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The Pancake Problem

Motivation: The pancake problem

The original statement

The chef in our place is sloppy, and when he prepares a stack of
pancakes they come out all different sizes. Therefore, when I
deliver them to a customer, on the way to the table I rearrange
them (so that the smallest winds up on top, and so on, down to
the largest on the bottom) by grabbing several from the top and
flipping them over, repeating this (varying the number I flip) as
many times as necessary. If there are n pancakes, what is the
maximum number of flips (as a function of n) that I will ever
have to use to rearrange them?
-Harry Dweighter, December 1975. American Math. Monthly
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Largest pancake first algorithm
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The Pancake Problem

Largest pancake first algorithm

Example

24153 51423 32415 42315 13245 31245 21345 12345

This took 7 flips!



The Pancake Problem

f (n), some of what is known

Exact value known for n ≤ 19.

Simplest algorithm: flip largest to top, then into place. f (n) ≤ 2n.

Improved algorithm: Bill Gates and Christos Papadimitriou (1979).

f (n) ≤ 5n + 3

3
. (about 1.666n).

Improved algorithm: Chitturi et al. (2008). f (n) ≤ 18

11
n + O(1)

(about 1.6363n).

Pancake sorting is NP-hard: Laurent Bulteau, et al. (2015). To be
specific, finding the optimal sequence of flips to sort a stack is
NP-hard
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The Pancake ProblemYes, there is a better bound  

7

Pancake Flipping Problem 

Given an initial pancake configuration... 
You want to get a �sorted� configuration … 
Constraints:  can only flip … 

Example … 

Bill Gates & Christos Papadimitriou:, �Bounds For Sorting By 
Prefix Reversal.��Discrete Mathematics, Vol 27, pp 47-57, 1979. 

Source: Neil Jones and Pavel Pevzner, 
2004 �Introduction to BioInformatics 
Algorithms�. 

2 flips 

Source: Neil Jones and Pavel Pevzner,  
2004 “Introduction to BioInformatics Algorithms”  
 

First nontrivial bound given by a 
young Bill Gates and Christos 
Papadimitriou in the 70s. At the time 
they were both at Harvard 
  



Pancake graphs

Pancake graphs

We can think of these pancake flips
as prefix-reversal generators of the
symmetric group Sn

ri = i (i − 1) · · · 1 (i + 1) (i + 2) · · · n,

with 2 ≤ i ≤ n.

Pancake graph P4
1234

3214 2134

4321

4123

2314 3124

4312

3421 2341

2143

14234132

1324

42131342

3412

2431

1243

3241

1432

24133142

4231



Stacks which require k flips to be sorted

How many stacks of n pancakes take exactly k flips
to be sorted?

A great deal is known about the structure of cycles in Pn. In particular,
there is only one type of 6-cycle in the graph and no cycles shorter than
length 6 exist.

1 If k = 0, then 1.

2 If k = 1, then n − 1.

3 If k = 2, then (n − 1)(n − 2).

4 If k = 3, then (n − 1)(n − 2)2 − 1 (the “−1” comes from the one
6-cycle)



Stacks which require k flips to be sorted

How many stacks of n pancakes take exactly 4 flips
to be sorted?

Theorem

(B., Buehrle and Patidar, 2019) If n ≥ 3, there are

1

2
(2n4 − 15n3 + 29n2 + 6n − 34)

stacks of n pancakes that take exactly 4 flips to be sorted.

The proof used elementary methods like the our classification of 7- and
8-cylces in Pn and PIE. It was a lot of book keeping.

There’s gotta be a better way!



Stacks which require k flips to be sorted

The Homberger–Vatter Algorithm (2016)

Vince Vatter emailed us to tell us about their 2016 paper. We were not
thinking of this problem in the context of permutation classes.



Permutation classes

Permutation classes

The permutation π of length n contains the permutation σ of length k if
π has a subsequence of length k ≤ n that is order isomorphic to σ, i.e.,
that has the same pairwise comparisons as σ.

For example, the subsequence 38514 is order isomorphic to 25413, so
25413 is contained in the permutation 36285714.

1

A permutation class C is a set of permutations (of different lengths)
closed under containment. In other words, a permutation class C is a
downset of permutations in this ordering: If C is a permutation class and
π ∈ C, σ ≤ π, then σ ∈ C.

1Credit: Vince Vatter
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Permutation classes

�������Credit: Vince Vatter.



Permutation classes

Basis of a permutation class

Given any set of permutations B define

Av(B) = {π : π “avoids’ π ∈ B}

Given any permutation class C, there is a set B so that C =Av(B). In fact,
we can take B to be the set of minimal permutations not in C, and that is
called the basis of C.



Permutation classes

Class Av(312)

�������

Class generated with a 

single stack = .Av(312)

Credit: Vince Vatter.



Permutation classes

Enumerating permutation classes

Let Cn := C ∩ Sn (Sn denoting the symmetric group)

What is the behavior of the sequence |C0|, |C1|,. . ..

One way of doing this is to compute explicitly the generating function of
the class, ∑

n≥0

|Cn|xn

Is it rational? algebraic? D-finite?

One of the first results in the subject is that if C = Av(123), then
|Cn| =

(2n
n

)
/(n + 1) (the Catalan numbers).



Permutation classes

Stanley-Wilf Conjecture (Theorem since 2004)

Stanley and Wilf independently conjectured the following.

Theorem (Marcos and Tardos, 2004)

For every permutation β, there is a constant C such that for all n,

|Av(β) ∩ Sn| ≤ Cn.

In other words, given any proper permutation class C,

lim sup
n→∞

n
√
|Cn| is finite.

This limit is called the (exponential) rate of growth of C.



Permutation classes

Permutation classes enumerated by polynomials

The Fibonacci Dichotomy of Kaiser and Klazar (2003) : If C is a
permutation class with |CN | < FN for some integer N, then |Cn| is given
by a polynomial for sufficiently large n (or, eventually polynomial). In
other words, there exists n0 such that |Cn| = p(n) for all n > n0 where
p(n) is a polynomial. Here Fn denotes the nth Fibonacci number.

Homberger and Vatter (2016) provided an algorithm, HVA, that finds this
polynomial.

It turns out that the permutations that take at most k flips to be sorted is
a permutation class which can be eventually enumerated by polynomials
(it might miss the first few values of n.)



Generalized permutation classes

Enter generalized permutations S(m, n) := Cm o Sn

Consider the group S(m, n) := Cm o Sn, where Cm is the cyclic group of
order m, say with elements {0, . . . ,m − 1}. We take the following
notation: Every element in S(m, n) has the form

πe1
1 π

e2
2 · · ·π

en
n , where ei ∈ Cm.

We refer to π1, . . . , πn as the symbols and e1, . . . , en as the signs.

For example, 302143521061 ∈ S(4, 6).

Notice S(1, n) ∼= Sn and S(2, n) = Bn (Coxeter group of type B, the
hyperoctahedral group, the group of symmetries of the hypercube.)



Generalized permutation classes

Classes in S(m, n)

Definition

Given π = πa1
1 · · ·π

an1
n1 ∈ S(m, n1) and σ = σb1

1 · · ·σ
bn2
n2 ∈ S(m, n2), with

n1 ≤ n2, we say that π contains σ, denoted by π ≤ σ, if there exists

σ
bi1
i1
· · ·σ

bin1
in1

such that bij = aj and the characters in σi1 · · ·σin1
are in the

same relative order as the characters of π.

A generalized permutation class is set of generalized permutations that
is closed under containment.

Example

The following is a finite class (the set of all elements ≤ than
201131 ∈ S(2, 3))

201131, 2011, 1021, 1121, 10, 11, ε

2011
��31 gives 2011, 20

��11 31 gives 1021, etc.



Generalized permutation classes

The case m = 2

The case m = 2 is interesting because it has to do with genome
rearrangements



Generalized permutation classes

Relations to genome rearrangements

Transforming Cabbage into Turnip: Polynomial
Algorithm for Sorting Signed Permutations by Reversals

SRIDHAR HANNENHALLI

Bioinformatics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania

AND

PAVEL A. PEVZNER

University of Southern California, Los Angeles, California

Abstract. Genomes frequently evolve by reversals !(i, j) that transform a gene order "1
. . .

" i" i!1
. . . " j"1" j

. . . "n into "1
. . . " i" j"1

. . . " i!1" j
. . . "n. Reversal distance between

permutations " and # is the minimum number of reversals to transform " into #. Analysis of genome
rearrangements in molecular biology started in the late 1930’s, when Dobzhansky and Sturtevant
published a milestone paper presenting a rearrangement scenario with 17 inversions between the
species of Drosophila. Analysis of genomes evolving by inversions leads to a combinatorial problem of
sorting by reversals studied in detail recently. We study sorting of signed permutations by reversals, a
problem that adequately models rearrangements in small genomes like chloroplast or mitochondrial
DNA. The previously suggested approximation algorithms for sorting signed permutations by
reversals compute the reversal distance between permutations with an astonishing accuracy for both
simulated and biological data. We prove a duality theorem explaining this intriguing performance and
show that there exists a “hidden” parameter that allows one to compute the reversal distance between
signed permutations in polynomial time.

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Modes of Computa-
tion; G.2.1 [Discrete Mathematics]: Combinatorics; J.3 [Life and Medical Sciences]: biology and
genetics

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Computational biology, genetics

A preliminary version of this paper appeared in Proceedings of the 27th Annual ACM Symposium on
the Theory of Computing (Las Vegas, Nev., May 29 –June 1). ACM, New York, 1995, pp. 178 –189.
This work is supported by National Science Foundation (NSF) Young Investigator Award, NSF grant
CCR 93-08567, NIH grant 1R01 HG00987, and DOE grant DE-FG02-94ER61919.
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Mathematics and Computer Science, University of Southern California, DRB-155, Los Angeles, CA
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Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
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Generalized permutation classes

Genome Rearrangement

1. Introduction

1.1. MOTIVATION AND BIOLOGICAL BACKGROUND. In the late 1980’s, Jeffrey
Palmer and colleagues discovered a remarkable and novel pattern of evolution-
ary change in plant organelles. They compared the mitochondrial genomes of
Brassica oleracea (cabbage) and Brassica campestris (turnip), which are very
closely related (many genes are 99%–99.9% identical). To their surprise, these
molecules, which are almost identical in gene sequence, differ dramatically in
gene order (Figure 1). This discovery and many other studies in the last decade
convincingly proved that genome rearrangements is a common mode of molecu-
lar evolution in mitochondrial, chloroplast, viral and bacterial DNA (see Bafna
and Pevzner, [1995]).

Every study of genome rearrangements involves solving a combinatorial
“puzzle” to find a shortest series of reversals to transform one genome into
another. (Three such reversals “transforming” cabbage into turnip are shown in
Figure 1.) In cases of genomes consisting of small number of “conserved blocks,”
Palmer and co-authors were able to find the most parsimonious scenarios for
rearrangements. However, for genomes consisting of more than 10 blocks,
exhaustive search over all potential solutions is far beyond the possibilities of
“pen-and-pencil” methods. As a result, Palmer and Herbon [1988] and Makaroff
and Palmer [1988] overlooked the most parsimonious scenarios of rearrange-
ments in more complicated cases like turnip vs. black mustard or turnip vs. radish
(see Bafna and Pevzner [1995] for optimal solutions).

In the problem we consider, the genes are numbered 1, . . . , n and the order
of genes in two organisms is represented by permutations ! ! (!1!2

. . . !n)
and " ! ("1"2

. . . "n). A reversal #(i, j) is the permutation

! 1 2 · · · i $ 1 i i ! 1 · · · j " 1 j j % 1 · · · n
1 2 · · · i $ 1 j j " 1 · · · i ! 1 i j % 1 · · · n" .

Clearly ! ! #(i, j) has the effect of reversing the order of genes ! i! i"1
. . . ! j. In

the case of signed permutations with " or # signs associated with every element
of !, ! ! #(i, j) reverses both the order and signs of the elements ! i! i"1

. . . ! j
(see below).

Given permutations ! and ", the reversal distance problem is to find a series of
reversals #1, #2, . . . , # t such that ! ! #1 ! #2

. . . # t ! " and t is minimum. We
call t the reversal distance between ! and ". Note that the reversal distance

FIG. 1. “Transformation” of cabbage into turnip. Mitochondrial DNA of cabbage and turnip are
composed of five conserved blocks of genes that are shuffled in cabbage as compared to turnip. Every
conserved block has a direction that is shown by " or # sign.

2 S. HANNENHALLI AND P. A. PEVZNER

Journal of the ACM, 1999
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Burnt pancake graph BPn

12 12

21

21

1 212

21

2 1

Figure: BP2 is an 8-cycle.



Generalized permutation classes



S tacks of burnt pancakes with at most k flips to be sorted

How many stacks of n burnt pancakes take exactly k
flips to be sorted?

A great deal is known about the structure of cycles in BPn. In particular,
we know that 8-cycles are the shortest possible cycles.

1 If k = 0, then 1.

2 If k = 1, then n.

3 If k = 2, then n(n − 1).

4 If k = 3, then n(n − 1)2.



S tacks of burnt pancakes with at most k flips to be sorted

How many stacks of n burnt pancakes take exactly 4
flips to be sorted?

Theorem

(B., Buehrle and, Patidar 2019) If n ≥ 1, there are

1

2
n(n − 1)2(2n − 3)

stacks of n burnt pancakes that take exactly 4 flips to be sorted.

The proof used elementary methods like the our classification of and 8 and
9-cylces in BPn and PIE. It was a lot of book keeping.

There’s gotta be a better way!

There is.
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Grid generalized permutation classes

Generalized peg permutations

Generalized peg permutations are generalized permutations in which each
entry is also associated with a decorator in the set +,−, •. For example,
30•11+20+.

Containment is defined similarly, with:

+ contains + and •,
− contains − and •, and

• only contains •



Grid generalized permutation classes

Inflating a signed permutation

For a peg permutation π and a vector v each of length n, we say that the
inflation of π by v, written π[v], is the generalized permutation obtained by
replacing each entry in π with an interval according to the following rules:

π(i) is replaced with an interval of length v(i).

If π(i) is decorated with a +, its interval must be increasing, and if
π(i) is decorated with a −, its interval must be decreasing.

If π(i) is decorated with a •, then v(i) must be 0 or 1.

Every entry in the interval corresponding to π(i) has the same sign as
π(i).

The relative order of the intervals matches the relative order of the
entries of π.

Example

If π = 11+30•20− and v = 〈4, 1, 3〉. Then π[v] = 11213141 80 706050.



Grid generalized permutation classes

Grid generalized permutation classes

The grid class of a peg permutation π, of length k , written Grid(π), is the
set of generalized permutations

{π[v] : v ∈ (Z≥0)k}

If Π is a set of peg permutations (not necessarily of the same length) then
Grid(Π) is given by

{Grid(π) : π ∈ Π}.

It is easy to see that Grid(Π) is closed under containment (thus a
permutation class).



Grid generalized permutation classes

Fibonacci Dichotomy extends to generalized
permutation classes

This is our main theorem.

Theorem (B. and Skora, 2024)

Let C be a signed permutation class with m signs. Then the following are
equivalent

1 |C ∩ S(m, n)| < Fn for some n (Fibonacci numbers)

2 There exists n0 such that |C ∩ S(m, n)| is polynomial for all n > n0.

3 C is a grid generalized permutation class.

Essentially, we have characterized all generalized permutation classes that
are enumerated by polynomials.

Huczynska and Vatter (2006) and Albert et al. (2013) established the
theorem for m = 1. Homberger and Vatter (2016) provided an algorithm
(HVA) that produces these polynomials. The techniques extend to m > 1.



Grid generalized permutation classes

Idea of the proof

If v ∈ (Z≥0)n, and
∑

v(i) be the weight of v. Then the downset of v

{w ∈ (Z≥0)n | w(i) ≤ v(i)}.

Theorem

Let C denote a downset in (Z≥0)n. For sufficiently large n, the number of
vectors in C of weight n is given by a polynomial.

Stanley proposed the theorem as a 1976 Monthly problem offering two
solutions. One of these solutions is “elementary“” and the second one
considers the downset as Hilbert functions.

It turns out that the elements of grid class correspond to downsets.



Grid generalized permutation classes

Enumerating grid generalized permutation classes

Homberger and Vatter (2016) gave an algorithm to enumerate
permutation classes that are eventually polynomial.

We have extended the algorithm to work for generalized permutation
classes

Code available
https://github.com/danskora/SignedPermutationClasses

https://github.com/danskora/SignedPermutationClasses
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+1

(a) A sorted stack of burnt
pancakes, equivalent to ele-
ments of Grid(1) .

+1

+2

(b) A sorted stack of burnt
pancakes after the spatula
has been inserted.

�1

+2

(c) The resulting stack of
pancakes after �ipping ev-
erything above the spatula,
equivalent to elements of
Grid(12) .

Figure 1

burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .

+2

�1

+3

(a) The pancake stacks that
result from �ipping inside
the top block of 12.

�2

+1

+3

(b) The pancake stacks that
result from �ipping inside
the bottom block of 12.

Figure 2

To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are
represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x-reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x-reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .

First, we show that Grid(⇧: ) contains every signed permuta-
tion whose pre�x-reversal distance is  : . If c has pre�x-reversal
distance  : , then it is an in�ation of a compact permutation with
pre�x-reversal distance  : . According to the discussion above,
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signed permutations, but we can interpret their elements di�er-
ently. If c 2 Grid(⇧), we think of each entry of c as representing a
burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .

To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are

represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .
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burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .
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To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are
represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x-reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x-reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .

First, we show that Grid(⇧: ) contains every signed permuta-
tion whose pre�x-reversal distance is  : . If c has pre�x-reversal
distance  : , then it is an in�ation of a compact permutation with
pre�x-reversal distance  : . According to the discussion above,Figure 2
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burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .
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To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are
represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x-reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x-reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .

First, we show that Grid(⇧: ) contains every signed permuta-
tion whose pre�x-reversal distance is  : . If c has pre�x-reversal
distance  : , then it is an in�ation of a compact permutation with
pre�x-reversal distance  : . According to the discussion above,
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signed permutations, but we can interpret their elements di�er-
ently. If c 2 Grid(⇧), we think of each entry of c as representing a
burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .

To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are

represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .
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burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .
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To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are
represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x-reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x-reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .

First, we show that Grid(⇧: ) contains every signed permuta-
tion whose pre�x-reversal distance is  : . If c has pre�x-reversal
distance  : , then it is an in�ation of a compact permutation with
pre�x-reversal distance  : . According to the discussion above,Figure 2
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burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .
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To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are
represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x-reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x-reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .

First, we show that Grid(⇧: ) contains every signed permuta-
tion whose pre�x-reversal distance is  : . If c has pre�x-reversal
distance  : , then it is an in�ation of a compact permutation with
pre�x-reversal distance  : . According to the discussion above,
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signed permutations, but we can interpret their elements di�er-
ently. If c 2 Grid(⇧), we think of each entry of c as representing a
burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .

To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are

represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .
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burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .
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To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are
represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x-reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x-reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .

First, we show that Grid(⇧: ) contains every signed permuta-
tion whose pre�x-reversal distance is  : . If c has pre�x-reversal
distance  : , then it is an in�ation of a compact permutation with
pre�x-reversal distance  : . According to the discussion above,Figure 2
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burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .
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To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are
represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x-reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x-reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .

First, we show that Grid(⇧: ) contains every signed permuta-
tion whose pre�x-reversal distance is  : . If c has pre�x-reversal
distance  : , then it is an in�ation of a compact permutation with
pre�x-reversal distance  : . According to the discussion above,
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signed permutations, but we can interpret their elements di�er-
ently. If c 2 Grid(⇧), we think of each entry of c as representing a
burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .

To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are

represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .
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burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .
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To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are
represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x-reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x-reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .

First, we show that Grid(⇧: ) contains every signed permuta-
tion whose pre�x-reversal distance is  : . If c has pre�x-reversal
distance  : , then it is an in�ation of a compact permutation with
pre�x-reversal distance  : . According to the discussion above,Figure 2
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burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .
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To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are
represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x-reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x-reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .

First, we show that Grid(⇧: ) contains every signed permuta-
tion whose pre�x-reversal distance is  : . If c has pre�x-reversal
distance  : , then it is an in�ation of a compact permutation with
pre�x-reversal distance  : . According to the discussion above,
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signed permutations, but we can interpret their elements di�er-
ently. If c 2 Grid(⇧), we think of each entry of c as representing a
burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .

To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are

represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .
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(a) A sorted stack of burnt
pancakes, equivalent to ele-
ments of Grid(1) .
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(b) A sorted stack of burnt
pancakes after the spatula
has been inserted.
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(c) The resulting stack of
pancakes after �ipping ev-
erything above the spatula,
equivalent to elements of
Grid(12) .
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burnt pancake. Moreover, if c 2 ⇧, we can also think of each entry
of c as a block of inde�nitely many consecutive pancakes which is
in sorted order internally. Similar to a single burnt pancake, each
block has orientation and relative order and can be treated as a
singular entity. Conceptually, when we in�ate an element of ⇧, we
are simply assigning a nonnegative integer size to each block.

Consider Grid(12) as an example. We interpret 12 as an upside
down block of pancakes on top of a larger, right side up block
of pancakes, and every signed permutation in Grid(12) �ts this
characterization. For example, 12[h3, 3i] = 321456, and we can sort
321456 similarly to how we would sort 12.

For the remainder of this discussion, we visualize our signed
permutations as stacks of blocks rather than stacks of pancakes.
This intuition will help us choose ⇧: .
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(a) The pancake stacks that
result from �ipping inside
the top block of 12.
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(b) The pancake stacks that
result from �ipping inside
the bottom block of 12.

Figure 2

To get any stack of pancakes which is one �ip from being sorted,
we start with a sorted stack, insert our spatula somewhere in the
middle of the stack, and �ip. In other words, we start with the
signed permutation 1 from Figure 1a. Then we insert our spatula,
splitting the block into two, shown in Figure 1b. Finally, we �ip,
which produces 12 as seen in Figure 1c. So intuitively we expect
Grid(12) to represent the stacks of pancakes which can be sorted
in  1 �ips.

We can continue this process recursively. To get any pancake
stack which is two �ips from the identity, we start with a stack
which is one �ip from the identity, insert our spatula anywhere,
and �ip. But the stacks which are one �ip from the identity are
represented by 12, which consists of two blocks. We can �ip in
the middle of either block, which means we are going to obtain
two di�erent signed permutations. If we �ip inside the 1 block,
we get 213. If we �ip inside the 2 block, we get 213. These stacks
are shown in Figure 2a and Figure 2b, respectively. So we expect
Grid({213, 213}) to represent the stacks of pancakes which can be
sorted in  2 �ips.

This process is straightforward, and we can continue this recur-
sion to generate ⇧: for any : . A simple induction argument shows
that ⇧ will contain :! elements, each of length : + 1.

The recursive procedure we have described is meant to mirror
all possible ways we could rearrange a sorted stack of pancakes
in : �ips. However, our procedure requires us to perform exactly
: �ips, and each �ip must be in the middle of a block, splitting it
into two. Consequently, there are certain stacks of pancakes which
are not obviously contained in Grid(⇧: ): any stack generated by
strictly < : �ips or any stack generated by at least one �ip that
didn’t “separate" pancakes.

Although our process does not allow us to �ip at the edge of a
block, it allows us to �ip in�nitesimally close to the edge of a block.
In other words, if we �ip in the middle of a block and then in�ate
one of the resulting two blocks by zero, we have simulated �ipping
at the edge of the original block. We can use this trick to �ip in
between blocks, which is equivalent to a �ip that doesn’t separate
pancakes. We can also use this trick to �ip at the very top or very
bottom of the stack, and the former is equivalent to not �ipping at
all. This analysis shows us that Grid(⇧: ) must contain all stacks of
pancakes with pre�x-reversal distance  : , and we formalize this
in a proposition.

P���������� 4.1. For each : � 0, the set of all burnt pancake
stacks with pre�x-reversal distance  : is equivalent to a signed grid
class.

P����. Speci�cally, this grid class is Grid(⇧: ), which we gen-
erate recursively starting with ⇧0 = {1}. For each c 2 ⇧: , and
for each 1  8  : + 1, we generate a new permutation c8 by �rst
in�ating c by the vector 48 +1, and then applying the pre�x reversal
58 to the result. Here 48 denotes the standard basis vector where the
8th component is 1 and all others are 0. De�ne ⇧:+1 as the set of
all these c8 .

First, we show that Grid(⇧: ) contains every signed permuta-
tion whose pre�x-reversal distance is  : . If c has pre�x-reversal
distance  : , then it is an in�ation of a compact permutation with
pre�x-reversal distance  : . According to the discussion above,Figure 2



Grid generalized permutation classes

Stacks of burnt pancakes that take at most k flips
to be sorted

Grid({1120}) is the class representing the stacks of burnt pancakes
that take at most one flip to be sorted. The algorithm outputs n + 1.

Grid({201130, 2113}) is the class representing the stacks of burnt
pancakes that take at most two flips to be sorted. The algorithm
outputs n2 + 1.

There are

n5 − 29

6
n4 +

17

2
n3 − 26

6
n2 +

1

2
n + 1

stacks of burnt pancakes that require at most 5 flips to be sorted,
etc...

These polynomials work for all n ≥ 1 (they don’t miss any values like
in the case of Sn.)



Generalized pancake stacks

Pancakes with more than 2 sides?

Back to S(m, n) = Cm o Sn.

Recall the notation: 42201231 ∈ C3 o S4. The characters from Sn are the
symbols and the characters from Cm are the signs.

Given π ∈ S(m, n). Then the action of ri to π reverses the first i symbols
in π and adds 1 mod m to the affected signs.

r3(42201231) = 10214031

and
r4(42201231) = 32102140



Generalized pancake stacks

Generalized pancake graphs

These are the Cayley graphs of Cm o Sn using {r1(e), . . . , rn(e)} as
generators (e ∈ Cm o Sn is the identity element).

If m = 1 we recover the pancake graph Pn. If m = 2 we recover the burnt
pancake graph BPn. Moreover, if m = 1, 2 the ri s are involutions

If m ≥ 3, we obtain a directed graph.



Generalized pancake stacks
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Generalized pancake stacks

C4 o S2
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Generalized pancake stacks

Application of our main theorem

Corollary

The number of stacks of generalized pancakes that require k flips to be
sorted is eventually polynomial.



Generalized pancake stacks

Summary

1 We talked about the pancake problem

2 We started by counting the number of stacks of pancakes that require
4 flips to be sorted as a motivation

3 We talked about permutation classes and some enumerative results,
including the classes that are eventually enumerated by polynomials

4 We defined signed permutation classes. These objects are very
natural, but they haven’t been studied as much.

5 We characterize the signed permutation classes that are eventually
enumerated by polynomials. This was our main result.

6 We applied our result to show that the number of generalized pancake
stacks that require k flips to be sorted is eventually polynomial.

7 Future directions: explore other enumerative questions relating to
signed permutation classes.



Generalized pancake stacks

Thank you!
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