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The Pancake Problem

Motivation: The pancake problem

The original statement
The chef in our place is sloppy, and when he prepares a stack of
pancakes they come out all different sizes. Therefore, when |
deliver them to a customer, on the way to the table | rearrange
them (so that the smallest winds up on top, and so on, down to
the largest on the bottom) by grabbing several from the top and
flipping them over, repeating this (varying the number | flip) as
many times as necessary. If there are n pancakes, what is the
maximum number of flips (as a function of n) that I will ever
have to use to rearrange them?
-Harry Dweighter, December 1975. American Math. Monthly
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The Pancake Problem

Largest pancake first algorithm

Example

12345

This took 7 flips!
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The Pancake Problem

f(n), some of what is known

m Exact value known for n < 19.
m Simplest algorithm: flip largest to top, then into place. f(n) < 2n.

m Improved algorithm: Bill Gates and Christos Papadimitriou (1979).

f(n) < o0+ 3. (about 1.666n).

18
m Improved algorithm: Chitturi et al. (2008). f(n) < " + O(1)
(about 1.6363n).

m Pancake sorting is NP-hard: Laurent Bulteau, et al. (2015). To be
specific, finding the optimal sequence of flips to sort a stack is
NP-hard



Source: Neil Jones and Pavel Pevzner,
2004 “Introduction to Biolnformatics Algorithms”



Pancake graphs

We can think of these pancake flips
as prefix-reversal generators of the
symmetric group S,

ri=i(i—=1)---1(+1)(i+2)--n,

with 2 </ < n.

1324

3142

31p4

2481

4213

Pancake graph Py

4231

2413



Stacks which require k flips to be sorted

How many stacks of n pancakes take exactly k flips
to be sorted?

A great deal is known about the structure of cycles in P,. In particular,
there is only one type of 6-cycle in the graph and no cycles shorter than
length 6 exist.

If k=0, then 1.
If k=1, then n—1.
If k =2, then (n—1)(n—2).

If k =3, then (n—1)(n—2)? — 1 (the “~1" comes from the one
6-cycle)



Stacks which require k flips to be sorted

How many stacks of n pancakes take exactly 4 flips
to be sorted?

Theorem
(B., Buehrle and Patidar, 2019) If n > 3, there are

1
E(2n4 — 15n% +29n° + 6n — 34)

stacks of n pancakes that take exactly 4 flips to be sorted.

The proof used elementary methods like the our classification of 7- and
8-cylces in P, and PIE. It was a lot of book keeping.

There's gotta be a better way!



The Homberger—Vatter Algorithm (2016)

Vince Vatter emailed us to tell us about their 2016 paper. We were not
thinking of this problem in the context of permutation classes.

Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

On the effective and automatic enumeration
of polynomial permutation classes

Cheyne Homberger?, Vincent Vatter >’



Permutation classes

The permutation 7 of length n contains the permutation ¢ of length k if
7 has a subsequence of length k < n that is order isomorphic to o, i.e.,
that has the same pairwise comparisons as o.

For example, the subsequence 38514 is order isomorphic to 25413, so
25413 is contained in the permutation 36285714.

®

A permutation class C is a set of permutations (of different lengths)
closed under containment. In other words, a permutation class C is a
downset of permutations in this ordering: If C is a permutation class and
mel,0<m, then o €C.

1Credit: Vince Vatter




Permutation classes

Permutation classes

12 3421 4123 4132 4213 4231 4312 4321

21

12

Credit: Vince Vatter.



Basis of a permutation class

Given any set of permutations B define

Av(B) = {7 : m “avoids' m € B}

Given any permutation class C, there is a set B so that C =Av(B). In fact,
we can take B to be the set of minimal permutations not in C, and that is
called the basis of C.



Permutation classes

Class Av(312)

3492 3421 4123 4182 4213 4281 4312 4321
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Permutation classes

Enumerating permutation classes

Let C, :=CN'S, (S, denoting the symmetric group)
What is the behavior of the sequence |Col, |C1],. - -

One way of doing this is to compute explicitly the generating function of
the class,

S feabe

n>0
Is it rational? algebraic? D-finite?

One of the first results in the subject is that if C = Av(123), then
Cal = (*7)/(n+ 1) (the Catalan numbers).



Stanley-Wilf Conjecture (Theorem since 2004)

Stanley and Wilf independently conjectured the following.

Theorem (Marcos and Tardos, 2004)

For every permutation (3, there is a constant C such that for all n,

IAV(B) N Sa| < C".

In other words, given any proper permutation class C,

limsup v/|Cp| is finite.

n—o0

This limit is called the (exponential) rate of growth of C.



Permutation classes

Permutation classes enumerated by polynomials

The Fibonacci Dichotomy of Kaiser and Klazar (2003) : If C is a
permutation class with |Cy| < Fy for some integer N, then |C,| is given
by a polynomial for sufficiently large n (or, eventually polynomial). In
other words, there exists ng such that |C,| = p(n) for all n > ng where
p(n) is a polynomial. Here F, denotes the nth Fibonacci number.

Homberger and Vatter (2016) provided an algorithm, HVA, that finds this
polynomial.

It turns out that the permutations that take at most k flips to be sorted is
a permutation class which can be eventually enumerated by polynomials
(it might miss the first few values of n.)



Enter generalized permutations S(m, n) := C,,@ S,

Consider the group S(m, n) := C, 1 Sy, where Cp, is the cyclic group of
order m, say with elements {0,..., m — 1}. We take the following
notation: Every element in S(m, n) has the form

mitmy? -, where e € Cp,.

We refer to m1,...,m, as the symbols and ey, ..., e, as the signs.
For example, 392143521961 € S(4,6).

Notice S(1,n) = S, and S(2, n) = B, (Coxeter group of type B, the
hyperoctahedral group, the group of symmetries of the hypercube.)



Generalized permutation classes

Classes in S(m, n)

Definition

. n bn, .
Given m =72 ...ty € S(m, ny) and o = afl -0 € S(m, np), with
n < ny, we say that 7 contains o, denoted by 7 < o, if there exists

b,‘ bin o o
aill ---0; " such that bj; = a; and the characters in o, - -+ 0j, arein the

nj.

same relative order as the characters of .

A generalized permutation class is set of generalized permutations that
is closed under containment.

Example

The following is a finite class (the set of all elements < than
201131 € 5(2,3))

201131 2011 1021 1191 10 11 ¢

2011,3’1/ gives 2071 20,1/f31 gives 1921 etc.




Generalized permutation classes

The case m =2

The case m = 2 is interesting because it has to do with genome
rearrangements



Generalized permutation classes

Relations to genome rearrangements

Transforming Cabbage into Turnip: Polynomial
Algorithm for Sorting Signed Permutations by Reversals

SRIDHAR HANNENHALLI

Bioinformatics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania
AND

PAVEL A. PEVZNER

University of Southern California, Los Angeles, California

Journal of the ACM, 1999



Generalized permutation classes

Genome Rearrangement

B. oleracea 1 5 4 3 2
(cabbage) ><
1 5 3 3 =2
1 -5 -4 -3 -2
B. campestris T
(turnip) 1 2 3 3 3

Fic. 1. “Transformation” of cabbage into turnip. Mitochondrial DNA of cabbage and turnip are
composed of five conserved blocks of genes that are shuffled in cabbage as compared to turnip. Every
conserved block has a direction that is shown by + or — sign.

Journal of the ACM, 1999



Generalized permutation classes

Burnt pancake graph BP,

]_2—12

Figure: BP, is an 8-cycle.



Generalized permutation classes

Placental Ancestor
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S tacks of burnt pancakes with at most k flips to be sorted

How many stacks of n burnt pancakes take exactly k
flips to be sorted?

A great deal is known about the structure of cycles in BP,,. In particular,
we know that 8-cycles are the shortest possible cycles.

If k=0, then 1.
If Kk =1, then n.
If k =2, then n(n—1).

If k =3, then n(n—1)2.



S tacks of burnt pancakes with at most k flips to be sorted

How many stacks of n burnt pancakes take exactly 4
flips to be sorted?

Theorem
(B., Buehrle and, Patidar 2019) If n > 1, there are
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How many stacks of n burnt pancakes take exactly 4
flips to be sorted?

Theorem
(B., Buehrle and, Patidar 2019) If n > 1, there are

1
En(n —1)%(2n - 3)

stacks of n burnt pancakes that take exactly 4 flips to be sorted.

The proof used elementary methods like the our classification of and 8 and
9-cylces in BP, and PIE. It was a lot of book keeping.

There's gotta be a better way! There is.




Grid generalized permutation classes

Generalized peg permutations

Generalized peg permutations are generalized permutations in which each
entry is also associated with a decorator in the set 4, —, o. For example,
30.11—5—20—&-'

Containment is defined similarly, with:
+ contains + and e,
— contains — and e, and

e only contains e



Inflating a signed permutation

For a peg permutation 7 and a vector v each of length n, we say that the
inflation of 7 by v, written 7[v], is the generalized permutation obtained by
replacing each entry in 7w with an interval according to the following rules:

7(i) is replaced with an interval of length v(i).

If 7(i) is decorated with a +, its interval must be increasing, and if
7(i) is decorated with a —, its interval must be decreasing.

If 7(/) is decorated with a e, then v(i) must be 0 or 1.

Every entry in the interval corresponding to 7(i) has the same sign as
7(r).

The relative order of the intervals matches the relative order of the
entries of .

Example

If 7 =11%3%°20~ and v = (4,1,3). Then 7[v] = 11213141 80 796050

J




Grid generalized permutation classes

Grid generalized permutation classes

The grid class of a peg permutation 7, of length k, written Grid(7), is the
set of generalized permutations

{nlv] : v € (Z20)"}

If M is a set of peg permutations (not necessarily of the same length) then
Grid(IM) is given by

{Grid(7) : m € M}.

It is easy to see that Grid(I) is closed under containment (thus a
permutation class).



Grid generalized permutation classes

Fibonacci Dichotomy extends to generalized
permutation classes

This is our main theorem.

Theorem (B. and Skora, 2024)

Let C be a signed permutation class with m signs. Then the following are
equivalent

|IC N S(m,n)| < F, for some n (Fibonacci numbers)
There exists ng such that |C N S(m, n)| is polynomial for all n > ny.
C is a grid generalized permutation class.

v

Essentially, we have characterized all generalized permutation classes that
are enumerated by polynomials.

Huczynska and Vatter (2006) and Albert et al. (2013) established the
theorem for m = 1. Homberger and Vatter (2016) provided an algorithm
(HVA) that produces these polynomials. The techniques extend to m > 1.



Idea of the proof

If v € (Z>0)", and > v(i) be the weight of v. Then the downset of v
{w € (Z20)" | w(i) < v(N)}.

Theorem

Let C denote a downset in (Z>0)". For sufficiently large n, the number of
vectors in C of weight n is given by a polynomial.

Stanley proposed the theorem as a 1976 Monthly problem offering two
solutions. One of these solutions is “elementary'” and the second one
considers the downset as Hilbert functions.

It turns out that the elements of grid class correspond to downsets.



Grid generalized permutation classes

Enumerating grid generalized permutation classes

Homberger and Vatter (2016) gave an algorithm to enumerate
permutation classes that are eventually polynomial.

We have extended the algorithm to work for generalized permutation
classes

Code available
https://github.com/danskora/SignedPermutationClasses


https://github.com/danskora/SignedPermutationClasses

ed permutation classes

PA
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Grid generalized permutation classes

Stacks of burnt pancakes that take at most k flips
to be sorted

m Grid({112°}) is the class representing the stacks of burnt pancakes
that take at most one flip to be sorted. The algorithm outputs n+ 1.

m Grid({2°113%,2113}) is the class representing the stacks of burnt
pancakes that take at most two flips to be sorted. The algorithm
outputs n® + 1.

m There are

29 17 26 1
n° — €n4+?n3—€n2+§n+1
stacks of burnt pancakes that require at most 5 flips to be sorted,

etc...

m These polynomials work for all n > 1 (they don’t miss any values like
in the case of S,.)



Pancakes with more than 2 sides?

Back to S(m, n) = Cy 1 S

Recall the notation: 4220123 ¢ (31 S,. The characters from S, are the
symbols and the characters from C,, are the signs.

Given m € S(m, n). Then the action of r; to 7 reverses the first i symbols
in 7 and adds 1 mod m to the affected signs.

r3(4%201%3%) = 19214931

and
ra(422°1231) = 32192140



Generalized pancake stacks

Generalized pancake graphs

These are the Cayley graphs of Cp, 1S, using {ri(e),...,ra(e)} as
generators (e € Cpy 1 Sy is the identity element).

If m =1 we recover the pancake graph P,. If m =2 we recover the burnt
pancake graph BP,,. Moreover, if m = 1,2 the r;s are involutions

If m > 3, we obtain a directed graph.



Gl S,




Gl S,




Generalized pancake stacks

Application of our main theorem

Corollary

The number of stacks of generalized pancakes that require k flips to be
sorted is eventually polynomial.




Generalized pancake stacks

Summary

We talked about the pancake problem

We started by counting the number of stacks of pancakes that require
4 flips to be sorted as a motivation

We talked about permutation classes and some enumerative results,
including the classes that are eventually enumerated by polynomials

We defined signed permutation classes. These objects are very
natural, but they haven't been studied as much.

We characterize the signed permutation classes that are eventually
enumerated by polynomials. This was our main result.

We applied our result to show that the number of generalized pancake
stacks that require k flips to be sorted is eventually polynomial.

Future directions: explore other enumerative questions relating to
signed permutation classes.



Thank you!
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