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What is log-concavity?
A sequence ai,...,a, € Ry is log-concave if

ai > ki1 k-1 forall 1 < k < n.

Log-concavity (and positivity) implies unimodality:

< ---<a,>-->a, forsome 1<m<n.
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Example: binomial coefficients

n
dy — (k) k:O,l,...,n.

This sequence is log-concave because

2
% ()

1 1
— = (1+3)(1+ ,
Akt k-1 (1) () ( k> ( n= k)

which is greater than 1.




Example: permutations with k inversions

ax = number of m € S, with k inversions,

where inversion of 7 is pair i <j s.t. m > 7.

This sequence is log-concave because

Z ax g = [n]y! = (1+q) ... (L+q...+q" ")
0<k=(2)

is a product of log-concave polynomials.
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Log-concavity is a widespread phenomenon

observed in numerous subjects in mathematics.

Today we focus on log-concavity for

probabilities in posets.



Partially ordered sets

A poset P is a set X with a partial order < on X.




Linear extension

A linear extension L is a complete order of <.
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We write L(x) = k if x is k-th smallest in L.



Stanley's inequality
Fix z € P.

Ny is probability that £(z) = k,
where L is uniform random linear extension of P.

Theorem (Stanley ‘81)
For every poset and k > 1,

N2 > Nigq Nes.

The inequality was initially conjectured by
Chung-Fishburn-Graham, and was proved using

Aleksandrov-Fenchel inequality for mixed volumes.



Our contribution

Problem

(Folklore, Graham '83, Biré-Trotter '11, Stanley '14)
Give a combinatorial proof of Stanley’s inequality.

Answer (C.—Pak 21+)
More combinatorial proof for Stanley’s inequality,

with generalizations to weighted version.




Order-reversing weight
A weight w : X — R is order-reversing if
w(x) > w(y) whenever  x < y.

Weight of linear extension L is




Weighted Stanley's inequality

Let N, x be probability that £(z) = k,

where L, is w-weighted random linear extension.

Theorem 1 (C.—Pak ‘21+)
For every poset and k > 1,

2
Nw,k > Nw,k+1 Nw,k—l-

Proof used combinatorial atlas method,

a new tool to establish log-concave inequalities.



Applications of log-concavity
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Conjecture

Conjecture (Kislitsyn '68, Fredman '75, Linial '84)
For finite poset that is not completely ordered, there

exist elements x, y:

S o< PL<y)] = 3

where L is uniform random linear extension of P.

Quote (Brightwell-Felsner-Trotter '95)
“This problem remains one of the most intriguing

problems in the combinatorial theory of posets.”




Why % and 27

The upper,lower bound are achieved by this poset:
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P[L(x) < L(y)] = %; P[L(y) < L(x)] =

2
3



The big breakthrough

Theorem (Kahn-Saks '84)
For poset that is not completely ordered, there exist

elements x, y:

2o Plew <L) < o

roughly between 0.273 and 0.727.

Proof used log-concavity as a crucial component.



Proof sketch of Kahn-Saks Theorem

Find x,y € P such that
h(y) = h(x)] < 1,
where h(x) :=E[L(x)] and h(y) := E[L(y)].

Let Fy be probability that L(y) — L(x) = k.

P[L(x) < L(y)] = Fi+F+-+ Fy,
P{L(y) < L(x)] = Faa+Fo+-+ F,.



Proof sketch of Kahn-Saks Theorem
Since |h(y) — h(x)| is small,
Fr+2F+---+nF, ~ F_1+2F ,+---+nF_,.
One can hope this implies
Fir+t+F+--+F =~ F1+Fo+---+F,,

which would then imply
P[L(x) < L(y)] =~ P[L(y) < L(x)] ~ 0.5.

But things can go really wrong:




Log-concavity comes to rescue

Theorem (Kahn—Saks ‘84)
For k 0,

y
N
V

> Fry1 Fra,
Foi> > Fo(ky) Pk

This generalizes Stanley’s inequality, and was
proved by Aleksandrov-Fenchel inequality.



Proof sketch of Kahn-Saks Theorem
Log-concavity (and other inegs.) imply:
e P[L(x) < L(y)] is maximized (resp. minimized)

when Fi, F», ..., F, is geometric sequence,

o P[L(y) < L(x)] is minimized (resp. maximized)

when F_1, F 5, ..., F_, is geometric sequence.
Fs F,4,4 Fg -2 - Fy F» F3 Fy Fs

Combined with |h(y) — h(x)| < 1, the result follows.



Best known bound for % — % Conjecture

Theorem (Brightwell-Felsner-Trotter '95)
For poset that is not completely ordered, there exist

elements x, y:

5_10\/3 < P[L(x) < L(y)]

roughly between 0.276 and 0.724.

5+ 5
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Note: Kahn—Saks bound was 0.273 and 0.727.

This bound cannot be improved for infinite posets.



Cross Product Conjecture



New ingredient: Cross Product Conjecture

Fix x,y,z € P. Let F(k,{) be probability that
L(y)—L(x)=k and L(z)— L(y)="/.

Conjecture (Brightwell-Felsner-Trotter '95)
For k,¢ > 1,

F(k,O)F(k+1,6+1) < F(k+1,0)F(k,(+1).

Equivalently,
F(k,?) F(k,0+1)
F(k+1,0) F(k+1,0+1)



What was known

Conjecture (Brightwell-Felsner-Trotter '95)
For k.0 > 1,

F(k,)F(k+1,04+1) < F(k+1,0)F(k,¢+1).

Brightwell-Felsner-Trotter proved the case

k = ¢ = 1 by Ahlswede—Daykin inequality.

Combined with Kahn—Saks proof, this gives
the %ﬁ bound for 1 — 2 Conjecture.



What was known

Conjecture (Brightwell-Felsner-Trotter '95)
For k.0 > 1,

F(k,)F(k+1,04+1) < F(k+1,0)F(k,¢+1).

Quote (Brightwell-Felsner-Trotter '95)
“Something more powerful seems to be needed to

prove general form of Cross Product Conjecture.”




Our results

Theorem 2 (C.-Pak-Panova '22)

Cross Product Conjecture is true for posets of
width two.

Proved algebraically using matrix algebra
argument and combinatorially through

Lindstrom—Gessel-Viennot type argument.



Our results

Theorem 3 (C.-Pak-Panova 23+)
For every poset and k,{ > 1,

F(k,O)F(k+1,0+1) < 2F(k+1,0)F(k, 0 +1).

Proof is based on Favard's inequality for mixed
volumes, for which factor of 2 is tight

for general geometric objects.

On the other hand, for specific classes

of posets this factor of 2 can be improved.



A new protagonist

We now shift the attention

from linear extensions to order-preserving maps.



Order-preserving maps

Fix poset P = (X, <).
A map M: X — {1,... t} is order-preserving if
X<y implies M(x) < M(y).

Linear extensions are order-preserving maps
that are also bijections to {1,...,|X|}.



Previously on linear extensions ...

@ Log-concavity?
Solved: Stanley ‘81, Kahn-Saks ‘84, C.-Pak

@ Cross—product conjecture?
Open: Brightwell-Felsner-Trotter ‘95, C.-Pak-Panova ‘22

@ 1-Z Conjecture?
Open: Kahn-Saks ‘84, Brightwell-Felsner—Trotter ‘95

Can we improve on these results

for order-preserving maps?



Log-concavity for order-preserving maps



Graham'’s conjecture

Fix z € P and positive integer t.
Gy is probability that M(z) = k,

where M is uniform random ord.-pres. map X — [t].

Conjecture (Graham '83)
For every poset and k > 1,

Gf > Gi1 Gyt




Graham'’s conjecture

Quote (Graham ‘83)

“It would seem that [the conjecture| should have a
proof based on the FKG or AD inequalities.
However, such a proof has up to now

successfully eluded all attempts to find it”.




What is Harris/FKG/AD inequalities?

They are fundamental inequalities in probability
that shows, in many random systems,

increasing events are positively correlated.

Example

For any a, b, c,d € Z9 in bond percolation,
P[a<—>b,c<—>d] > ]P’[a<—>b] ]P’[c<—>d],

where a <> b is event that a and b are connected.

v

Presence of one path increases probability of other path.



Graham'’s conjecture is true

Theorem (Daykin—Daykin—Paterson ‘84)
For every poset and k > 1,

Gf > Gyi1 Gyt

Proof used an explicit injective argument,
not based on FKG/AD inequality.

Quote (Daykin—Daykin—Paterson ‘34)
“[Proof using FKG or Ahlswede—Daykin inequality]|

have as yet eluded discovery”.




Our results

Theorem 4 (C.-Pak 22+)
New proof of Daykin—Daykin—Paterson inequality
based on Ahlswede—Daykin inequality, with

generalization to multi-weighted version.

This proof validates Graham's prediction.



Cross product conjecture for

order-preserving maps



Our results
Fix x,y,z€ P and t > 1. Let G(k,{) be probability
M(y) = M(x) = k and M(z) — M(y) =¢,

where M is uniform random ord.-pres. map X — [t].

Theorem 5 (C.—Pak '22+)
For all integers k, /¢,

G(k,l)G(k+1,4+1) < G(k+1,0)G(k,(+1).

This proves cross product conjecture for

order-preserving maps.



Our results

Theorem (C.—Pak 22+)
For all integers k., ¢,

G(k,l)G(k+1,4+1) < G(k+1,0)G(k,(+1).

Proof is based on same approach discovered when

proving Daykin—Daykin—Paterson inequality.

This approach does not work for linear extensions,

where inequality is known with factor of 2 in RHS.
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¢ Conjecture for order-preserving maps

Conjecture
For finite poset that is not completely ordered, there

exist elements x, y:

% < lim P[M(x) < Mi(y)] < .

t—00 3 ’

where M is uniform random o.p. map X — [t].

This is in fact equivalent to %—% Conjecture

for linear extensions.

All recent advances unfortunately do not

improve known bounds for this conjecture.




Open problem



Kahn-Saks Conjecture

d(P) is largest number such that there exist x, y € P:
5(P) < P[L(x) < L(y)] < 1-5(P).

Note that % - % Conjecture is equivalent to
6(P) > 3 for P not completely ordered.

Conjecture (Kahn-Saks '84)

1
o(P) — 5 width(P) — oo.




Kahn-Saks Conjecture

Conjecture (Kahn-Saks '84)

1
o(P) — 5 width(P) — oo.

Komlds '90 proved Conjecture for posets

with Q( minimal elements.

Togloglogn)
log log log n

C.-Pak-Panova '21 proved Conjecture for

Young diagram posets with fixed width.



THANK YOU!

Webpage: www.math.rutgers.edu/~sc2518/
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