Enumerating Higher Bruhat Orders

Through Deletion and Contraction

Herman Chau

University of Washington

• Topology of discriminantal arrangements (Manin, Schechtman 1989)

- Topology of discriminantal arrangements (Manin, Schechtman 1989)
- Single element extensions of alternating matroids (Ziegler 1993)

- Topology of discriminantal arrangements (Manin, Schechtman 1989)
- Single element extensions of alternating matroids (Ziegler 1993)
- Pseudoline arrangements (Felsner 1997)

- Topology of discriminantal arrangements (Manin, Schechtman 1989)
- Single element extensions of alternating matroids (Ziegler 1993)
- Pseudoline arrangements (Felsner 1997)
- Rhombic tilings and Bott-Samelson varieties (Elnitsky 1997) (Escobar, Pechenik, Tenner, Yong 2018)

- Topology of discriminantal arrangements (Manin, Schechtman 1989)
- Single element extensions of alternating matroids (Ziegler 1993)
- Pseudoline arrangements (Felsner 1997)
- Rhombic tilings (Elnitsky 1997) (Escobar, Pechenik, Tenner, Yong 2018)
- Maximal weakly separated set-systems (Danilov, Karzanov, Koshevoy 2010)

- Topology of discriminantal arrangements (Manin, Schechtman 1989)
- Single element extensions of alternating matroids (Ziegler 1993)
- Pseudoline arrangements (Felsner 1997)
- Rhombic tilings (Elnitsky 1997) (Escobar, Pechenik, Tenner, Yong 2018)
- Maximal weakly separated set-systems (Danilov, Karzanov, Koshevoy 2010)
- Cup-*i* coproducts defining Steenrod squares in cohomology (Laplante-Anfossi, Williams 2023)

Background

 $\sigma_i \coloneqq adjacent transposition swapping i and i + 1$

 $\sigma_i := adjacent transposition swapping i and i + 1$

 $w_0 \coloneqq$ the longest permutation $(n, n - 1, \dots, 1)$.

 $\sigma_i :=$ adjacent transposition swapping *i* and *i* + 1 $w_0 :=$ the longest permutation $(n, n - 1, \dots, 1)$.

(i, j) is an inversion of w if i < j and $w^{-1}(i) > w^{-1}(j)$.

 $\sigma_i := adjacent transposition swapping i and i + 1$

 $w_0 :=$ the longest permutation $(n, n - 1, \dots, 1)$.

(i, j) is an inversion of w if i < j and $w^{-1}(i) > w^{-1}(j)$.

A reduced expression for w is an expression $\sigma_{i_1} \cdots \sigma_{i_\ell} = w$ of minimal length. The indices $i_1 \cdots i_\ell$ form a reduced word for w.

 $\sigma_i := adjacent transposition swapping i and i + 1$

 $w_0 :=$ the longest permutation $(n, n - 1, \dots, 1)$.

(i,j) is an inversion of w if i < j and $w^{-1}(i) > w^{-1}(j)$.

A reduced expression for w is an expression $\sigma_{i_1} \cdots \sigma_{i_\ell} = w$ of minimal length. The indices $i_1 \cdots i_\ell$ form a reduced word for w.

Example (n = 4) $w_{0} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 4 & 3 & 2 & 1 \end{bmatrix}$ $= \sigma_{1}\sigma_{2}\sigma_{3}\sigma_{1}\sigma_{2}\sigma_{1}.$

 $\sigma_i := adjacent transposition swapping i and i + 1$

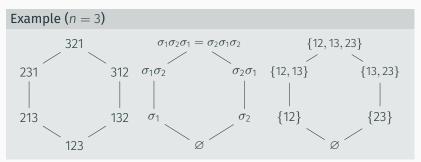
 $w_0 :=$ the longest permutation $(n, n - 1, \dots, 1)$.

(i,j) is an inversion of w if i < j and $w^{-1}(i) > w^{-1}(j)$.

A reduced expression for w is an expression $\sigma_{i_1} \cdots \sigma_{i_\ell} = w$ of minimal length. The indices $i_1 \cdots i_\ell$ form a reduced word for w.

Example (n = 4) $w_{0} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{bmatrix}$ $= \begin{bmatrix} 4 & 3 & 2 & 1 \end{bmatrix}$ $= \sigma_{1}\sigma_{2}\sigma_{3}\sigma_{1}\sigma_{2}\sigma_{1}.$ The (right) weak Bruhat order on \mathfrak{S}_n is a partial order where $v \le w$ if some reduced word for v is a prefix of some reduced word for w.

Equivalently, the weak Bruhat order is the transitive closure of cover relations $v \lt w$ if and only if $Inv(w) = Inv(v) \cup \{(i, j)\}$.



Definition (Manin-Schechtman)

The packet of $X = (x_1, ..., x_k) \in {[n] \choose k}$ is $P(X) = \{X_k, X_{k-1}, ..., X_1\}$ where $X_i = X \setminus \{x_i\}$.

Definition (Manin-Schechtman)

The packet of $X = (x_1, \ldots, x_k) \in {\binom{[n]}{k}}$ is $P(X) = \{X_k, X_{k-1}, \ldots, X_1\}$ where $X_i = X \setminus \{x_i\}$.

The lex order on P(X) is X_k, \ldots, X_1 and the antilex order is X_1, \ldots, X_k .

Definition (Manin-Schechtman)

The packet of $X = (x_1, \ldots, x_k) \in {[n] \choose k}$ is $P(X) = \{X_k, X_{k-1}, \ldots, X_1\}$ where $X_i = X \setminus \{x_i\}$.

The lex order on P(X) is X_k, \ldots, X_1 and the antilex order is X_1, \ldots, X_k . Two sets $X, Y \in {[n] \choose k}$ commute if $P(X) \cap P(Y) = \emptyset$.

Definition (Manin-Schechtman)

The packet of $X = (x_1, ..., x_k) \in {[n] \choose k}$ is $P(X) = \{X_k, X_{k-1}, ..., X_1\}$ where $X_i = X \setminus \{x_i\}$.

The lex order on P(X) is X_k, \ldots, X_1 and the antilex order is X_1, \ldots, X_k . Two sets $X, Y \in {[n] \choose k}$ commute if $P(X) \cap P(Y) = \emptyset$.

Example (n = 5, k = 3)Let X = (1, 2, 3), Y = (1, 3, 4), Z = (3, 4, 5). Then $P(X) = \{12, 13, 23\},$ $P(Y) = \{13, 14, 34\},$ $P(Z) = \{34, 35, 45\}.$

X and *Y* do not commute. *Y* and *Z* do not commute. But *X* and *Z* commute.

A total order ρ on $\binom{[n]}{k}$ is admissible if $\rho|_{P(X)}$ is the lex or antilex order for every $X \in \binom{[n]}{k+1}$.

 $\mathcal{A}(n,k) \coloneqq \text{admissible orders on } \binom{[n]}{k}.$

A total order ρ on $\binom{[n]}{k}$ is admissible if $\rho|_{P(X)}$ is the lex or antilex order for every $X \in \binom{[n]}{k+1}$.

 $\mathcal{A}(n,k) \coloneqq \text{admissible orders on } \binom{[n]}{k}.$

Definition (Manin-Schechtman)

The reversal set of $\rho \in \mathcal{A}(n,k)$ is

 $\operatorname{Rev}(\rho) \coloneqq \{X : \rho|_{P(X)} \text{ is antilex order}\}.$

Admissible Orders

 ρ, ρ' differ by a commutation if ρ' is obtained by transposing two commuting sets *X*, *Y*.

 $[\rho] \coloneqq$ admissible orders commutation equivalent to ρ .

Admissible Orders

 ρ, ρ' differ by a commutation if ρ' is obtained by transposing two commuting sets *X*, *Y*.

 $[\rho] \coloneqq$ admissible orders commutation equivalent to ρ .

 ρ , ρ' differ by a packet flip if P(X) is a saturated chain in ρ and ρ' is obtained by reversing the order of P(X).

Admissible Orders

 ρ, ρ' differ by a commutation if ρ' is obtained by transposing two commuting sets *X*, *Y*.

 $[\rho] \coloneqq$ admissible orders commutation equivalent to ρ .

 ρ , ρ' differ by a packet flip if P(X) is a saturated chain in ρ and ρ' is obtained by reversing the order of P(X).

Example (n = 4, k = 2**)**

$$\rho^{(1)} = (12, 13, 14, 23, 24, 34),$$

$$\rho^{(2)} = (12, 13, 23, 14, 24, 34),$$

$$\rho^{(3)} = (12, 13, 14, 34, 24, 23).$$

 $\rho^{(1)}$ and $\rho^{(2)}$ differ by commuting 14 and 23, and $[\rho^{(1)}] = \{\rho^{(1)}, \rho^{(2)}\}.$ $\rho^{(1)}$ and $\rho^{(3)}$ differ by flipping the packet P(234) from lex to antilex.

Definition (Ziegler)

A subset $I \subseteq {\binom{[n]}{R}}$ is consistent if $I \cap P(X)$ is a prefix or suffix of P(X) for every $X \in {\binom{[n]}{R+1}}$.

Definition (Ziegler)

A subset $I \subseteq {\binom{[n]}{k}}$ is consistent if $I \cap P(X)$ is a prefix or suffix of P(X) for every $X \in {\binom{[n]}{k+1}}$.

Lemma (Ziegler)

For every $\rho \in \mathcal{A}(n, k)$, the reversal set $\operatorname{Rev}(\rho) \in {[n] \choose k+1}$ is consistent.

Definition (Ziegler)

A subset $I \subseteq {\binom{[n]}{k}}$ is consistent if $I \cap P(X)$ is a prefix or suffix of P(X) for every $X \in {\binom{[n]}{k+1}}$.

Lemma (Ziegler)

For every $\rho \in \mathcal{A}(n, k)$, the reversal set $\text{Rev}(\rho) \in {[n] \choose k+1}$ is consistent.

Example

{123, 124} and {124, 134, 234} are consistent.

 $Rev(12, 13, 14, 34, 24, 23) = \{234\}$ is consistent.

The higher Bruhat order $\mathcal{B}(n,k)$ is $\mathcal{A}(n,k)/\sim$ with partial order induced by $[\rho] \leq [\sigma]$ if and only if some $\rho' \in [\rho]$ and $\sigma' \in [\sigma]$ differ by a packet flip from lex to antilex.

The higher Bruhat order $\mathcal{B}(n,k)$ is $\mathcal{A}(n,k)/\sim$ with partial order induced by $[\rho] < [\sigma]$ if and only if some $\rho' \in [\rho]$ and $\sigma' \in [\sigma]$ differ by a packet flip from lex to antilex.

Definition (Ziegler)

The higher Bruhat order C(n, k + 1) is the consistent subsets of $\binom{[n]}{k+1}$ with partial order induced by I < J if and only if $J = I \cup \{X\}$ for some $X \in \binom{[n]}{k+1}$.

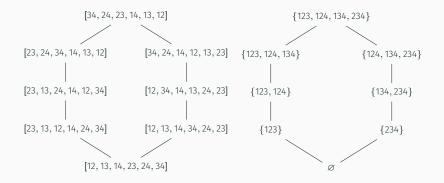
The higher Bruhat order $\mathcal{B}(n,k)$ is $\mathcal{A}(n,k)/\sim$ with partial order induced by $[\rho] < [\sigma]$ if and only if some $\rho' \in [\rho]$ and $\sigma' \in [\sigma]$ differ by a packet flip from lex to antilex.

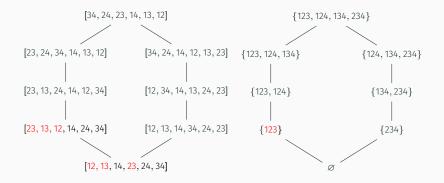
Definition (Ziegler)

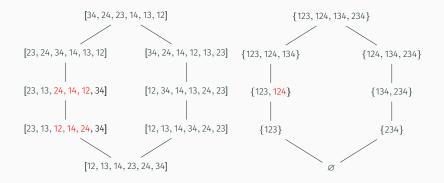
The higher Bruhat order C(n, k + 1) is the consistent subsets of $\binom{[n]}{k+1}$ with partial order induced by $I \ll J$ if and only if $J = I \cup \{X\}$ for some $X \in \binom{[n]}{k+1}$.

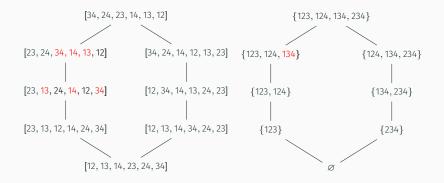
Theorem (Ziegler)

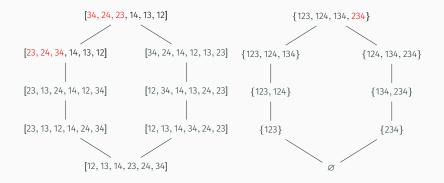
The map $[\rho] \mapsto \text{Rev}(\rho)$ is a poset isomorphism between $\mathcal{B}(n,k)$ and $\mathcal{C}(n,k+1)$.











Fact

The weak Bruhat order on \mathfrak{S}_n is isomorphic to $\mathcal{B}(n,1) \cong \mathcal{C}(n,2)$. Admissible orders on $\binom{[n]}{1}$ correspond to permutations and reversal sets correspond to inversions.

Fact

The weak Bruhat order on \mathfrak{S}_n is isomorphic to $\mathcal{B}(n,1) \cong \mathcal{C}(n,2)$. Admissible orders on $\binom{[n]}{1}$ correspond to permutations and reversal sets correspond to inversions.

Theorem (Stanley 1984)

 $|\mathcal{A}(n,k)|$ is equal to the number of standard Young tableaux of shape $(n-1, n-2, \ldots, 1)$.

Fact

The weak Bruhat order on \mathfrak{S}_n is isomorphic to $\mathcal{B}(n,1) \cong \mathcal{C}(n,2)$. Admissible orders on $\binom{[n]}{1}$ correspond to permutations and reversal sets correspond to inversions.

Theorem (Stanley 1984)

 $|\mathcal{A}(n,k)|$ is equal to the number of standard Young tableaux of shape $(n-1, n-2, \ldots, 1)$.

Question: Is there a closed formula for $|\mathcal{B}(n,2)|$?

Fact

The weak Bruhat order on \mathfrak{S}_n is isomorphic to $\mathcal{B}(n,1) \cong \mathcal{C}(n,2)$. Admissible orders on $\binom{[n]}{1}$ correspond to permutations and reversal sets correspond to inversions.

Theorem (Stanley 1984)

 $|\mathcal{A}(n,k)|$ is equal to the number of standard Young tableaux of shape $(n-1, n-2, \ldots, 1)$.

Question: Is there a closed formula for $|\mathcal{B}(n,2)|$?

This is still **open**!

Theorem (Ziegler, 1993)

For $n \ge 4$ we have

$$|\mathcal{B}(n, n)| = 1$$

 $|\mathcal{B}(n, n - 1)| = 2$
 $|\mathcal{B}(n, n - 2)| = 2n$
 $|\mathcal{B}(n, n - 3)| = 2^{n} + n2^{n-2} - 2n$

Theorem (Ziegler, 1993)

For $n \ge 4$ we have

$$|\mathcal{B}(n, n)| = 1$$

 $|\mathcal{B}(n, n - 1)| = 2$
 $|\mathcal{B}(n, n - 2)| = 2n$
 $|\mathcal{B}(n, n - 3)| = 2^{n} + n2^{n-2} - 2n$

Theorem (Balko, 2019)

For $k \ge 2$ and sufficiently large $n \gg k$, we have

$$\frac{n^k}{(k+1)^{4(k+1)}} \le \log_2 |\mathcal{B}(n,k)| \le \frac{2^{k-1}n^k}{k!}$$

Theorem (Balko, 2019)

For $k \ge 2$ and sufficiently large $n \gg k$, we have

$$\frac{n^k}{(k+1)^{4(k+1)}} \le \log_2 |\mathcal{B}(n,k)| \le \frac{2^{k-1}n^k}{k!}$$

Theorem

For sufficiently large k and $n \gg k$, we have

$$\frac{n^k}{\sqrt{24\pi k} (k+1)!} \le \log_2 |\mathcal{B}(n,k)| \le \frac{n^k}{k! \log 2}$$

Deletion, Contraction, and Weaving Functions

For $I \subseteq {\binom{[n]}{k}}$, the deletion of *I* is

$$l \setminus n = l \cap \binom{[n-1]}{k}.$$

For $I \subseteq {[n] \choose k}$, the deletion of *I* is

$$l \setminus n = l \cap \binom{[n-1]}{k}.$$

Definition

For $I \subseteq {\binom{[n]}{k}}$, the contraction of I is $I/n = \{X \setminus \{n\} : X \in I \text{ and } n \in X\}.$

For a total order ρ on $\binom{[n]}{k}$, the deletion $\rho \setminus n$ is the total order obtained by restricting to $\binom{[n-1]}{k}$.

For a total order ρ on $\binom{[n]}{k}$, the deletion $\rho \setminus n$ is the total order obtained by restricting to $\binom{[n-1]}{k}$.

Definition

For a total order ρ on $\binom{[n]}{k}$, the contraction ρ/n is the total order on $\binom{[n-1]}{k-1}$ where X < Y if and only if $X \cup \{n\} < Y \cup \{n\}$ in ρ .

Example

Let $\rho = (23, 13, 24, 14, 12, 34) \in \mathcal{A}(4, 2)$ and $I = \text{Rev}(\rho) = \{123, 124\}$. Then

> $\rho \setminus 4 = (23, 13, 12)$ $\rho/4 = (2, 1, 3)$ $l \setminus 4 = \{123\}$ $l/4 = \{12\}$

Lemma

For all $\rho \in \mathcal{A}(n, k)$ we have $\rho \setminus n \in \mathcal{A}(n - 1, k)$ and $\rho/n \in \mathcal{A}(n - 1, k - 1)$. Furthermore,

 $\operatorname{Rev}(\rho \setminus n) = \operatorname{Rev}(\rho) \setminus n, \text{ and}$ $\operatorname{Rev}(\rho/n) = \operatorname{Rev}(\rho)/n, \text{ and}$

Lemma

For all $\rho \in \mathcal{A}(n, k)$ we have $\rho \setminus n \in \mathcal{A}(n - 1, k)$ and $\rho/n \in \mathcal{A}(n - 1, k - 1)$. Furthermore,

 $\operatorname{Rev}(\rho \setminus n) = \operatorname{Rev}(\rho) \setminus n, \text{ and}$ $\operatorname{Rev}(\rho/n) = \operatorname{Rev}(\rho)/n, \text{ and}$

Lemma

For all $l \in C(n, k)$ we have $l \setminus n \in C(n - 1, k)$ and $l/n \in C(n - 1, k - 1)$.

Lemma

The map from C(n, k) to $C(n - 1, k) \times C(n - 1, k - 1)$ that sends *I* to $(I \setminus n, I/n)$ is injective.

Proof.

A consistent set $l \in C(n, k)$ can be recovered from $(l \setminus n, l/n)$ by the equation

 $I = (I \setminus n) \cup \{X \cup \{n\} : X \in I/n\}.$

Frame Title

Example

Let $\rho = (23, 24, 25, 45, 13, 15, 35, 14, 34, 12) \in \mathcal{A}(5, 2)$. Then

 $W_{\rho}(1) = 0000$ $W_{\rho}(2) = 0001$ $W_{\rho}(3) = 0011$ $W_{\rho}(4) = 1011$ $W_{\rho}(5) = 1111.$

Example Let $\rho = (23, 24, 25, 45, 13, 15, 35, 14, 34, 12) \in \mathcal{A}(5, 2)$. Then $W_{\rho}(1) = 0000$

 $W_{\rho}(1) = 0000$ $W_{\rho}(2) = 0001$ $W_{\rho}(3) = 0011$ $W_{\rho}(4) = 1011$ $W_{\rho}(5) = 1111.$

Theorem

For integers $1 \le k \le n$ and $[\rho], [\sigma] \in \mathcal{B}(n, k)$, $[\rho] = [\sigma]$ if and only if $W_{\rho} = W_{\sigma}$.

Proof of Theorem

Theorem

For sufficiently large k and $n \gg k$, we have

$$\frac{n^k}{\sqrt{24\pi k} (k+1)!} \leq \log_2 |\mathcal{B}(n,k)| \leq \frac{n^k}{k! \log 2}.$$

Proof of Upper Bound

Induction on k with base case k = 2.

$$\begin{aligned} \log_2 |\mathcal{B}(n,2)| &\leq \log_2 \prod_{i=1}^n \binom{n-1}{i-1} \\ &\leq \frac{n^2}{2\log 2} + O(n\log n) \end{aligned}$$

Inductive step. Suppose $\log_2 |\mathcal{B}(n, k-1)| \leq \frac{n^{k-1}}{(k-1)! \log 2}$. Then

$$\begin{aligned} |\mathcal{C}(n,k+1)| &\leq |\mathcal{C}(n-1,k+1)| \cdot |\mathcal{C}(n-1,k)| \\ &\leq |\mathcal{C}(n-2,k+1)| \cdot |\mathcal{C}(n-2,k)| \cdot |\mathcal{C}(n-1,k)| \\ &\vdots \\ &\leq \prod_{m=k}^{n-1} |\mathcal{C}(m,k)|. \end{aligned}$$

Inductive step. Suppose $\log_2 |\mathcal{B}(n, k-1)| \leq \frac{n^{k-1}}{(k-1)! \log 2}$. Then

$$\begin{aligned} |\mathcal{C}(n,k+1)| &\leq |\mathcal{C}(n-1,k+1)| \cdot |\mathcal{C}(n-1,k)| \\ &\leq |\mathcal{C}(n-2,k+1)| \cdot |\mathcal{C}(n-2,k)| \cdot |\mathcal{C}(n-1,k)| \\ &\vdots \\ &\leq \prod_{m=k}^{n-1} |\mathcal{C}(m,k)|. \end{aligned}$$
Thus $|\mathcal{B}(n,k)| \leq \prod_{m=k}^{n-1} |\mathcal{B}(m,k-1)|.$

Inductive step. Suppose $\log_2 |\mathcal{B}(n, k-1)| \leq \frac{n^{k-1}}{(k-1)! \log 2}$. Then

$$|\mathcal{B}(n,k)| \leq \prod_{m=k}^{n-1} |\mathcal{B}(m,k-1)|.$$

Inductive step. Suppose $\log_2 |\mathcal{B}(n, k-1)| \leq \frac{n^{k-1}}{(k-1)! \log 2}$. Then

$$|\mathcal{B}(n,k)| \leq \prod_{m=k}^{n-1} |\mathcal{B}(m,k-1)|.$$

Taking logs gives

$$\log_2 |\mathcal{B}(n,k)| \le \sum_{m=k}^{n-1} \frac{m^{(k-1)}}{(k-1)! \log 2} \le \frac{n^k}{k! \log 2}.$$

Definition

For $X \in {\binom{[n]}{k}}$, the copacket of X is $P^*(X) = \{X \cup \{i\} : i \in [n] \setminus X\}.$

Definition

For $X \in {[n] \choose k}$, the copacket of X is

$$P^*(X) = \{X \cup \{i\} : i \in [n] \setminus X\}.$$

Definition

A total order ρ on $\binom{[n]}{k}$ is coadmissible if for every $X \in \binom{[n]}{k-1}$, the restriction $\rho|_{P^*(X)}$ is the lex or antilex order on $P^*(X)$.

Definition

For $X \in {[n] \choose k}$, the copacket of X is

$$P^*(X) = \{X \cup \{i\} : i \in [n] \setminus X\}.$$

Definition

A total order ρ on $\binom{[n]}{k}$ is coadmissible if for every $X \in \binom{[n]}{k-1}$, the restriction $\rho|_{P^*(X)}$ is the lex or antilex order on $P^*(X)$.

Definition

A subset $I \subset {\binom{[n]}{k}}$ is coconsistent if $P^*(X) \cap I$ is a prefix or suffix of X in lex order for all $X \in {\binom{[n]}{k-1}}$.

Definition

The dual higher Bruhat order $\mathcal{B}^*(n,k)$ is $\mathcal{A}^*(n,k)/\sim$ with partial order induced by $[\rho] \leq [\sigma]$ if and only if some $\rho' \in [\rho]$ and $\sigma' \in [\sigma]$ differ by a **copacket** flip from lex to antilex.

Definition

The dual higher Bruhat order $\mathcal{B}^*(n,k)$ is $\mathcal{A}^*(n,k)/\sim$ with partial order induced by $[\rho] < [\sigma]$ if and only if some $\rho' \in [\rho]$ and $\sigma' \in [\sigma]$ differ by a **copacket** flip from lex to antilex.

Definition

The dual higher Bruhat order $C^*(n, k)$ is the coconsistent subsets of $\binom{[n]}{k+1}$ with partial order induced by $I \leq J$ if and only if $J = I \cup \{X\}$ for some $X \in \binom{[n]}{k}$.

Definition

The dual higher Bruhat order $\mathcal{B}^*(n,k)$ is $\mathcal{A}^*(n,k)/\sim$ with partial order induced by $[\rho] < [\sigma]$ if and only if some $\rho' \in [\rho]$ and $\sigma' \in [\sigma]$ differ by a **copacket** flip from lex to antilex.

Definition

The dual higher Bruhat order $C^*(n, k)$ is the coconsistent subsets of $\binom{[n]}{k+1}$ with partial order induced by $I \leq J$ if and only if $J = I \cup \{X\}$ for some $X \in \binom{[n]}{k}$.

Theorem

The map $[\rho] \mapsto \text{Corev}(\rho)$ is a poset isomorphism between $\mathcal{B}^*(n,k)$ and $\mathcal{C}^*(n,k-1)$.

Theorem

The following diagram of poset isomorphisms commutes.

$$\begin{array}{ccc} \mathcal{B}(n,k) & \xrightarrow{\operatorname{Rev}} & \mathcal{C}(n,k+1) \\ & & & \downarrow^{\gamma} \\ \mathcal{B}^{*}(n,n-k) & \xrightarrow{\operatorname{Corev}} & \mathcal{C}^{*}(n,n-k-1), \end{array}$$

where β maps

$$(\rho_1,\ldots,\rho_\ell)\mapsto \left(\binom{[n]}{k}\setminus\rho_1,\ldots,\binom{[n]}{k}\setminus\rho_\ell\right)$$

and γ maps

 $I \mapsto \{[n] \setminus X : X \in I\}.$

Theorem

For sufficiently large k and $n \gg k$, we have

$$\frac{n^k}{\sqrt{24\pi k}(k+1)!} \le \log_2 |\mathcal{B}(n,k)| \le \frac{n^k}{k!\log 2}$$

Theorem

For sufficiently large k and $n \gg k$, we have

$$\frac{n^k}{\sqrt{24\pi k}(k+1)!} \le \log_2 |\mathcal{B}(n,k)| \le \frac{n^k}{k!\log 2}.$$

Theorem

For sufficiently large k and $n \gg k$, we have

$$\frac{n^{k-2}}{\sqrt{24\pi(k-2)} (k-1)!} \le \log_2 |\mathcal{B}^*(n,k)| \le \frac{n^{k-2}}{(k-2)!}$$

Thank you!