end{array}$$

Observation

Actually, a co-BPD has a double-crossing if and only if it has:

Observation

If a co-BPD is non-reduced, its corresponding BPD has:

Call this "the configuration"

Outline

Property: "co(B) reduced for every $B \in BPD(w)$ "

w has property \iff none of its BPDs have the config $\stackrel{(??)}{\iff} w$ avoids those seven patterns

(Nec.) if w contains a pattern then it has a BPD with config (Suff.) if $B \in BPD(w)$ has config then w contains a pattern

Necessary to avoid

Rothe BPD is unique BPD with no 🗀 tiles

Perform "droop moves" from Rothe to get a BPD with config

Necessary to avoid

Perform "droop moves" from Rothe to get a BPD with config

Sufficient to avoid

Suppose $B \in BPD(w)$ has config

Sufficient to avoid

We consider three cases:

don't cross before & *q* never droops

don't cross before & q does droop

cross before

Sufficient to avoid

We consider three cases:

13254

12543

215643

25143, 216543

241653

Thank you for listening!