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Symmetric Functions

Formal power series f ∈ C[[x1, x2, x3, . . . ]] invariant under any
permutation of its indices

2x21x2 + 2x1x
2
2 + 2x21x3 + 2x1x

2
3 + · · · ✓

2x21x2 − 3x1x
2
2 + 2x21x3 + 2x1x

2
3 + · · · X

Sym = {symmetric functions}

Set of generators for Sym (complete homogeneous sym. functions)

For r ∈ Z>0, hr =
∑

i1≤···≤ir
xi1 · · · xir and with h0 = 1.

Symn = {symmetric functions of homogeneous degree n}

Basis of Symn

For λ = (λ1, λ2, . . . , λℓ) ⊢ n (partition of n), hλ = hλ1hλ2 · · · hλℓ
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Schur functions

Semistandard Young tableau (SSYT) of shape λ: a filling of a
diagram of λ by positive integers that has

weakly increasing rows, and

strictly increasing columns.

1 2 2 3 4

2 3 5 5 6

4 5

6

shape=λ=(5,5,2,1)
content=µ=(1,3,2,2,3,2)

xT :=
∏
i≥1

x# of i in T
i

= x1x
3
2x

2
3x

2
4x

3
5x

2
6

Schur function sλ of shape λ

sλ =
∑

T∈SSYTλ

xT

Jacobi–Trudi identity

sλ = det(hλi+j−i )
ℓ(λ)
i ,j=1

where h−k = 0 for k > 0
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The Kostka matrix

The (λ, µ) entry of the Kostka matrix K is the Kostka number
Kλ,µ of SSYT T of shape λ and content µ.

K = (Kλ,µ) =



4 31 22 211 1111

4 1 1 1 1 1
31 0 1 1 2 3
22 0 0 1 1 2
211 0 0 0 1 3
1111 0 0 0 0 1


Proposition (K is the transition matrix between h and s)

For all µ ⊢ n,

hµ =
∑
λ⊢n

Kλ,µsλ
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Inverse Kostka matrix

K is upper unitriangular, so it has an inverse.
1 1 1 1 1
0 1 1 2 3
0 0 1 1 2
0 0 0 1 3
0 0 0 0 1




1 −1 0 1 −1
0 1 −1 −1 2
0 0 1 −1 1
0 0 0 1 −3
0 0 0 0 1


K K−1

Two combinatorial interpretation of K−1 (in this talk):

Special rim hook tableaux (Eğecioğlu–Remmel 1990)

Tunnel hook coverings (Allen–Mason 2023)

← use this!
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Special rim hook tableaux (Eğecioğlu–Remmel 1990)

Special rim hook tableaux: covering of the diagram with lattice
paths with a cell in the leftmost column
SRTλ,µ = { special rim hook tableaux with content λ and shape µ}

Theorem (Eğecioğlu–Remmel 1990)

K−1
λ,µ =

∑
T∈SRTλ,µ

sgn(T )

Example (K−1
(421),(2221) = 0)

(−1)2 +(−1)3

Example (K−1
(2221),(2221) = 1)

(−1)0

sgn(T ) = (−1)# of rows crossed
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Matrix problems

Eğecioğlu–Remmel: Can we prove these identities combinatorially?
1 1 1 1 1
0 1 1 2 3
0 0 1 1 2
0 0 0 1 3
0 0 0 0 1


K

·


1 −1 0 1 −1
0 1 −1 −1 2
0 0 1 −1 1
0 0 0 1 −3
0 0 0 0 1


K−1

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


I

1 −1 0 1 −1
0 1 −1 −1 2
0 0 1 −1 1
0 0 0 1 −3
0 0 0 0 1


K−1

·


1 1 1 1 1
0 1 1 2 3
0 0 1 1 2
0 0 0 1 3
0 0 0 0 1


K

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


I

Eğecioğlu–Remmel provided a combinatorial proof of KK−1 = I ,
but left K−1K = I as an open problem.
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Proving K−1K = I combinatorially


1 −1 0 1 −1

31 0 1 −1 −1 2
0 0 1 −1 1
0 0 0 1 −3
0 0 0 0 1


K−1↔SRTλ,ρ



211

1 1 1 1 1
0 1 1 2 3
0 0 1 1 2
0 0 0 1 3
0 0 0 0 1


K↔SSYTρ,µ

=


1 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


I

0 =
∑
ρ⊢4

K−1
31,ρK

−1
ρ,211 =

∑
(T ,S)

sgn(T )

where the sum is over all pairs (T , S) of SRT T of content λ = 31
and SSYT S of content µ = 211 of the same shape.
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Proving K−1K = I combinatorially

Problem

Let λ ̸= µ. To show

0 =
∑
ρ⊢n

K−1
λ,ρKρ,µ =

∑
(T ,S)

sgn(T )

combinatorially, construct a sign-reversing involution on the set of
pairs (T , S) where

T is a special rim hook tableau of content λ

S is a semistandard Young tableau of content µ

T and S have the same shape.

(ie an involution s.t. if (T ,S) 7→ (V ,U) then sgn(V ) = − sgn(T ))

For λ = µ, it is enough to note that there is only one pair (T , S).
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Sign-reversing involution of Sagan and Lee (2006)

Comb. proof of K−1K for final column (Sagan–Lee (2006))

SL construct a sign-reversing involution on set of pairs (T ,S)
where S has content (1n).

SL involution: construct a sequence of overlapping rooted special
rim-hook tableaux by applying certain involutions at each step,
ending with a special rim-hook tableaux of opposite sign.

Application: solution to special case of Stanley–Stembridge
e-positivity conjecture for chromatic symmetric functions
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Noncommutative symmetric functions (GKLRT 1995)

Recall: Sym = C[h1, h2, . . . ]. The hi are commuting variables.

Noncommutative symmetric functions (NSym)

NSym = C⟨H1,H2, . . . ⟩, where H1,H2, . . . , is a set of
noncommuting variables with deg(Hi ) = i for each i .

Complete homogeneous noncommutative symmetric functions

H1,H2, . . . , with H0 = 1.

NSymn = {NSym functions of homogeneous degree n}

Basis for NSymn

For α = (α1, . . . , αℓ) ⊨ n (α is a composition of n),
Hα := Hα1Hα2 · · ·Hαℓ

forgetful map: NSym→ Sym, Hα 7→ hα.
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Jacobi–Trudi identities

Recall the Jacobi–Trudi identity : sλ = det(hλi−i+j)

s211 =

∣∣∣∣∣∣∣
h2 h3 h4
1 h1 h2
0 1 h1

∣∣∣∣∣∣∣ = h4 − h31 − h22 + h211 =
∑

λ K
−1
λ,211hλ

(BBSSZ 2014) Immaculate Function Sα := det(Hαi−i+j)

S121 =

∣∣∣∣∣∣∣
H1 H2 H3

H1 H2 H3

0 1 H1

∣∣∣∣∣∣∣ = H121 − H13 − H211 + H31

Note: χ(Sα) = sα

K. Celano How to prove that K−1K = I



Immaculate Tableaux (BBSSZ 2014)

Immaculate tableaux (IT) of shape α: a fill-
ing of the diagram of α by positive integers
that has weakly increasing rows and strictly
increasing 1st column.

1 2 10

2 8 9 9 21

6 7

21
Note: A semistandard Young tableau is an immaculate tableau.

Noncommutative Kostka number K̃α,β: the number of immaculate
tableaux of shape α and content β.

Noncommutative Kostka matrix K̃ = (K̃α,β).

Theorem (BBSSZ 2014)

Hβ =
∑
β⊨n

K̃α,βSα Sβ =
∑
α⊨n

K̃−1
α,βHα
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NSym Kostka Matrix


3 21 12 111

3 1 1 1 1
21 0 1 1 2
12 0 0 1 1
111 0 0 0 1


K̃


3 21 12 111

3 1 −1 0 1
21 0 1 −1 −1
12 0 0 1 −1
111 0 0 0 1


K̃−1

What is a combinatorial interpretation of K̃−1?
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Tunnel Hook Coverings (Allen–Mason 2023)

Tunnel hook covering: a covering of a com-
position diagram by lattice paths (tunnel
hooks) going down and left such that

1 there is a tunnel hook starting in each
row (use next available cell if needed),

2 tunnel hooks may exit the diagram,

3 every time a tunnel hook covers a cell
not in the diagram nor its starting
row, it makes a negative cell later in
that row, and

4 all negative cells are covered by tunnel
hooks starting in that row
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Tunnel Hook Coverings (Allen–Mason 2023)

γ1
γ2

γ3
γ4
γ5

Let γi be the tunnel hook starting in row i

content α = (α1, α2, . . . ):
αi = #{cells covered by γi} −
#{nondiagram cells covered in row i}
α = (7, 4, 6,−1, 0)
shape: β shape of the diagram.
β = (4, 1, 6, 1, 4)

sign: sgn(T ) = (−1)k = (−1)9 = −1,
k = #{rows crossed} = 9
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Tunnel Hook Coverings (Allen–Mason 2023)

THCα,β = {tunnel hook coverings of content α and shape β}

Theorem (Allen–Mason 2023)

For all compositions α, β, we have

K̃−1
α,β =

∑
T∈THCα,β

sgn(T ).

Lift of matrix problems to NSym

Prove combinatorially that K̃ K̃−1 = I and K̃−1K̃ = I .

We construct sign-reversing involutions to combinatorially prove

K̃−1K̃ = I (in this talk)

K̃ K̃−1 = I (in full paper, coming soon!)
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Proving K̃−1K̃ = I combinatorially (Allen–C–Mason ’25+)


1 −1 0 1

α=21 0 1 −1 −1
0 0 1 −1
0 0 0 1


K̃−1

·


β=12

1 1 1 1
0 1 1 2
0 0 1 1
0 0 0 1


K̃

=


1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


0 =

∑
δ

K̃−1
α,δK̃δ,β =

∑
(T ,S)

sgn(T )

where the sum is over the set of (T , S) where

T is a tunnel hook covering of content α

S is an immaculate tableau of content β

T and S have the same shape.

Problem

Construct a sign-reversing involution on this set of pairs (T ,S).
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Permutations and Tunnel Hook Coverings (AM 2023)

γ1
γ2
γ3

γ4
γ5
γ6

γ7
γ8
γ9

1

3

4 2

9

5

8

The j-th diagonal of a com-
position diagram are the cells
(1, j), (2, j + 1), . . .

The permutation π = π(T ) of a
tunnel hook covering T is defined
by πi = j if γi ends on diagonal j .

π =

(
1 2 3 4 5 6 7 8 9

1 3 4 2 9 5 8 6 7

)

If β = (β1, . . . , βℓ), T 7→ π(T ) is a bijection
⊔

α THCα,β → Sℓ s.t.

sgn(π(T )) = sgn(T )

Idea: sign-reversing involution ↔ multiplying by transposition.
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Proving K̃−1K̃ = I combinatorially (Allen–C–Mason ’25+)

π = 2431

T = S =

1 1 2

2 5 5

3 4 5

4 4 4

m = 5

r = 3

1 r : row with max(S) = m s.t. if m is in row i , then π(i) ≥ π(r)
2 If π(r) = r and m only appears in row r :

1 Remove final row of T ,S , induct, and reattach
3 Otherwise,

1 S ′: move m to row π−1(π(r) + 1) = 2.
2 T ′: π(T ′) = (π(r), π(r) + 1)π = 2341

T ′ = S ′ =

1 1 2

2 5 5 5

3 4

4 4 4

aaaaaaaa
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Proving K̃−1K̃ = I combinatorially (Allen–C–Mason ’25+)

Since π(T ′) = (π(r), π(r) + 1)π where π = π(T ), we have
sgn(T ′) = − sgn(T ).

Theorem (Allen–C–Mason ’25+)

The map ψ :
⊔

δ THCα,δ × ITδ,β →
⊔

δ THCα,δ × ITδ,β defined by
ψ(T , S) = (T ′,S ′) is a sign-reversing involution for any α ̸= β.

We will use our involution for K̃−1K̃ = I to construct an involution
for K−1K = I .
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Reduction to Sym–Two important notes

Note 1

Every semistandard Young tableau is an immaculate tableau.

Note 2

Since χ(Hα) = hα, for partitions λ, µ ⊢ n, we have

K−1
λ,µ =

∑
α⊨n

dec(α)=λ

∑
T∈THCα,µ

sgn(T )

where dec(α) is weakly decreasing rearrangement of λ.

Thus, tunnel hook covering provide a combinatorial interpretation
of the (Sym) inverse Kotska matrix K−1.
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Combinatorial proof that K−1K = I (sketch) (ACM ’25+)

For fix λ, µ, consider the collection of all pairs (T ,S) where T is
THC of content λ, S is immaculate tableau content µ, and S and
T have the same shape (NSym pairs).

NSym pairs = (THC , Immac)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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Combinatorial proof that K−1K = I (sketch) (ACM ’25+)

For fix λ, µ, consider the collection of all pairs (T ,S) where T is
THC of content λ, S is immaculate tableau content µ, and S and
T have the same shape (NSym pairs).

The set of (THC ,SSYT ) pairs (Sym pairs) is contained in the set
of NSym pairs.

NSym pairs = (THC , Immac)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Sym pairs = (THC ,SSYT )
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Combinatorial proof that K−1K = I (sketch) (ACM ’25+)

Our involution on NSym pairs is in red.

Note that this does not always take Sym pairs to Sym pairs.

Sym pairs = (THC ,SSYT )

NSym pairs = (THC , Immac)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Sym pairs = (THC ,SSYT )
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Combinatorial proof that K−1K = I (sketch) (ACM ’25+)

We introduce a new sign-reversing involution in green on the set of
NSym pairs that are not Sym pairs distinct from our involution

Sym pairs = (THC ,SSYT )

NSym pairs = (THC , Immac)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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Combinatorial proof that K−1K = I (sketch) (ACM ’25+)

Thus, the set of NSym pairs forms a graph.

Sym pairs have degree 1 and the rest have degree 2.
Thus, any component with Sym pair is a path starting and
ending in Sym. This defines an involution on the Sym pairs.
Since only the red involution applies to Sym pairs, these path
have odd length, so it is sign-reversing.

Sym pairs = (THC ,SSYT )

NSym pairs = (THC , Immac)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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Green involution

Let Eλ,µ = NSym pairs \ Sym pairs
For (T , S) ∈ Eλ,µ, say cell c of S is bad if either

The cell above c is empty and c is not in the first row

The cell above c contains a weakly larger element than in c

Since (T , S) has S immaculate, but not SSYT, it has a bad cell.

Let j be the leftmost column of S containing a bad cell and let i
be the largest value such that row i contains a bad cell in column
j . Swap the following cells to create S ′ where c = (i , j).

... ...

... c ...

−→ ... ...

... c ...

Define T ′ to be THC with permutation
π(T ′) = π(T )(π(i)− 1, π(i))
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Green involution - Inspiration

Green=G for Gessel–Viennot or Gasharov

A cell c of S is bad if either

The cell above c is empty and c is not in the first row

The cell above c contains a “larger” element than in c

Let j be the leftmost column of S containing a bad cell and let i
be the largest value such that row i contains a bad cell in column
j . Swap the following cells to create S ′ where c = (i , j).

... ...

... c ...

−→ ... ...

... c ...

This involution is spiritually the same involution that appears in
work of Gessel–Viennot on combinatorial determinants (1989) and
Gasharov on chromatic symmetric functions (1996), among other
places.
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Sign-reversing involution for K−1K = I

Theorem (Allen–C.–Mason (2025+))

The described map on the Sym pairs is a sign–reversing involution.

1 1 4 4

2 2

3 3

−−→−−→−−→
1 1 4

2 2

3 3 4○

−−→−−→−−→
1 1 4

2 2

3 3 4

−−→−−→−−→
1 1 4

2 2 4○
3 3

−−→−−→−−→
1 1

2 2 4 4

3 3

−−→−−→−−→
1 1

2 2 4○
3 3

4

−−→−−→−−→
1 1

2 2 4

3 3

4

−−→−−→−−→
1 1

2 2

3 3 4○
4

−−→−−→−−→
1 1

2 2

3 3 4

4

−−→−−→−−→
1 1

2 2

3 3

4 4
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Future Directions

1 Apply THC techniques to study e/s/S-positivity of important
families of symmetric functions e.g. chromatic quasisymmetric
functions, Macdonald polynomials

2 Look for other involutions that fit into this framework.

3 Product formulas for dual immacualates (and others)
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Thanks!

Sym pairs = (THC ,SSYT )

NSym pairs = (THC , Immac)
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•

•
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•
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