NEARLY TORIC VARIETIES (Mahir Bilen Can, Nestar Diaz Morera)

Let X be an algebraic variety which admits an algebraic action of the group, $L:=GL(n_1,C) \times GL(n_2,C) \times \cdots \times GL(n_k,C), \leq n_1 = n$

We will assume that X is not terribly singular.
For example, assuming that X is normal is good.
We want to keep track of the restriction
of this action to two special subgroups.
()
$$B_L := B(n_1, C) \times B(n_2, C) \times \cdots \times B(n_2, C)$$
.
() $T_L := T(n_1, C) \times T(n_2, C) \times \cdots \times T(n_k, C)$.
Here, $B(m, C)$ is the group of all upper triangular matrices
from $GL(m, C)$, $T(u, C)$ is the group of all diagonal
matrices from $GL(m, C)$.
[Note, $T_L = T(n_1 \cdots + n_k, C)$] $T_L := \frac{maximal}{forus in}$

dim. of orbit dim X (2)Definition: If there is a O-codimensional B-orbit in X, then we call X a spherical L-variety. If there is a O-codimensional T_L -orbit in X, then we call X a toric variety.

- The theory of spherical varieties is well-developed - The theory of tonic varieties can be viewed as a special case of the theory of spherical varieties. $(Choose n_1 = n_2 = \dots = n_k = 1.)$

- There are important representation theoretic reasons for caring about spherical varieties.

(The coordinate rine of a spherical L-variety is a) multiplicity free representation of L.

More generally, we can speak about the complexities of the actions of
$$\mathcal{B}_{L}$$
 and \mathcal{T}_{L} .
Let $(H \in \mathcal{F} \mathcal{B}_{L}, \mathcal{T}_{L})$, $GL(2, \mathbb{C}) \times GL(2, \mathbb{C})$
acts on $Mat(2, \mathbb{C})$
 $(A, B) \cdot X = A \times B^{-1}$
the generic modality of the action of H is the minimum $B(2, \mathbb{C})$ regression of an H-orbit in X.

Rosenlicht (1956): The generic modality of the action $H \times X \longrightarrow X$ is equal to the transcendence degree of the field of -invariant rational functions on X over C.

Definition:
Let
$$X$$
 be a spherical L -variety: if additionally
 $c_T(X)=1$
holds, then we all X a nearly bric variety.
Set $-up$: The variety of full flags in C^n
 $Fl(n, C) = \{ 0 < v_1 < v_2 < \cdots < v_n = C^n | dim V_i = i \}$.
 $\cong (G + (n, C) / B(n, C))$.
A Schubert variety in $Fl(n, C)$ is the

Closure of a B(n, C)-orbit in GL(n, C)/B(n, C).

the schubert varieties in $FL(n, \mathbb{C})$ are parametrized by the elements of the symmetric group S_n . This is a consequence of the Bruhat decomposition $GL(nC) = \square B(n,C) \cdot \omega \cdot B(n,C).$ wesn We will use (Xw) to denote the Solubert variety defined by

 $B(n,\mathbb{C})$, $\omega B(n,\mathbb{C})/B(n,\mathbb{C})$ \subseteq $\mathbb{H}(n,\mathbb{C}).$

Fact: Schubert varieties are normal.

Questions:

lets start with (2).

Theorem: (Karuppuchamy, 2011) let wE Sn. The Schubert rariety Xw is a toric variety if and only if the permutation w is a Coxeter element. $S = \{s_1, s_2, \dots, s_{n-1}\}$: Simple transpositions note $S = \{s_1, s_2, \dots, s_{n-1}\}$: Simple transpositions $S_2 = \{s_1, s_2, \dots, s_{n-1}\}$ $\Rightarrow \omega = s_{i_1} \cdots s_{i_{n-1}} \xi$ where $\{i_1, \dots, i_{n-1}\} = \{1, \dots, n-1\}$.

We continue with question #1 (7)
Two conjectures of Goo-Hodges-Yong.
(1) Xw is a spherical L-variety iff w can
be written in the form
$$w = w_{0,T} \cdot c$$
, where
 $w_{0,T}$ is the longest element of the subgroup
 $\langle s_i | i \in J \rangle \subseteq S_{n-1}$
and c is a Conster type element s_{t} .
 $l(w) = l(w_{0,T}) + l(c)$.

2 Xw is a spherical L-variety iff w avoids

	24531	25314	25341	34512	34521	35412	35421	
$\mathcal{P} := \langle$	42531	45123	45213	45231	45312	52314	52341	λ.
	53124	53142	53412	53421	54123	54213	54231	

> the first conjecture was proved independently by Can-Saha and Gao Hodger Yong (23). > The second conjecture was proved by Gaetz (22)

We will now faus on question #3.
Relevant to this discussion are the works of
Daniel Daly and Bridget Tennes.

$$A_n := \{ w \in S_n \mid w \text{ avoids } 3412, \text{ contains } 321 \text{ once } \}$$

 $B_n := \{ w \in S_n \mid w \text{ avoids } 321, \text{ contains } 3412 \text{ once } \}$

Daly (using Tenner's work) showed that:

(D3) there is a bijection between An and Bn+1.

(Daly's work was around 2010,..., 2013)

In Fl(n, C)

The importance of these results were recognized by Lee - Park - Masudar who observed that (2021)

(LPM 1)
$$C_{T_{L}}(X_{w}) = 1$$
 and X_{w} is smooth
iff $w \in A_{n}$,
(LPM 2) $c_{T_{L}}(X_{w}) = 1$ and X_{w} is singular
iff $w \in B_{n}$.

We define:

$$M_n := \{ w \in S_n \mid w \text{ avoids } 34|2, \text{ contains } 32| \text{ once, } \}$$
.

Theorem:
$$(C: Diaz 23)$$

There is a bijection $\Psi: M_{n+1} \rightarrow \mathbb{B}_n$.
(This map analyzes whether s_n appears in w or not.)

Theorem:
$$(C - Diaz 23)$$

Let $X \omega \subseteq Fl(n, C)$ be st. $C_{T}(X \omega) = 1$.
Then the following assertions hold:
(1) $X \omega$ is a singular nearly toric variety iff $\omega \in Bn$.
(2) $X \omega$ is a suboth near by toric variety iff $\omega \in Mn$.

(12)

There Schubert varieties are closely related to the Rock placements in Young diagrams.

Question: What can we say about the toric, nearly-toric, or sphericality properties of such rarities?

A useful combinatorial method here is due to Bandlow - Killpatrick (2021) who showed that there is a nice bijection between the set of 312-avoiding we Sn and the set of Dyck Pats of size n.

Figure 6: The construction of a permutation from a Dyck path.

 $W = \frac{5}{6} \frac{5}{7} \frac{5}{6} \frac{5}{3} \frac{5}{4} \frac{5}{5} \frac{5}{5} \frac{5}{4} \frac{5}{5} \frac{5}{5} \frac{5}{5} \frac{5}{4} \frac{5}{5} \frac{5}{5} \frac{5}{4} \frac{5}{5} \frac{5}{5}$

Using this bijection and exploiting the concrete nature of Dyck paths we showed the following result:

Theorem (C - Dior 23): Let NTn denote the set of nearly toric varieties $X_{W} \subset Fl(n, C)$ such that w avoids 312. Then $|NT_{n}^{312}| = (n-2)2^{n-3}$.

Next, we want to see which Dyck paths correspond to the spherical Schubert varieties Xw, where ω arounds 312. (We are not worried about $c_{+}(X_{w}) = 1$ anymore.)

Definition:

Let π be a Dyck path of size n. We say that π is a <u>Sphenical Dyck Path</u> if every connected component of $\pi^{(\circ)}$ is either an elbow, or a ledge as in (a) above, or every connected component of $\pi^{(1)}$ is either an elbow, or a ledge whose <u>E-extension</u> is the initial step of a connected component of $\pi^{(0)}$ as in (b) above.

The E-extension of <u>NNENEE</u> is the lattice path <u>ENNENEE</u>.

Theorem (C-Diaz 2023):

Let whe a 312-anoiding permutation from Sn let T denote the Dyck path corresponding to w under the Bandlaw-Killpatrick bijection. Then

Xw is a spherical ranety ← T is a spherical Dyck path.

Rk: We found some other graph theoretically significant numbers while enumerating certain subfamilies of spherical Dyck paths. THIS IS THE END UNTIL NEXT TIME!

THANK YOU FOR TUNING IN.