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What is log-concavity?

A sequence a1, . . . , an ∈ R≥0 is log-concave if

a2k ≥ ak+1 ak−1 for all 1 < k < n.

Log-concavity (and positivity) implies unimodality:

a1 ≤ · · · ≤ am ≥ · · · ≥ an for some 1 ≤ m ≤ n.
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Example: binomial coefficients

ak =

(
n

k

)
k = 0, 1, . . . , n.

This sequence is log-concave because

a2k
ak+1 ak−1

=

(
n
k

)2(
n

k+1

) (
n

k−1
) =

(
1 +

1

k

)(
1 +

1

n − k

)
,

which is greater than 1.



Example: permutations with k inversions

ak = number of π ∈ Sn with k inversions,

where inversion of π is pair i < j s.t. πi > πj .

This sequence is log-concave because∑
0≤k≤(n

2)

ak q
k = [n]q! = (1+q) . . . (1+q . . .+qn−1)

is a product of log-concave polynomials.
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Log-concavity is a widespread phenomenon

observed in numerous subjects in mathematics.

Today we focus on log-concavity for

probabilities in posets.



Partially ordered sets

A poset P is a set X with a partial order ≺ on X .
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Linear extension

A linear extension L is a complete order of ≺.
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We write L(x) = k if x is k-th smallest in L.



Stanley’s inequality
Fix z ∈ P .

Nk is probability that L(z) = k ,

where L is uniform random linear extension of P .

Theorem (Stanley ‘81)
For every poset and k ≥ 1,

Nk
2 ≥ Nk+1Nk−1.

The inequality was initially conjectured by

Chung-Fishburn-Graham, and was proved using

Aleksandrov-Fenchel inequality for mixed volumes.



Our contribution

Problem

(Folklore, Graham ’83, Biró-Trotter ’11, Stanley ’14)
Give a combinatorial proof of Stanley’s inequality.

Answer (C.–Pak ‘21+)
More combinatorial proof for Stanley’s inequality,

with generalizations to weighted version.



Order-reversing weight

A weight ω : X → R>0 is order-reversing if

ω(x) ≥ ω(y) whenever x ≺ y .

Weight of linear extension L is

ω(L) :=
∏

L(x)<L(z)

ω(x).
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ω(L) = ω(a)
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ω(L) = ω(a)ω(b)



Weighted Stanley’s inequality

Let Nω,k be probability that L(z) = k ,

where Lω is ω-weighted random linear extension.

Theorem 1 (C.–Pak ‘21+)
For every poset and k ≥ 1,

Nω,k
2 ≥ Nω,k+1Nω,k−1.

Proof used combinatorial atlas method,

a new tool to establish log-concave inequalities.



Applications of log-concavity



1
3 – 2

3 Conjecture

Conjecture (Kislitsyn ’68, Fredman ’75, Linial ’84)
For finite poset that is not completely ordered, there

exist elements x , y :

1

3
≤ P

[
L(x) < L(y)

]
≤ 2

3
,

where L is uniform random linear extension of P.

Quote (Brightwell-Felsner-Trotter ’95)
“This problem remains one of the most intriguing

problems in the combinatorial theory of posets.”



Why 1
3 and 2

3?

The upper,lower bound are achieved by this poset:

z

y
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P
[
L(x) < L(y)

]
=

1

3
; P

[
L(y) < L(x)

]
=

2

3
.



The big breakthrough

Theorem (Kahn-Saks ’84)
For poset that is not completely ordered, there exist

elements x , y :

3

11
≤ P

[
L(x) < L(y)

]
≤ 8

11
,

roughly between 0.273 and 0.727.

Proof used log-concavity as a crucial component.



Proof sketch of Kahn-Saks Theorem

Find x , y ∈ P such that

|h(y)− h(x)| ≤ 1,

where h(x) := E[L(x)] and h(y) := E[L(y)].

Let Fk be probability that L(y)− L(x) = k .

P
[
L(x) < L(y)

]
= F1 + F2 + · · ·+ Fn,

P
[
L(y) < L(x)

]
= F−1 + F−2 + · · ·+ F−n.



Proof sketch of Kahn-Saks Theorem
Since |h(y)− h(x)| is small,

F1 + 2F2 + · · ·+ nFn ≈ F−1 + 2F−2 + · · ·+ nF−n.

One can hope this implies

F1 + F2 + · · ·+ Fn ≈ F−1 + F−2 + · · ·+ F−n,

which would then imply

P
[L(x) < L(y)

] ≈ P
[L(y) < L(x)

] ≈ 0.5.

But things can go really wrong:

F−4 F−3 F−2 F−1 F1 F2 F3 · · · Fn−2 Fn−1



Log-concavity comes to rescue

Theorem (Kahn–Saks ‘84)
For k 6= 0,

Fk
2 ≥ Fk+1 Fk−1,

F−k
2 ≥ F−(k+1) F−(k−1).

This generalizes Stanley’s inequality, and was

proved by Aleksandrov-Fenchel inequality.



Proof sketch of Kahn-Saks Theorem

Log-concavity (and other ineqs.) imply:

P[L(x) < L(y)] is maximized (resp. minimized)

when F1,F2, . . . ,Fn is geometric sequence,

P[L(y) < L(x)] is minimized (resp. maximized)

when F−1,F−2, . . . ,F−n is geometric sequence.

F−5 F−4 F−3 F−2 F−1 F1 F2 F3 F4 F5

Combined with |h(y)− h(x)| ≤ 1, the result follows.



Best known bound for 1
3 – 2

3 Conjecture

Theorem (Brightwell-Felsner-Trotter ’95)
For poset that is not completely ordered, there exist

elements x , y :

5−
√

5

10
≤ P

[
L(x) < L(y)

]
≤ 5 +

√
5

10
,

roughly between 0.276 and 0.724.

Note: Kahn–Saks bound was 0.273 and 0.727.

This bound cannot be improved for infinite posets.



Cross Product Conjecture



New ingredient: Cross Product Conjecture

Fix x , y , z ∈ P . Let F (k , `) be probability that

L(y)− L(x) = k and L(z)− L(y) = `.

Conjecture (Brightwell-Felsner-Trotter ’95)
For k , ` ≥ 1,

F (k , `)F (k + 1, ` + 1) ≤ F (k + 1, `)F (k , ` + 1).

Equivalently,

det

[
F (k , `) F (k , ` + 1)

F (k + 1, `) F (k + 1, ` + 1)

]
≤ 0.



What was known

Conjecture (Brightwell-Felsner-Trotter ’95)
For k , ` ≥ 1,

F (k , `)F (k + 1, ` + 1) ≤ F (k + 1, `)F (k , ` + 1).

Brightwell-Felsner-Trotter proved the case

k = ` = 1 by Ahlswede–Daykin inequality.

Combined with Kahn–Saks proof, this gives

the 5±
√
5

10 bound for 1
3 – 2

3 Conjecture.



What was known

Conjecture (Brightwell-Felsner-Trotter ’95)
For k , ` ≥ 1,

F (k , `)F (k + 1, ` + 1) ≤ F (k + 1, `)F (k , ` + 1).

Quote (Brightwell-Felsner-Trotter ’95)
“Something more powerful seems to be needed to

prove general form of Cross Product Conjecture.”



Our results

Theorem 2 (C.-Pak-Panova ’22)
Cross Product Conjecture is true for posets of

width two.

Proved algebraically using matrix algebra

argument and combinatorially through

Lindström–Gessel–Viennot type argument.



Our results

Theorem 3 (C.-Pak-Panova ‘23+)
For every poset and k , ` ≥ 1,

F (k , `)F (k + 1, ` + 1) < 2F (k + 1, `)F (k , ` + 1).

Proof is based on Favard’s inequality for mixed

volumes, for which factor of 2 is tight

for general geometric objects.

On the other hand, for specific classes

of posets this factor of 2 can be improved.



A new protagonist

We now shift the attention

from linear extensions to order-preserving maps.



Order-preserving maps

Fix poset P = (X ,≺).

A map M : X → {1, . . . , t} is order-preserving if

x ≺ y implies M(x) ≤ M(y).

Linear extensions are order-preserving maps

that are also bijections to {1, . . . , |X |}.



Previously on linear extensions ...

Log-concavity?
Solved: Stanley ‘81, Kahn–Saks ‘84, C.-Pak

Cross–product conjecture?

Open: Brightwell–Felsner–Trotter ‘95, C.-Pak-Panova ‘22

1
3
–2
3

Conjecture?

Open: Kahn–Saks ‘84, Brightwell–Felsner–Trotter ‘95

Can we improve on these results

for order-preserving maps?



Log-concavity for order-preserving maps



Graham’s conjecture

Fix z ∈ P and positive integer t.

Gk is probability that M(z) = k ,

where M is uniform random ord.-pres. map X → [t].

Conjecture (Graham ‘83)
For every poset and k ≥ 1,

G 2
k ≥ Gk+1 Gk−1.



Graham’s conjecture

Quote (Graham ‘83)
“It would seem that [the conjecture] should have a

proof based on the FKG or AD inequalities.

However, such a proof has up to now

successfully eluded all attempts to find it”.



What is Harris/FKG/AD inequalities?

They are fundamental inequalities in probability

that shows, in many random systems,

increasing events are positively correlated.

Example

For any a, b, c , d ∈ Zd in bond percolation,

P
[
a↔ b, c ↔ d

]
≥ P

[
a↔ b

]
P
[
c ↔ d

]
,

where a↔ b is event that a and b are connected.

Presence of one path increases probability of other path.



Graham’s conjecture is true

Theorem (Daykin–Daykin–Paterson ‘84)
For every poset and k ≥ 1,

G 2
k ≥ Gk+1 Gk−1.

Proof used an explicit injective argument,

not based on FKG/AD inequality.

Quote (Daykin–Daykin–Paterson ‘84)
“ [Proof using FKG or Ahlswede–Daykin inequality ]

have as yet eluded discovery”.



Our results

Theorem 4 (C.–Pak ‘22+)
New proof of Daykin–Daykin–Paterson inequality

based on Ahlswede–Daykin inequality, with

generalization to multi-weighted version.

This proof validates Graham’s prediction.



Cross product conjecture for

order-preserving maps



Our results

Fix x , y , z ∈ P and t ≥ 1. Let G (k , `) be probability

M(y)−M(x) = k and M(z)−M(y) = `,

where M is uniform random ord.-pres. map X → [t].

Theorem 5 (C.–Pak ’22+)
For all integers k , `,

G (k , `)G (k + 1, ` + 1) ≤ G (k + 1, `)G (k , ` + 1).

This proves cross product conjecture for

order-preserving maps.



Our results

Theorem (C.–Pak ‘22+)
For all integers k , `,

G (k , `)G (k + 1, ` + 1) ≤ G (k + 1, `)G (k , ` + 1).

Proof is based on same approach discovered when

proving Daykin–Daykin–Paterson inequality.

This approach does not work for linear extensions,

where inequality is known with factor of 2 in RHS.



1
3–2

3 Conjecture for order-preserving maps

Conjecture
For finite poset that is not completely ordered, there

exist elements x , y :

1

3
≤ lim

t→∞
P
[
Mt(x) <Mt(y)

]
≤ 2

3
,

where Mt is uniform random o.p. map X → [t].

This is in fact equivalent to 1
3–2

3 Conjecture

for linear extensions.

All recent advances unfortunately do not

improve known bounds for this conjecture.



Open problem



Kahn-Saks Conjecture

δ(P) is largest number such that there exist x , y ∈ P :

δ(P) ≤ P
[
L(x) < L(y)

]
≤ 1− δ(P).

Note that 1
3 – 2

3 Conjecture is equivalent to

δ(P) ≥ 1
3 for P not completely ordered.

Conjecture (Kahn-Saks ’84)

δ(P)→ 1

2
as width(P)→∞.



Kahn-Saks Conjecture

Conjecture (Kahn-Saks ’84)

δ(P)→ 1

2
as width(P)→∞.

Komlós ’90 proved Conjecture for posets

with Ω( n
log log log n) minimal elements.

C.-Pak-Panova ’21 proved Conjecture for

Young diagram posets with fixed width.



THANK YOU!

Webpage: www.math.rutgers.edu/~sc2518/
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