
About Permutation Matrices

Richard A. Brualdi

University of Wisconsin-Madison, USA

(Virtual) MSU Combinatorics Seminar

6 October 2021

1 / 47



1 Abstract/Summary

2 Permutations and Permutation Matrices

3 Alternating Sign Matrices: ASMs

4 Other Topics on Permutations

5 References

2 / 47



Abstract/Summary

Summary

The study of permutations is both ancient and modern. They can be
viewed as the integers 1, 2, . . . , n in some order or as n × n permutation
matrices. They can be regarded as data which is to be sorted. The explicit
definition of the determinant uses permutations. An inversion of a
permutation occurs when a larger integer precedes a smaller integer.
Inversions can be used to define two partial orders on permutations, one
weaker than the other. Partial orders have a unique minimal completion to
a lattice, the Dedekind-MacNeille completion. Generalizations of
permutation matrices determine related matrix classes, for instance,
alternating sign matrices (ASMs) which arose independently in the
mathematics and physics literature. Permutations may contain certain
patterns, e.g. three integers in increasing order; avoiding such patterns
determines certain permutation classes. Similar restrictions can be placed
more generally on (0, 1)-matrices. The convex hull of n × n permutation
matrices is the polytope of n × n doubly stochastic matrices. In a similar
way we get ASM polytopes. We shall explore these and other ideas and
their connections. 3 / 47
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Permutations and Permutation Matrices

A Permutation Primer (I)

Permutations can be modeled in two ways:

As a listing of a set of n elements, usually take to be the integers
{1, 2, . . . , n}, in some order, e.g. if n = 6, (3, 6, 1, 5, 2, 4).

As a (permutation) matrix, e.g.

0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0

 or as



1

1

1

1

1

1

 .

MathSciNet: > 31, 000 hits
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Permutations and Permutation Matrices

A Permutation Primer (II)

So a permutation consists of the integers {1, 2, . . . , n} in some order, and
as a result some of the integers are out of order. How to measure this?
Number of inversions.

Let σ = (k1, k2, . . . , kn) be a permutation of {1, 2, . . . , n}.
(kp, kq) is an inversion of σ provided

p < q and kp > kq (a pair of integers out of their natural order).

The transformation (kp, kq)→ (kq, kp) is a transposition. Returning
to our example, (3, 6, 1, 5, 2, 4).

1

0 1
1

1

1 0
1

 .
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Number of inversions.

Let σ = (k1, k2, . . . , kn) be a permutation of {1, 2, . . . , n}.
(kp, kq) is an inversion of σ provided

p < q and kp > kq (a pair of integers out of their natural order).
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1

0 1
1

1

1 0
1

→
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1

1 0
1

1

0 1
1


7 / 47



Permutations and Permutation Matrices

A Permutation Primer (III)

A transposition can always be chosen to reduce the number, not
necessarily the set of inversions I(σ), by 1:

(3, 4, 1, 2)→ (2, 4, 1, 3)

reduces the number of inversions from 4 to 3 but not the set of inversions
by 1:

{(3, 1), (3, 2), (4, 1), (4, 2)} → {(2, 1), (4, 1), (4, 3)}.

Adjacent inversion is of the form (kp, kp+1) with kp > kp+1. Effect of
the corresponding transposition (kp, kp+1)→ (kp+1, kp) is to remove one
inversion from I(σ).

(3, 4, 1, 2)→ (3, 1, 4, 2) :

If there is an inversion (so not the identity (1, 2, . . . , n)), then there
must be an adjacent inversion.
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Permutations and Permutation Matrices

A Permutation Primer (IV)

Basic Fact:

A permutation σ of {1, 2, . . . , n} is uniquely determined by its set
I(σ) of inversions (use induction on the location of 1) but not, in
general, by its set of adjacent inversions. For example,

Permutations (4, 1, 2, 3) and (2, 4, 1, 3) have exactly one adjacent
inversion, namely (4, 1) in both instances, but their sets of inversions
are different: {(4, 1), (4, 2), (4, 3)} and {(2, 1), (4, 1), (4, 3)},
respectively.

How can we compare two permutations, other than by using the
number of inversions? By a partial order, in fact, two partial orders.
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Permutations and Permutation Matrices

A Permutation Primer (V): Two Partial Orders

Weak Bruhat Order on permutations of {1, 2, . . . , n}:

π1 �b π2 provided that I(π1) ⊆ I(π2).

Equivalent to: π1 can be obtained from π2 by a sequence of adjacent
transpositions, each thereby reducing the set of inversions by
exactly 1).

Bruhat order: π1 �B π2 provided π1 can be obtained from π2 by a
sequence of transpositions each reducing the number of inversions
by exactly 1, but not necessarily reducing the set of inversions by 1.

So
π1 �b π2 implies π1 �B π2,

but not conversely.

Set Containment versus Number.
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Permutations and Permutation Matrices

Example

(4, 2, 1, 3) �B (4, 3, 1, 2) since

(4, 2, 1, 3) �B (4, 3, 1, 2) (one transposition)

(4, 2, 1, 3) 6�b (4, 3, 1, 2), since

I((4, 2, 1, 3)) = {(4, 2), (4, 1), (4, 3), (2, 1)} 6⊆ I((4, 3, 1, 2)) =
{(4, 3), (4, 1), (4, 2), (3, 1), (3, 2)}.
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Permutations and Permutation Matrices

Bruhat order on S4 (Bjőrner& Brenti book):
(4, 2, 1, 3) �B (4, 3, 1, 2)
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Permutations and Permutation Matrices
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Permutations and Permutation Matrices

Weak Bruhat order

A lattice: any two elements have an LUB and a GLB (for finite
partially ordered sets LUBs (resp. GLBs) guarantee GLBs (resp. LUBs).
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Permutations and Permutation Matrices

Bruhat order

Not a lattice e.g. GLB(4312,4231) not defined:
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Permutations and Permutation Matrices

Bruhat order on the permutations of order 3: (S3,�B)

I3 =

 1 0 0
0 1 0
0 0 1

 : (1, 2, 3)

 1 0 0
0 0 1
0 1 0

 : (1, 3, 2)(2, 1, 3) :

 0 1 0
1 0 0
0 0 1



(2, 3, 1) :

 0 1 0
0 0 1
1 0 0

  0 0 1
1 0 0
0 1 0

 : (3, 1, 2)

L3 =

 0 0 1
0 1 0
1 0 0

 : (3, 2, 1)

16 / 47



Permutations and Permutation Matrices

Bruhat Orders on Permutations

In both orders, the identity ιn = (1, 2, . . . , n) (In) is the unique minimal
element (I(ιn) = ∅), and the anti-identity ζn = (n, n − 1, . . . , 2, 1) is the
unique maximal element (I(ζn) = {(i , j) : i > j}).
The cover relation is given by:

π1 �b π2, and I(π1) is obtained from I(π1) by removing one
inversion.

π1 �B π2, and π1 has exactly 1 fewer inversion.

Example: (4, 2, 1, 5, 3) �B (4, 5, 1, 2, 3) Both Bruhat orders on Sn are

graded by the number of inversions. The grade corresponds to the level
in the diagram of the partially ordered set.
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Permutations and Permutation Matrices

Bruhat Order: The Σ-way

For an m × n matrix A = [aij ], define Σ(A) = [σij(A)] by

σij = σij(A) =
∑

1≤k≤i ,1≤l≤j
aij , (1 ≤ i ≤ m, 1 ≤ j ≤ n)

the sum of the entries of the leading i × j submatrix of A. (If A is a
permutation matrix, this is the same as the rank of the leading i × j
submatrix of A.)

Example: A =

 1 3 2 4
0 3 1 2
3 5 1 2

→ Σ(A) =

 1 4 6 10
1 7 10 16
4 15 19 27


Theorem: For n × n permutation matrices P and Q, we have
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Permutations and Permutation Matrices

Dedekind-MacNeille Completion of a Partially Ordered Set

Theorem (MacNeille 1937): Let (P,≤P) be a finite partially ordered
set. Then there exists a unique minimal lattice (L,≤L) such that P ⊆ L
and for a, b ∈ P, a ≤P b if and only if a ≤L b. (L,≤L) is the
Dedekind-MacNeille completion of (P,≤P).

So if you have a favorite partially ordered set which is not a lattice, you
can try to find its Dedekind-MacNeille completion. The
Dedekind-MacNeille completion of the rational numbers with the usual
order gives the real numbers with ±∞.

Recall the Bruhat order on the permutations of order 3: (S3,�B),
repeated on the next slide.
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Permutations and Permutation Matrices

Bruhat order on the permutations of order 3: (S3,�B)

(Not a lattice)

I3 =

 1 0 0
0 1 0
0 0 1

 : (1, 2, 3)

 1 0 0
0 0 1
0 1 0

 : (1, 3, 2)(2, 1, 3) :

 0 1 0
1 0 0
0 0 1



(2, 3, 1) :

 0 1 0
0 0 1
1 0 0

  0 0 1
1 0 0
0 1 0

 : (3, 1, 2)

L3 =

 0 0 1
0 1 0
1 0 0

 : (3, 2, 1)
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Permutations and Permutation Matrices

What is the Dedekind-MacNeille Completion of (Sn �B)?

What are the new elements? Let’s do it for n = 3.

 0 1 0
0 0 1
1 0 0

 Σ1→

 0 1 1
0 1 2
1 2 3

 and

 0 0 1
1 0 0
0 1 0

 Σ2→

 0 0 1
1 1 2
1 2 3



do not have a meet: With Σ3 = min{Σ1,Σ2} =

 0 1 1
1 1 2
1 2 3

, there does

not exist a permutation matrix with this Σ3. The problem is the 1 in the
(2, 2)-position of Σ3. But 0 1 0

1 −1 1
0 1 0

 Σ3→

 0 1 1
1 1 2
1 2 3

 .
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Permutations and Permutation Matrices

Dedekind-MacNeille Completion of (S3,�B)

I3 =

 1 0 0
0 1 0
0 0 1



 1 0 0
0 0 1
0 1 0

 0 1 0
1 0 0
0 0 1


D3 where D3 =

 0 1 0
1 −1 1
0 1 0



 0 1 0
0 0 1
1 0 0

  0 0 1
1 0 0
0 1 0


L3 =

 0 0 1
0 1 0
1 0 0


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Permutations and Permutation Matrices

Dedekind-MacNeille Completion of (Sn,�B), Version # 1

Theorem (Lascoux & Schűtzenberger 1996): The Dedekind-MacNeille
completion of (Sn,�B) is:

Σn = {X = [xij ], n × n nonnegative integral matrix }

such that

For each i , the integers in row i and column i are taken from
{1, 2, . . . , i} beginning with 0 or 1 and ending with i ,

For each i , the integers in row i and column i are nondecreasing.

Two consecutive entries in a row or column are either equal or there
is an increase of 1.

In particular, the last row and last column contain 1, 2, . . . , n in that order.

The (lattice) partial order is the entrywise order.
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Permutations and Permutation Matrices

Dedekind-MacNeille Completion of (Sn,�B): Version # 2

Theorem (Lascoux & Schűtzenberger 1996): The MacNeille
completion of (Sn,�B) is (An,�B) where

An is the set of n × n alternating sign matrices: (0, 1,−1)-matrices
where the ±1’s in each row and column alternate, ignoring 0’s, and
start and end with a 1.

The partial order �B in (An,�B) is: A1 �B A2 provided A1 can be
gotten from A2 by transformations obtained by adding 2× 2

submatrices of the form

[
1 −1
−1 1

]
where all intermediate matrices

are ASMs.

Note that

[
1 0
0 1

]
−
[

0 1
1 0

]
=

[
1 −1
−1 1

]
, and thus these

transformations are transpositions where −1s are now allowed in the
result. All n × n ASMs can be obtained from In by a sequence of
transpositions with all intermediary matrices ASMs.
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Alternating Sign Matrices: ASMs

Examples of non-Permutation ASMs



1

1 −1 1

1 −1 1 −1 1

1 −1 1

1 −1 1

1

 ,


1

1 −1 1

1 −1 1

1 −1 1

1 −1 1

1

 .
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Alternating Sign Matrices: ASMs

Some Basic Properties of ASMs

The partial row and column sums starting from the first or last entry
equal 0 or 1, with the full row and column sums equal to 1.

The ASM property is preserved under the dihedral group of order 8
(symmetries of a square), but not under arbitrary (simultaneous) row
and columns permutations.

The 6× 6 diamond ASMs (largest number of nonzeros) where we use
± in place of ±1:

D6 =



+

+ − +

+ − + − +

+ − + − +

+ − +

+

 ,D
′
6 =



+

+ − +

+ − + − +

+ − + − +

+ − +

+


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Alternating Sign Matrices: ASMs

Bijection between the Two Versions of the
Dedekind-MacNeille Completion

If A is an n × n ASM, Then Σ(A) satisfies the conditions of Σn:

For each i , the integers in row i and column i are taken from
{1, 2, . . . , i} beginning with 0 or 1 and ending with i ,
For each i , the integers in row i and column i are nondecreasing.
Two consecutive entries in a row or column are either equal or there is
an increase of 1.

Given a matrix X = [xij ] ∈ Σn, then A = [aij ] is an n × n ASM where

aij = xij + xi−1,j−1 − xi−1,j − xi ,j−1,

where xi0 = x0j are defined to be 0.
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Alternating Sign Matrices: ASMs

Dedekind-MacNeille Completion of the Weak Bruhat Order
(Sn,�b)

(Sn,�b): It already is a lattice!
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Alternating Sign Matrices: ASMs

Enumeration of ASMs

The number of n × n permutation matrices is n!. How many n × n
ASMs are there?

For small n, the number of n × n ASMs is: 1, 2, 7, 42, 429, 7436, . . . .

Mills, Robbins, and Rumsey made a conjecture in 1983.

Celebrated Theorem of Zeilberger 1996, and later and
independently by Kuperberg: The number of n × n ASMs is

1!4!7! · · · (3n − 2)!

n!(n + 1)!(n + 2)! · · · (2n − 1)!
=

n−1∏
j=0

(3j + 1)!

(n + j)!
∼

(
3
√

3

4

)n2

.

This sequence occured earlier in another context: Totally Symmetric
Self-Complementary Plane Partitions (TSSCPPs).
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Alternating Sign Matrices: ASMs

ASMs and Square Ice

There is a 1-1 correspondence between ASMs and something called
“square ice” configurations: a system of water (H2O) molecules frozen in
a square lattice.
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Alternating Sign Matrices: ASMs

Square Ice I

There are oxygen atoms at each vertex of an n × n lattice, with hydrogen
atoms between successive oxygen atoms in a row or column, and on either
vertical side of the lattice, but not on the two horizontal sides. E.G. n = 4:

H O H O H O H O H
H H H H

H O H O H O H O H
H H H H

H O H O H O H O H
H H H H

H O H O H O H O H

.

Each O is to be attached to two Hs (a water molecule H2O) in a one to
two bijection. There are six possible configurations in which an oxygen
atom can be attached to two hydrogen atoms:
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Alternating Sign Matrices: ASMs

Square Ice II

H ← O → H

H
↑
O
↓
H

H
↑

H ← O

H
↑
O → H

O → H
↓
H

H ← O
↓
H
.

Let the top left (horizontal) configuration correspond to 1 and the top
right (vertical) configuration correspond to −1. Let the other four (skew)
configurations correspond to 0.

32 / 47



Alternating Sign Matrices: ASMs

Square Ice III

(n = 4)

H ← O H ← O H ← O → H O → H
↓ ↓ ↓
H H H H

↑
H ← O → H O → H O H ← O → H

↓ ↓
H H H H
↑ ↑

H ← O H ← O → H O → H O → H
↓

H H H H
↑ ↑ ↑

H ← O H ← O H ← O → H O → H

and this corresponds to the ASM:


0 0 1 0
1 0 −1 1
0 1 0 0
0 0 1 0

 .
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Alternating Sign Matrices: ASMs

Origin of ASMs: the λ-determinant

The λ-determinant arises by starting with

detλ

[
a11 a12

a21 a22

]
= a11a22 + λa12a21 (or with detλ[a11] = a11)

and adapting the well-known Dodgson’s condensation formula for
determinants (which iteratively expresses a determinant in terms of 2× 2
determinants) to the λ-determinant using the rule

detλA =
detλAULdetλALR + λdetλAURdetλALL

detλAC
.

(AUL is the (n − 1)× (n − 1) submatrix in upper left, ALR in lower right,
etc. and AC is the (n − 2)× (n − 2) submatrix in the center.)

If λ = −1, we get Dodgson’s formula for the ordinary determinant.
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Alternating Sign Matrices: ASMs

The λ-determinant

If n = 2 (so C is empty), we get

detλ

[
a11 a12

a21 a22

]
= a11a22 + λa12a21.

(if λ = −1, we get the ordinary determinant)

If n = 3 (so C = [a22]) we get

detλ(A) = a11a22a33 + λa12a21a33 + λa11a23a32 + (λ2 + λ)a12a21a
−1
22 a23a32

+λ2a13a21a32 + λ2a12a23a31 + λ3a13a22a31.

(if λ = −1, we get the ordinary determinant since
λ2 + λ = (−1)2 + (−1) = 0)
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Alternating Sign Matrices: ASMs

The λ-determinant and ASMs

detλ(A) = a11a22a33 + λa12a21a33 + λa11a23a32 + (λ2 + λ)a12a21a
−1
22 a23a32

+λ2a13a21a32 + λ2a12a23a31 + λ3a13a22a31. (n = 3)

If for each of the seven terms we replace entries in A by the corresponding
power we get the seven 3× 3 ASMs. For instance,

(λ2 + λ)a12a21a
−1
22 a23a32 →

 0 1 0
1 −1 1
0 1 0

 ,
and the other terms give the six 3× 3 permutation matrices.

If A = [aij ] is an n × n matrix, then detλA is of the form∑
B=[bij ]∈ASMn×n

pB(λ)
n∏

i .j=1

a
bij
ij

where pB(λ) is a polynomial in λ. The number of terms is |ASMn×n|.
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Other Topics on Permutations

Avoiding Patterns in Permutations I

Permutation Patterns form a huge topic (there is a biannual conference),
in particular, permutations avoiding certain patterns.

Let σ = (p1, p2, . . . , pk) be a permutation of {1, 2, . . . , k}. Then a
permutation π = (π1, π2, . . . , πn) of {1, 2, . . . , n} contains σ provided
there exists 1 ≤ i1 < i2 < · · · < ik such that πir < πis if and only if
pr < ps . Otherwise, π avoids σ.

If k = 2 and σ = (2, 1), then the only permutation π that avoids σ is
(1, 2, . . . , n).

If k = 2 and σ = (1, 2), then the only permutation π that avoids σ is
π = (n, n − 1, . . . , 2, 1)
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Other Topics on Permutations

Avoiding Patterns in Permutations II

What about patterns of length k = 3? There are 3 possibilities:
σ = (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1). Under reversal
and complementation, there are only two non-equivalent: (1, 2, 3) and
(3, 1, 2).

Examples: The permutation (3, 4, 5, 1, 2, 6, 7) is 321-avoiding in that
there does not exist a decreasing subsequence of length 3.

The permutation (2, 1, 3, 5, 4, 6) is 312-avoiding; no subsequence of
L(arge), S(mall), M(edium).

The number of σ-avoiding permutations is the same in all cases of k = 3,
namely,

Cn :=

(2n
n

)
n + 1

, the ubiquitous nth Catalan number.
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Other Topics on Permutations

312-Avoiding Patterns in Permutations; A Generalization

Let π be a permutation of {1, 2, . . . , n}. Then π is a 312-avoiding
permutation provided π2 has no subsequence a, b, c with
a > b, a > c , b < c;

As an n × n permutation matrix, a 312-avoiding permutation is one
having no 3× 3 submatrix of the form 1

1

1

 =

 L

S

M

 .
Similar statements can be made for the other patterns of length 3.

This suggests generalizations to arbitrary (0, 1)-matrices.
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Other Topics on Permutations

312-Avoiding (LSM-avoiding) Patterns in (0, 1)-Matrices

Examples:

A =


1 1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

 , and



1 1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1

 .

There does not exist a 312-avoiding permutation matrix P ≤ A.

As in the examples, an m × n 312-avoiding (0,1)-matrix A contains at
most 2(m + n − 2) 1’s; if A contains fewer than 2(m + n − 2) 1’s, then it
is always possible to change a 0 to a 1 with the result also 312-avoiding.
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Other Topics on Permutations

Fűredi-Hajnal Conjecture: Marcus-Tardos Theorem

This is an upper estimate on the number of 1’s a (0, 1)-matrix A can have
if it avoids a prescribed subpattern (does not have to be part of a
permutation matrix P ≤ A).
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Other Topics on Permutations

Continuous Analogue of Permutation Matrices

These are the n × n doubly stochastic matrices Ωn: nonnegative entries
with all row and column sums equal to 1. For example, .5 .2 .3

.3 .4 .3

.2 .4 .4

 .
By Birkhoff’s theorem, Ωn is the convex hull of the n × n permutation
matrices Pn and these are the extreme points.

dim Ωn = (n − 1)2, i.e, Pn has a linear span of dimension (n − 1)2 + 1.

There are several known bases of Pn:

(Farahat and Mirsky): the identity permutation ιn, all 2-cycles, all
3-cycles of the form 1→ i → j → 1 where 1 < i < j ≤ n (the n × n
permutation matrices C1ij with 1 < i < j ≤ n).

We have exhibited other bases: 123-avoiding permutations,
312-avoiding permutations, bigrassmanian permutations, . . . .
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Other Topics on Permutations

Continuous Analogue of ASMs

First every ASM is a ±1 linear combination of permutation matrices
and so the dimension of the linear span of the n × n ASMs An is also
(n − 1)2 + 1.

Convex hull Λn of An. Linear characterization is:
All A = [aij ] with row and column sums equal to 1, and satisfying

q∑
j=1

aij ,
n∑

j=q+1

aij ≥ 0 (all q and i) with similar inequalities for columns.

dim(Λn) = (n − 1)2 and the set of extreme points of Λn is An. Edges
have been characterized,

43 / 47



Other Topics on Permutations

Continuous Analogue of ASMs

First every ASM is a ±1 linear combination of permutation matrices
and so the dimension of the linear span of the n × n ASMs An is also
(n − 1)2 + 1.

Convex hull Λn of An. Linear characterization is:
All A = [aij ] with row and column sums equal to 1, and satisfying

q∑
j=1

aij ,
n∑

j=q+1

aij ≥ 0 (all q and i) with similar inequalities for columns.

dim(Λn) = (n − 1)2 and the set of extreme points of Λn is An. Edges
have been characterized,

43 / 47



Other Topics on Permutations

Continuous Analogue of ASMs

First every ASM is a ±1 linear combination of permutation matrices
and so the dimension of the linear span of the n × n ASMs An is also
(n − 1)2 + 1.

Convex hull Λn of An. Linear characterization is:
All A = [aij ] with row and column sums equal to 1, and satisfying

q∑
j=1

aij ,
n∑

j=q+1

aij ≥ 0 (all q and i) with similar inequalities for columns.

dim(Λn) = (n − 1)2 and the set of extreme points of Λn is An. Edges
have been characterized,

43 / 47



Other Topics on Permutations

Higher Dimension Analogues

n × n × n arrays with all line sums (three directions) equal to 1:

Permutations :

 1 0 0
0 1 0
0 0 1

↗
 0 1 0

0 0 1
1 0 0

↗
 0 0 1

1 0 0
0 1 0

 ;

Really a Latin Square:

 1 2 3
3 1 2
2 3 1

.

ASMs :

 1 0 0
0 1 0
0 0 1

↗
 0 1 0

1 −1 1
0 1 0

↗
 0 0 1

0 1 0
1 0 0

 .
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