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The higher Bruhat orders have connections to:

• Topology of discriminantal arrangements (Manin, Schechtman
1989)

• Single element extensions of alternating matroids (Ziegler 1993)
• Pseudoline arrangements (Felsner 1997)
• Rhombic tilings (Elnitsky 1997) (Escobar, Pechenik, Tenner, Yong
2018)

• Maximal weakly separated set-systems (Danilov, Karzanov,
Koshevoy 2010)

• Cup-i coproducts defining Steenrod squares in cohomology
(Laplante-Anfossi, Williams 2023)



Background



Weak Bruhat Order on Sn

σi := adjacent transposition swapping i and i+ 1

w0 := the longest permutation (n,n− 1, · · · , 1).

(i, j) is an inversion of w if i < j and w−1(i) > w−1(j).

A reduced expression for w is an expression σi1 · · ·σiℓ = w of minimal
length. The indices i1 · · · iℓ form a reduced word for w.

Example (n = 4)

w0 =
[
1 2 3 4
4 3 2 1

]
=

[
4 3 2 1

]
= σ1σ2σ3σ1σ2σ1.
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Weak Bruhat Order on Sn

The (right) weak Bruhat order on Sn is a partial order where v ≤ w if
some reduced word for v is a prefix of some reduced word for w.

Equivalently, the weak Bruhat order is the transitive closure of cover
relations v⋖ w if and only if Inv(w) = Inv(v) ∪ {(i, j)}.

Example (n = 3)

321

231 312

213 132

123

σ1σ2σ1 = σ2σ1σ2

σ1σ2 σ2σ1

σ1 σ2

∅

{12, 13, 23}

{12, 13} {13, 23}

{12} {23}

∅



Packets

Definition (Manin-Schechtman)
The packet of X = (x1, . . . , xk) ∈

([n]
k
)
is P(X) = {Xk, Xk−1, . . . , X1}

where Xi = X \ {xi}.

The lex order on P(X) is Xk, . . . , X1 and the antilex order is X1, . . . , Xk.

Two sets X, Y ∈
([n]
k
)
commute if P(X) ∩ P(Y) = ∅.

Example (n = 5, k = 3)
Let X = (1, 2, 3), Y = (1, 3, 4), Z = (3, 4, 5). Then

P(X) = {12, 13, 23},
P(Y) = {13, 14, 34},
P(Z) = {34, 35, 45}.

X and Y do not commute. Y and Z do not commute. But X and Z
commute.
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Admissible Orders

Definition (Manin-Schechtman)
A total order ρ on

([n]
k
)
is admissible if ρ|P(X) is the lex or antilex

order for every X ∈
( [n]
k+1

)
.

A(n, k) := admissible orders on
([n]
k
)
.

Definition (Manin-Schechtman)
The reversal set of ρ ∈ A(n, k) is

Rev(ρ) := {X : ρ|P(X) is antilex order}.
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Admissible Orders

ρ, ρ′ differ by a commutation if ρ′ is obtained by transposing two
commuting sets X, Y.

[ρ] := admissible orders commutation equivalent to ρ.

ρ, ρ′ differ by a packet flip if P(X) is a saturated chain in ρ and ρ′ is
obtained by reversing the order of P(X).

Example (n = 4, k = 2)

ρ(1) = (12, 13, 14, 23, 24, 34),
ρ(2) = (12, 13, 23, 14, 24, 34),
ρ(3) = (12, 13, 14, 34, 24, 23).

ρ(1) and ρ(2) differ by commuting 14 and 23, and [ρ(1)] = {ρ(1), ρ(2)}.

ρ(1) and ρ(3) differ by flipping the packet P(234) from lex to antilex.
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Consistent Sets

Definition (Ziegler)
A subset I ⊆

([n]
k
)
is consistent if I ∩ P(X) is a prefix or suffix of P(X)

for every X ∈
( [n]
k+1

)
.

Lemma (Ziegler)
For every ρ ∈ A(n, k), the reversal set Rev(ρ) ∈

( [n]
k+1

)
is consistent.

Example
{123, 124} and {124, 134, 234} are consistent.

Rev(12, 13, 14, 34, 24, 23) = {234} is consistent.
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Higher Bruhat Orders

Definition (Manin-Schechtman)
The higher Bruhat order B(n, k) is A(n, k)/ ∼ with partial order
induced by [ρ]⋖ [σ] if and only if some ρ′ ∈ [ρ] and σ′ ∈ [σ] differ by
a packet flip from lex to antilex.

Definition (Ziegler)
The higher Bruhat order C(n, k+ 1) is the consistent subsets of( [n]
k+1

)
with partial order induced by I⋖ J if and only if J = I ∪ {X} for

some X ∈
( [n]
k+1

)
.

Theorem (Ziegler)
The map [ρ] 7→ Rev(ρ) is a poset isomorphism between B(n, k) and
C(n, k+ 1).
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Higher Bruhat Orders

[34, 24, 23, 14, 13, 12]

[23, 24, 34, 14, 13, 12] [34, 24, 14, 12, 13, 23]

[23, 13, 24, 14, 12, 34] [12, 34, 14, 13, 24, 23]

[23, 13, 12, 14, 24, 34] [12, 13, 14, 34, 24, 23]

[12, 13, 14, 23, 24, 34]

{123, 124, 134, 234}

{123, 124, 134} {124, 134, 234}

{123, 124} {134, 234}

{123} {234}
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Higher Bruhat Orders

Fact
The weak Bruhat order on Sn is isomorphic to B(n, 1) ∼= C(n, 2).
Admissible orders on

(
[n]
1
)
correspond to permutations and reversal

sets correspond to inversions.

Theorem (Stanley 1984)
|A(n, k)| is equal to the number of standard Young tableaux of
shape (n− 1,n− 2, . . . , 1).

Question: Is there a closed formula for |B(n, 2)|?

This is still open!
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Known Results

Theorem (Ziegler, 1993)
For n ≥ 4 we have

|B(n,n)| = 1
|B(n,n− 1)| = 2
|B(n,n− 2)| = 2n
|B(n,n− 3)| = 2n + n2n−2 − 2n
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Known Results

Theorem (Balko, 2019)
For k ≥ 2 and sufficiently large n� k, we have

nk
(k+ 1)4(k+1) ≤ log2 |B(n, k)| ≤

2k−1nk
k! .

Theorem
For sufficiently large k and n� k, we have

nk√
24πk (k+ 1)!

≤ log2 |B(n, k)| ≤
nk

k! log 2 .



Known Results

Theorem (Balko, 2019)
For k ≥ 2 and sufficiently large n� k, we have

nk
(k+ 1)4(k+1) ≤ log2 |B(n, k)| ≤

2k−1nk
k! .

Theorem
For sufficiently large k and n� k, we have

nk√
24πk (k+ 1)!

≤ log2 |B(n, k)| ≤
nk

k! log 2 .



Deletion, Contraction, and
Weaving Functions



Deletion and Contraction

Definition
For I ⊆

([n]
k
)
, the deletion of I is

I \ n = I ∩
(
[n− 1]
k

)
.

Definition
For I ⊆

([n]
k
)
, the contraction of I is

I/n = {X \ {n} : X ∈ I and n ∈ X}.



Deletion and Contraction

Definition
For I ⊆

([n]
k
)
, the deletion of I is

I \ n = I ∩
(
[n− 1]
k

)
.

Definition
For I ⊆

([n]
k
)
, the contraction of I is

I/n = {X \ {n} : X ∈ I and n ∈ X}.



Deletion and Contraction

Definition
For a total order ρ on

([n]
k
)
, the deletion ρ \ n is the total order

obtained by restricting to
([n−1]

k
)
.

Definition
For a total order ρ on

([n]
k
)
, the contraction ρ/n is the total order on([n−1]

k−1
)
where X < Y if and only if X ∪ {n} < Y ∪ {n} in ρ.
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Deletion and Contraction

Example
Let ρ = (23, 13, 24, 14, 12, 34) ∈ A(4, 2) and I = Rev(ρ) = {123, 124}.
Then

ρ \ 4 = (23, 13, 12)
ρ/4 = (2, 1, 3)
I \ 4 = {123}
I/4 = {12}



Deletion and Contraction

Lemma
For all ρ ∈ A(n, k) we have ρ \ n ∈ A(n− 1, k) and
ρ/n ∈ A(n− 1, k− 1). Furthermore,

Rev(ρ \ n) = Rev(ρ) \ n, and
Rev(ρ/n) = Rev(ρ)/n, and

Lemma
For all I ∈ C(n, k) we have I \ n ∈ C(n− 1, k) and I/n ∈ C(n− 1, k− 1).



Deletion and Contraction

Lemma
For all ρ ∈ A(n, k) we have ρ \ n ∈ A(n− 1, k) and
ρ/n ∈ A(n− 1, k− 1). Furthermore,
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Deletion and Contraction

Lemma
The map from C(n, k) to C(n− 1, k)× C(n− 1, k− 1) that sends I to
(I \ n, I/n) is injective.

Proof.
A consistent set I ∈ C(n, k) can be recovered from (I \ n, I/n) by the
equation

I = (I \ n) ∪ {X ∪ {n} : X ∈ I/n}.



Frame Title



Weaving Functions

Example
Let ρ = (23, 24, 25, 45, 13, 15, 35, 14, 34, 12) ∈ A(5, 2). Then

Wρ(1) = 0000
Wρ(2) = 0001
Wρ(3) = 0011
Wρ(4) = 1011
Wρ(5) = 1111.

Theorem
For integers 1 ≤ k ≤ n and [ρ], [σ] ∈ B(n, k), [ρ] = [σ] if and only if
Wρ = Wσ .
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Proof of Theorem

Theorem
For sufficiently large k and n� k, we have

nk√
24πk (k+ 1)!

≤ log2 |B(n, k)| ≤
nk

k! log 2 .

Proof of Upper Bound
Induction on k with base case k = 2.

log2 |B(n, 2)| ≤ log2

n∏
i=1

(
n− 1
i− 1

)

≤ n2
2 log 2 + O(n log n)



Proof of Theorem

Proof of Upper Bound

Inductive step. Suppose log2 |B(n, k− 1)| ≤ nk−1
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Definition
For X ∈

([n]
k
)
, the copacket of X is

P∗(X) = {X ∪ {i} : i ∈ [n] \ X}.

Definition
A total order ρ on

([n]
k
)
is coadmissible if for every X ∈

( [n]
k−1

)
, the

restriction ρ|P∗(X) is the lex or antilex order on P∗(X).

Definition
A subset I ⊂

([n]
k
)
is coconsistent if P∗(X) ∩ I is a prefix or suffix of X

in lex order for all X ∈
( [n]
k−1

)
.
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Duality

Definition
The dual higher Bruhat order B∗(n, k) is A∗(n, k)/ ∼ with partial
order induced by [ρ]⋖ [σ] if and only if some ρ′ ∈ [ρ] and σ′ ∈ [σ]

differ by a copacket flip from lex to antilex.

Definition
The dual higher Bruhat order C∗(n, k) is the coconsistent subsets of( [n]
k+1

)
with partial order induced by I⋖ J if and only if J = I ∪ {X} for

some X ∈
([n]
k
)
.

Theorem
The map [ρ] 7→ Corev(ρ) is a poset isomorphism between B∗(n, k)
and C∗(n, k− 1).
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Duality

Theorem
The following diagram of poset isomorphisms commutes.

B(n, k) C(n, k+ 1)

B∗(n,n− k) C∗(n,n− k− 1),

Rev

β γ

Corev

where β maps

(ρ1, . . . , ρℓ) 7→
((

[n]
k

)
\ ρ1, . . . ,

(
[n]
k

)
\ ρℓ

)
and γ maps

I 7→ {[n] \ X : X ∈ I}.



Duality

Theorem
For sufficiently large k and n� k, we have

nk√
24πk(k+ 1)!

≤ log2 |B(n, k)| ≤
nk

k! log 2 .

Theorem
For sufficiently large k and n� k, we have

nk−2√
24π(k− 2) (k− 1)!

≤ log2 |B∗(n, k)| ≤ nk−2
(k− 2)! .
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Thank you!
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