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The higher Bruhat orders have connections to:
- Topology of discriminantal arrangements (Manin, Schechtman
1989)
- Single element extensions of alternating matroids (Ziegler 1993)
- Pseudoline arrangements (Felsner 1997)

- Rhombic tilings (Elnitsky 1997) (Escobar, Pechenik, Tenner, Yong
2018)

- Maximal weakly separated set-systems (Danilov, Karzanov,
Koshevoy 2010)

- Cup-i coproducts defining Steenrod squares in cohomology
(Laplante-Anfossi, Williams 2023)
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Weak Bruhat Order on &,

The on &, is a partial order where v < w if
some reduced word for v is a prefix of some reduced word for w.

Equivalently, the weak Bruhat order is the transitive closure of cover
relations v < w if and only if Inv(w) = Inv(v) U {(i,))}.

Example (n = 3)

321 010201 = 020107 {12,13,23}
231 312 o102 0201 {12,13} {13,23}
213 132 07 02 {12} {23}

123 (%] %)
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Definition (Manin-Schechtman)
The of X = (1, ..., xe) € (1) is P(X) = {Xks X1, - -, Xa}
where X; = X'\ {X;}.
The order on P(X) is Xg, ..., X; and the orderis Xq, ..., X
Two sets X, Y € () if P(X) N P(Y) = 2.
Example (n =5,k = 3)
Let X = (1,2,3), Y = (1,3,4), Z= (3,4,5). Then
P(X) = {12,13,23},
P(Y) = {13, 14,34},
P(Z) = {34,35,45}.

X and Y do not commute. Y and Z do not commute. But X and Z
commute.
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Admissible Orders

Definition (Manin-Schechtman)

A total order p on ([Q]) is if plpex) is the lex or antilex
order for every X € ().

A(n, k) := admissible orders on (I7).

Definition (Manin-Schechtman)
The of p € A(n,R) is

Rev(p) = {X: p|p(x) is antilex order}.
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Admissible Orders

p, p differ by a if p/ is obtained by transposing two
commuting sets X, Y.

[p] = admissible orders commutation equivalent to p.

p, p’ differ by a if P(X) is a saturated chain in p and p’ is
obtained by reversing the order of P(X).

Example (n = 4,k = 2)

P = (12,13, 14,23, 24, 34),
P = (12,13,23,14,24,34),
p® = (12,13,14,34, 24,23).

" and p® differ by commuting 14 and 23, and [p(] = {p("), p1.
p and p@) differ by flipping the packet P(234) from lex to antilex.
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Consistent Sets

Definition (Ziegler)
Asubset | C (1) is if 1 N P(X) is a prefix or suffix of P(X)

for every X € ([I1).

Lemma (Ziegler)

For every p € A(n, R), the reversal set Rev(p) € (,?[i]]) is consistent.

Example
{123,124} and {124,134,234} are consistent.

Rev(12,13, 14,34, 24,23) = {234} Is consistent.
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Higher Bruhat Orders

Definition (Manin-Schechtman)

The B(n,R) is A(n,R)/ ~ with partial order
induced by [p] < [o] if and only if some p’ € [p] and o’ € [o] differ by
a packet flip from lex to antilex.

Definition (Ziegler)

The C(n,k+1) is the consistent subsets of
(1) with partial order induced by I < if and only if j = 1 U {X} for
some X € (")

Theorem (Ziegler)
The map [p] — Rev(p) is a poset isomorphism between B(n, k) and
C(n,kR+1).



Higher Bruhat Orders

[34,24,23, 14,13, 12] {123,124, 134, 234}

PN P

(23, 24,34, 14,13, 12] [34,24,14,12,13,23] {123,124, 134} {124,134, 234}
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(23,13, 12, 14, 24, 34] [12,13, 14, 34, 24, 23] {123} {234}
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Higher Bruhat Orders

Fact

The weak Bruhat order on &, is isomorphic to B(n, 1) = C(n, 2).
Admissible orders on ([’]]) correspond to permutations and reversal
sets correspond to inversions.

Theorem (Stanley 1984)

| A(n,R)| is equal to the number of standard Young tableaux of
shape (n —1,n —2,...,1).

Question: Is there a closed formula for |B(n,2)|?

This is still open!
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Known Results

Theorem (Balko, 2019)
For R > 2 and sufficiently large n > R, we have

R R—1nk
n 2" 'n
< log, [B(n, k)| <

(R + 1)4(k+D) R!
Theorem
For sufficiently large k and n > k, we have
nl? kR
— <log, |B(n,R)| < ——.
V24rR (R+ 1)1~ & [B(n, K| < 77 log 2
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Deletion and Contraction

Definition
For | C ([”]) the of I'is
B [n=1]
IN\n=1InN ( k)
Definition
For 1 C (1), the of I'is

I/n={X\{n}:Xelandn e X}.
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Deletion and Contraction

Definition

For a total order p on ([Z]), the p\ n is the total order
obtained by restricting to (I"-™).

Definition

For a total order p on (1), the p/n is the total order on
(=) where X < Y ifand only if XU {n} < YU {n} in p.



Deletion and Contraction

Example
Let p = (23,13,24,14,12,34) € A(4,2) and | = Rev(p) = {123,124}.
Then

p\ 4 =(23,13,12)
p/4=(2,1,3)
I\ 4 = {123}
/4 = {12}
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Deletion and Contraction

Lemma
For all p € A(n,R) we have p\ n € A(n —1,R) and
p/n € A(n — 1,k —1). Furthermore,

Rev(p \ n) = Rev(p) \ n, and
Rev(p/n) = Rev(p)/n, and

Lemma
Forall I € C(n,R) we have I\n € C(n—1,R) and I/n € C(n — 1,k —1).



Deletion and Contraction

Lemma
The map from C(n,R) to C(n — 1,R) x C(n — 1,k — 1) that sends [ to
(I'\'n,I/n) is injective.

Proof.
A consistent set | € C(n, R) can be recovered from (/'\ n,I/n) by the
equation

I=({\n)u{Xu{n}:Xel/n}.



Frame Title



Weaving Functions

Example
Let p = (23,24,25,45,13,15, 35, 14, 34,12) € A(5,2). Then

W,(1) = 0000
W,(2) = 0001
W,(3) = 0071
W, (4) = 1011
W,(5) = 1M



Weaving Functions

Example
Let p = (23,24,25,45,13,15, 35, 14, 34,12) € A(5,2). Then

W,(1) = 0000
W,(2) = 0001
W,(3) = 0071
W, (4) = 1011
W,(5) = 1M

Theorem
For integers 1 < k < nand [p], [0] € B(n,R), [p] = [o] if and only if

W, = W,.



Proof of Theorem

Theorem
For sufficiently large k and n > k, we have

nh’ kR
——— <log, |B(n,R)| < ———.
Vaank (k) = o8 B RIS prics

Proof of Upper Bound
Induction on k with base case k = 2.

n
n—1
o8, 15(n. 2| < 1o, T (7~
=1

2

< —+0(nlogn
S Jiogz T Onloen)



Proof of Theorem

Proof of Upper Bound

Inductive step. Suppose log, [B(n, R —1)| < Then

(kR— 1)' IogZ

c(n,k+1)] < [c(n —1,k+1)| - [C(n —1,k)]
<|c(n=2,k+1)]-C(n =2,R)[-|C(n =1, R)|

n—1
< [ 1e(m, k).
m=R



Proof of Theorem

Proof of Upper Bound

Inductive step. Suppose log, [B(n, R —1)| < Then

(kR— 1)' IogZ

c(n,k+1)] < [c(n —1,k+1)| - [C(n —1,k)]
<|c(n=2,k+1)]-C(n =2,R)[-|C(n =1, R)|

n—1
< [ 1e(m, k).
m=R

Thus [B(n, k)| < TTm_y [B(m, k = 1)



Proof of Theorem

Proof of Upper Bound

Inductive step. Suppose log, |B(n, kR —1)| < Then

(k— 1)' IogZ

n—1

1B(n, k)| < T] 1B(m. k—1)].

m=~k



Proof of Theorem

Proof of Upper Bound

Inductive step. Suppose log, |B(n, kR —1)| < Then

(k— 1)' IogZ

n—1

1B(n, k)| < T] 1B(m. k—1)].

m=~k

Taking logs gives

n—1 (R—1)
log, [B(n, k) < 3 o
825N L (= T)llog2

nk

< —.
~ Rllog?2
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Duality

Definition
For x € (1)), the of X is
P*(X) = {XU{i} : i € [n] \ X}
Definition
A total order p on (1) is if for every X € ("), the

restriction plp-(x) is the lex or antilex order on P*(X).

Definition

Asubset | ¢ (1) is if P*(X) N 1is a prefix or suffix of X
in lex order for all X e (,?[1]1)
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Duality

Definition

The B*(n,R) is A*(n,R)/ ~ with partial
order induced by [p] < [o] if and only if some p’ € [p] and o’ € [o]
differ by a copacket flip from lex to antilex.

Definition
The C*(n,R) is the coconsistent subsets of
(1) with partial order induced by I < J if and only if J = 1 U {X} for

some X e (IM).

Theorem
The map [p] — Corev(p) is a poset isomorphism between B*(n, R)
and C*(n,R—1).



Duality

Theorem
The following diagram of poset isomorphisms commutes.

B(n,R) — 5 ¢(n,k+1)

Js b

B*(n,n — k) =*%% ¢*(n,n—k—1),

where 8 maps

@h“wmpﬁ<(%)\mru,cg>\m)

[ = {[n]\X: Xel}

and v maps
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Duality

Theorem
For sufficiently large k and n > k, we have

nfe R
— <log, |B(n,R)| < ——.
V24rR(R+ 1)1 & BN, K < 7 log 2

Theorem
For sufficiently large k and n > k, we have
nk=2 nk=2
< B*(n, k)| < .
(i) (e~ BB (R < Gy




Thank you!
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