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Hyperplane Arrangements
A lreal) hyperplane arrangement is a (finite) collection of

In-1) - dimensional affine subspaces of RV
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Faces of Hyperplane Arrangements
Each hyperplane partitions R into three subsets :

Two half spaces
The hyperplane itself and
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Faces of Hyperplane Arrangements
Each hyperplane partitions R into three subsets :

Two half spaces
The hyperplane itself and

-Y
-Y

-H 714

S > X
S > X

L
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The faces of an arrangement are obtained by picking
one such subset

for each hyperplane ,
then taking the intersection,
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Faces of Hyperplane Arrangements
M -Y 7

7

M

S > X

L -

L

L -

The above arrangement has 25 faces

·9 two-dimensional faces (chambers)
· 12 one-dimensional faces

· a zero-dimensional faces



The Braid Arrangement
The Braid Arrangement An-, is the collection of hyperplanes

Ex = xj)1ci < jan3@R !
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* -4=X2
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-
Faces of the Braid Arrangement

The faces ofth are indexed by ordered set partitions of El
,
2

, ..., a)

X23Xz = X
,

r -
V =>xz

124X
, >xz

+
2<Xz] x

,

Y== /s X ,< /23Xz
↓

* = x33X , [ ⑳ 74 > Xz = Xz
X3 >/]X

,

&

X
, >Xz]Xz

Xz > X
, ]Xz

>X ,
=X2L Jx = X 3 > Xa

LetIn denote the set of faces of Chn
. 1.



The symmetric group
-ActionofShouting coordinates

aXz =

Vip -
=E2ts

124X
, >xz

+
2Xz) x

,

Y== Vs X ,< /23Xz
↓

* = x33X , [ · 74 > Xz = Xz
X3 >/]X

, X
, >Xz]Xz

Xz > X
, ]Xz

> X
,
=X2L Jx = X 3 > Xa

There are 2"" Sn-orbits
,
indexed by integer compositions of n : En .



DJn as an Sn-representation

The vector space DFn := SpanpEF-F
n
3 is an Sn-representation.

Recall

· For a finite group
6

, a representation of 6 consists of a :

· D-Vector space V

· Linear action G by

· We "understand" a G-representation by decomposing it into a
direct sum of irreducible 6- representations,

Irreducible representations of Sn are indexed by partitions - -y :

X
X



Writing Sn-representations as Symmetric Functions

Let Char denote the

ring of characters ofa

product = induction product
Sm +-

Xor4
- &

SmSr
Sm-character Sr-character

There is an inner-product preserving ring isomorphism :

Ch : ① Char
H > ring of symmetric functions

n10

Mon ) he "complete homogeneous symmetric function"

X
+

1 & s "Schur function"



DJn as an Sn-representation
-

For d = 1
,
dr

...., d)
,
let he:: he, hea... hop

(DEn) = [h = Kn
Sin

Kostka numbers

Example X23Xz = X
,

r -
V =>xz

124X
, >xz

*
2 > Xz] X,

V = Xz = X3 X
, >X2]Xz

↓
* = x33X , [

X3 > /]X
,

·
X

, >Xz]Xz

74 > Xz = Xz ch(F) = he +has t hiz + h
,

Xz > X
, ]Xz

>X ,
=X2L J

X = X3 > X2
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Face Multiplication
-

Fr M

7
· The faces of a

hyperplane arrangement
form a noncommutative

FoG semigroup .

[ % Y

6 . F !

,
· If the arrangement is-
form a monoid.

⑥ central
, the faces

64
V



The Face Algebra
The vector space DIn is actually an algebra called the face algebra.

The face algebra is studied...

In In the context of Markov Chains/Card shuffling ↳

Bidigare ,
Brown

, Diaconis
,

Denham
,

Hanlon
,

Lafreniere
,

Reiner
,

Rockmore Saliola
, Vyemura-Reyes ,

Welker
, and more

② As an algebra with combinatorial representation theory :

Aguiar-Mahajan ,
Bastidas

, Bidigare ,
Saliola

,
Schocker

,

and more

③ For its connections to Solomon's descent algebra
Aguiar-Mahajan ,

Saliola
,

Schocker
,

and more



The face algebra + shuffling

Let y = 1/3 (x , (x2 = xg) + (3(xz)x
,

= (2) + (x2)xz = x
, ) -

aXz =

Vip -
V =>xz

124X
, >xz

*
2 > Xz] X,

V = Xz = X3 X
, >X2]Xz

Xz = Xz)X , S · 74 > Xz = Xz
X3 >/]X

,

X
, >Xz]Xz

Xz > X
, ]Xz

> X
,
=X2L Jx = X 3 > Xa

Then
,

y · (x , <x2) (b) = (x
, 2x2(Xs) + = (x33x

, (xa) + (x(X+3)
.



Random-to-top shuffling
123

7

probability
13

1 2 3 probability 13 (
2 13

probability 13
131 2

13

aXz =

Vip -
V =>xz

124X
, >xz

* = x33X , [A 74x2 = 113 y . (x , <xs)Xz > X
, ]Xz

> X
,
=X2L Jx = X 3 > Xa

3

((x ,
2 +2(x) + ((x2) +, 2xx) + ((Xxx ,

2 +)



Random Walks + Shuffling in the Face Algebra
The subspace of chambers (which can be thought of as the subspace
of decks of cards on 51

,
2
...., n3) is closed under multiplication by D *

n.

Bidigave-Hanlon-Rockmore 199 :

· Several popular Markov chains can be modeled within Don by

(someelt)& (Chamber subspacehe

· Developed uniform formulas involving the combinatories of the arrangement
to

compute the eigenvalues of such Markov chains

Y
of probabilistic interest for bounding mixing time



Example : Eigenvalues of Random-to-top shuffling
123 , 32 2123's122

3

[23 130 is is O O

~

Random-to-top as a matrix : · 32 013 0 O 13 13
n = 3

on CS
213113 13 13 O 00

2310 0 O 13 13 13

312 is is 0 0 is 0
32 O O % 3 13 g 13

ineorem (Phatarfod 191
,
proof simplified by Bidigare- Hanlon - Rockmore approach)

After scaling by n
,
the eigenvalues of random-to-top on DSn are

0, 1
,
2, ...,

n- 2
,

n.

· The multiplicity of the eigenvalue i is #EHESn : Tohas exactlyis



Riffle Shuffling

Yg Yg
X23Xz = X

,

r 124X
, >xz -

V =>xz

23x
, X

, >X2]Xz
↓

Yg
Xz = Xz)X , S

X3 >/]X
,

· 7 Xz =
3 Ig

X
, >Xz]Xz

Xz > X
, ]Xz

> X
,
=X2L Jx = X 3 > Xa

Yg Yg
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Solomon's descent algebra
· The descent set Deslot of a permutation & Sn consists of the positions

1 : < n-1 for which (i) (o(i + 1
.

↳ Des(E3132(189) = El , 2 ,

4
,
63

& one-line notation

· For T2 El
,
%, ..., n-13 ,

define

O eCSn .

X+ i =

o Sn ;

Des(o) = J

· The 2""-dimi Vector space span([x515 = Elb , ..., n-13 is closed under

multiplication
,

so forms a subalgebra of KS called

Solomon's descent algebra : En



The Sn-invariant subalgebra of $Fn

· The action of Sn on &En is by algebra automorphisms

· The Sn-invariant subalgebras /DI
.
)Sn consists of the elements

fixed under the action of Sn
.

Example. (DF)

23 Xz = X
,

r
124X

, >xz

-
V =>xz

aXz =

Vip
124X

, >xz

-
V =>xz

X23Xz = X
,

r
124X

, >xz

-
V =>xz

aXz =

Vip
124X

, >xz

-
V =>xz

S
/

*
2 > Xz] X,

Xz > X
, ]Xz

X
, >X2]Xz

*
2 > Xz] X,

Xz > X
, ]Xz

X
, >X2]Xz

*
2 > Xz] X,

V

=Ne
X

, >X2]Xz
*
2 > Xz] X,

Xz > X
, ]Xz

X
, >X2]Xz 3span (2 = >X , [

X3 > /]X
,

Voting 74 > Xz = Xz gr
2

= >X , [
X3 > /]X

,

Novinyl 74 > Xz = Xz

C

* = x33X , [
X3 > /]X

, x
, <xz)xz

74 > Xz = Xz

&
* = x33X , [

X3 > /]X
,

in
at

74 > Xz = Xz

Do Xz > X
, ]Xz

>X ,
=X2L Jx = X 3 > Xa

>X ,
=X2L Jx = X 3 > Xa

+ > X
,
=X2L Jx = X 3 > Xa

+ > X
,
=X2L J

X = X3 > X2



The key connection

thm (Bidigave) : The descent algebra is anti-isomorphic to

the Sn-invariant subalgebra of the face algebra :

[op (DE) s

↳ A useful way to viewIn : Salida computed its quiver

using this embedding



Representation Theory of Finite Dimensional Algebras
A representation of a finite dimensional algebra consists of a

· D-vector space V ,
and a

· linear action
* Acy

Example :

The face algebra is a lright) representation of the descent algebra·

anti-isomorphism
-BidigareDE & In via you ::"(x)y

Unlike group representations
over K

, algebra representations do not

always decompose into a direct sum of irreducible representations ,

↳I
. e. A is not semisimple

-

n



How do me "understand" representations of nonsemisimple algebras ?

One Option : filtrations of an A-representation V by subrepresentations,

0 V Va .... EV = V with each Vi/V-
irreducible.

Up to isomorphism
,
the multiset of irreducibles [Vi/Vi

-13 is independent

of the filtration ! S

Composition Multiplicity of [V : M] :

# of times M lup to isomorphisas

appears in[Vi/Vi--



(Right)Depresentation Theory of In

· Studied in depth by Garsia-Reutenaven
, generalized to other types by

F
. Bergeron

,
N . Bergeron ,

Howlett
, Taylor

·

· In is not semisimple

Idempotents
in a complete·

Integer partitions < > Irreducible
↳ familyofprimitieaerotectsrepresentations

of n

& Mx &
Ex

one-dimensional !

· To understand a En-repin V :

↳ Count the composition multiplicity [V : M2] for each i
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The Face Algebra as a Simultaneous Representation

we've seen :
In

S
F

-

&
En

But also : 4

Su

How about
:

"

&
F
en ?



Isotypic components : Generalizations of invariant subalgebras

Finite group G acting on a fin
.

dim. D-algebra R by algebra homomorphisms.

For an irreducible 6 representation X :

RX = X-isotypic component
=> direct sum of all copies of X in any decomp of R

Invariant Subalgebra G-isotypic components
R R

special case
RXk

:* Ra
RG

RYtriv = R

Each isotypic subspace RT is an Ro-module,



-Question

How does each Sn-isotypic component (DF2)
*look as a representation

of En ?

(DEn)4u ??
& En

·

(DFalk+(DEn)Xu(Fl
Motivation

·Standard question in classical invariant theory
· Natural Extension of Bidigare's work

,
who studied (KFn)

#
for X

· the trivial representation &
"

· the sign representation X"

· New examples ofIn representations

S



↳first approximation

Proposition As In-representations

(DI = # (DnEu with

M dominates -

dim(Don Eur = #Ecompositions / rearages u .3#SYT()
u

,
M

Y &
Standard Kostka

Young tableaux numbers

Abuse of notation *: viewing En in (DFn) Surather than En



A firstproximation

PF
↑

87"
"

1 : 1 · 1

li Kum
3 . 3 : 1 1. 3 . 3

Oneesul) 2 : 2 . 2 3 . 2 . 1

:
+ /

2 ↓d11 1. 2 . 2

231 2. 3 : 2 1 : 3 : 1 3 . 3 . 2 1: 3 : 3

x4 1 : 1 : 1 2 - 1. 1 1: 2. 1 3 . 1. 1 1: 1 : 1

ytriv KFnEa KFntzI KFnEzz KFnEzlI KFnEIII

M



Fill in submodulesABetterAnswedition factors My
-

↑ 7

XIII

3Mfn ya)

~ Mi 100 10

1000
Il

~
triv

DI.Ed DEnfal DEnfaz Dentall CFnE
, 11)

M



Previously known
&

↑ Rightmost

n ya) 3M 3M 3M 3M Uyemura-Reyes's
- 3M Me suffling repins

YIll

11
ME

column :

2M# am ameaMpMt&

#eMGMEMy 3M

s
MMMM GM EM

x1M
,,,

M
, Mex Mi M MeM ME

> IFnEa KFnEzI KFnEzz KFnEzlI CF
,
E

, 111

Bottom row : Garsia -Reutenaver's Cartan invariants of In



Vyemura-Reyes's Shuffling Representations l I 3M Iil ↳
In terms of higher Lie"symmetric functions 2x 9 XM ,

M
, Me MMMM ME

In Ea Kantal KantzzEntall F
,
Eli

When GLn(C) acts on I =: V,

& x(xis <
2 ....,) is the character/trace of [*] on Liex (v)

,

where :

Eac Sym
e algebra

=① Sym(v) Sym([v
. v)) o Sem([[V v]

,
v7) 0

...

X = 1 .

2 m zy
-

Liev).



Vyemura-Reyes's Shuffling Representations l I 3M I↳
XM ,

M
, Me MMMM ME

Thrall's Problem In Ea Kantal Kantzz Entall F
,
III

,

Positively expand 2x = [SxSu.

&

Thm (Uyemura-Reyes , 2002)

[ : M
= ]=site) /Sr , 2x)



↑

OMrsia-Reutenauer's Cartan Invariants of En l 113M

· TheIn-representations (DE) Er are important ··
XM ,

M
, Me MMMM ME

representations called the In Ea Kantal KantzzEntzlFi

projective indecomposables of En .

↳ The composition multiplicities [IEnEn :Mx] are
called

the Cartan invariants of En
.



↑

Orsia-Reutenauer'sCartan Invariants of En 113M

· TheIn-representations (DE) Er are important
i

XM ,
M
, Me MMMM ME

representations called the In Ea Kantal KantzzEntzlFi

projective indecomposables of En .

↳ The composition multiplicities [IEnEn :Mx] are
called

the Cartan invariants of En
.

The Cartan invariants of In have a beautiful formula !

· A word on 51
,
2, .... 3 is a Lyndon word if it isEnitly lexicographically

smaller than all of its cyclic recorderings.

Example 29299

Non-example 2929



↑

3M&Mrsia-Reutenauer's Cartan Invariants of En 11i
· Every word has a unique factorization into lexicographically Xa Mili Mi MexmeMM ME

weakly decreasings Lyndon words Dan E Dental DanEzz Dentall Dail

Word m Lyndon Factorization LyndonType (m)

5614311236 (6)(3) (13 ,
11

,
8)

121123 (12) (1123) 1 (7
.
3)



↑

l ·3M

.ursiaReuteraversCarvariantsoS 11endoona

Xa Mili Mi MexmeMM ME

weakly decreasings Lyndon words Dan E Dental DanEzz Dentall Dail

Word m Lyndon Factorization LyndonType (m)

5614311236 (2) (13) (13 ,
11

,
8)

1

121123 (12) (1123) (7
,
3)

Tha /Garsia- Reutenaven , 1989

[ (DE) EniM1] = #composition to /LyndonType (d) = x 3



The Full Table

-
:.....

-

How manyMys todraw ......

~

CFnEM

Inm: (c . ,2024)

[)E(- En : M1] =SYT() · /Sr ,
coefficient of ExIu in =/

,

where F = T [ FtwBm)"2+ [hw]·
Lyndon partitions
words [

w

Notation
X

· I : = X...
· IrI

,
IWI : = sun of the parts of r and the letters of w.

·

· U . K := scaling of the parts of r byk



Proof Ingredients

Understanding a Understanding an

En-representation I Sn-representation

[(Drn)*EniM + ] ? ExEn EM ?

i
Poset Topology A

Symmetric
Functions

1 Su

4 i)
Fron (In(X , 4) De+ (4) De+(x)

3

X
Stab(x))Stabs(4)

-

&
homology of intervals in the lattice of set partitions

T BI+
[]



IThank
you.

For details : artir 2404
. 00536


