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Matroids and Grassmannian

The (real) grassmannian Grk,n consists of all the k-dimensional vector
spaces V in Rn. Every V ∈ Grk,n can be represented as a full rank matrix
Ak×n.

For instance,

V = 〈(2, 0, 0, 1), (1, 1, 0, 2)〉 ∈ Gr2,4  A =

(
2 0 0 1
1 1 0 2

)
.

◦ Grk,n can be thought of as Mk,n/ ∼

Every V ∈ Grk,n gives rise to a linear matroid M = ([n],B) of rank k
where B ∈ B if and only if pB 6= 0. Here pB is the k × k determinant of
the matrix whose columns are those indexed by B.

V :

(
2 0 0 1
1 1 0 2

)
 MV = ([4], {12, 14, 24}).

◦ Every linear matroid arises this way.
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Positroids - Postnikov ’05-

The totally nonnegative Grassmannian Gr≥0
k,n is the subset of Grk,n

consisting of those Ak×n s.t. all its maximal minors are ≥ 0.

A positroid of rank k is a matroid P = ([n],B) such that P can be
represented by some Ak×n ∈ Gr≥0

k,n .

• P = ([5],B) where B = {13, 14, 15, 34, 35, 45}:
(

1 0 1 0 −2
0 0 1 1 2

)
X

• M = ([4],B) where B = {12, 14, 23, 34} is linear but is not a positroid.

• Positroids care about the labelling of the ground set. M = ([4],B) where

B = {13, 14, 23, 24} is a positroid:

(
1 1 0 0
0 0 1 1

)
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A positroid of rank k is a matroid P = ([n],B) such that P can be
represented by some Ak×n ∈ Gr≥0

k,n .

The positroid P = ([5],B) where B = {13, 14, 15, 34, 35, 45} can be encoded
by its

• Grassmann necklace IP = (13, 34, 34, 45, 51)

• Decorated permutation π = 42513

• and many more combinatorial objects...



Positroids - Postnikov ’05-

The totally nonnegative Grassmannian Gr≥0
k,n is the subset of Grk,n

consisting of those Ak×n s.t. all its maximal minors are ≥ 0.

A positroid of rank k is a matroid P = ([n],B) such that P can be
represented by some Ak×n ∈ Gr≥0

k,n .

The positroid P = ([5],B) where B = {13, 14, 15, 34, 35, 45} can be encoded
by its

• Grassmann necklace IP = (13, 34, 34, 45, 51)

• Decorated permutation π = 42513

• and many more combinatorial objects...



Positroids - Postnikov ’05-

The totally nonnegative Grassmannian Gr≥0
k,n is the subset of Grk,n

consisting of those Ak×n s.t. all its maximal minors are ≥ 0.

A positroid of rank k is a matroid P = ([n],B) such that P can be
represented by some Ak×n ∈ Gr≥0

k,n .

The positroid P = ([5],B) where B = {13, 14, 15, 34, 35, 45} can be encoded
by its

• Grassmann necklace IP = (13, 34, 34, 45, 51)

• Decorated permutation π = 42513

• and many more combinatorial objects...



Positroids - Postnikov ’05-

The totally nonnegative Grassmannian Gr≥0
k,n is the subset of Grk,n

consisting of those Ak×n s.t. all its maximal minors are ≥ 0.

A positroid of rank k is a matroid P = ([n],B) such that P can be
represented by some Ak×n ∈ Gr≥0

k,n .

The positroid P = ([5],B) where B = {13, 14, 15, 34, 35, 45} can be encoded
by its

• Grassmann necklace IP = (13, 34, 34, 45, 51)

• Decorated permutation π = 42513

• and many more combinatorial objects...



Lattice path matroids LPMs

Fix 0 ≤ k ≤ n and let U, L ∈
(
[n]
k

)
.

The lattice path matroid M[U, L] is the matroid on [n] whose bases are
those B ∈

(
[n]
k

)
such that U ≤ B ≤ L.

For instance, let k = 6, n = 13, U = {1, 2, 5, 9, 11, 12}, L = {4, 7, 8, 9, 12, 13}.

1
2

5
9
11
12

4
7
8
9

12
13

then B = {2, 4, 7, 9, 11, 13} is a basis of M[U, L].

◦ Every LPM is a positroid.
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Flags of matroids a.k.a. quotients of matroids

A point in the (full) flag variety F`n is a flag F :V1⊂V2⊂· · ·⊂Vn =Rn

of subspaces with dimVi = i . Every F ∈ F`n can be thought of as a
full rank n × n matrix A.

(
0 1 0

)︸ ︷︷ ︸
M1

⊂
(

0 1 0
1 2 −1

)
︸ ︷︷ ︸

M2

⊂

0 1 0
1 2 −1
2 1 1


︸ ︷︷ ︸

M3

◦ A circuit of M is a minimal linearly dependent subset of [n].
◦ A matroid M is a quotient of N if every circuit of N is union of circuits
of M.
◦ A collection of matroids {M1, . . . ,Mn} on the set [n] are a (full) flag
matroid F if Mi−1 is a quotient of Mi for 1 < i < n.

C(M2) = {13}, C(M1) = {1, 3}.
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Let’s recap

V ∈ Grk,n Linear M = ([n],B) of rank k

Richardson cell X L
U LPM M(U, L)

A ∈ Gr≥0
k,n Positroids of rank k

F ∈ F`n Linear flag matroid M1 ⊂ · · · ⊂ Mn

F ∈ F`≥0
n ?

• F `≥0
n : An×n whose top i rows give a point in Gr≥0

i,n , for i ∈ [n].

Problems:

(1) Given two positroids P,Q on [n], can you tell combinatorially if P
is a quotient of Q, or viceversa?

(2) Is every flag P1 ⊂ · · · ⊂ Pn of positroids a point in F`≥0
n ?

(3) What can we say about flags L1 ⊂ · · · ⊂ Ln of LPMs?
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(1) Given two positroids P,Q on [n], how to tell (combinatorially) if
P is a quotient of Q, or viceversa?

A. Chavez
UC Davis

D. Tamayo
U. Paris-Saclay

1̄2̄3̄

213̄ 231 32̄1 1̄32 1̄23̄ 12̄3̄ 1̄2̄3

312 213 321 123̄ 132 12̄3 1̄23

123

Quotients of uniform positroids. arXiv:1912.06873
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Theorem [B-Knauer’20]: Let M = M[U, L]
be an LPM of rank k on [n] and let i , j ∈ [n].
Then M[U/j , L/i ] is a quotient of M if and
only if max(0, uj − `i ) ≤ j − i .

uj

li



(1) Given two positroids P,Q on [n], how to tell (combinatorially) if
P is a quotient of Q, or viceversa?

K. Knauer
U. of Barcelona

Theorem [B-Knauer’20]: Let M = M[U, L]
be an LPM of rank k on [n] and let i , j ∈ [n].
Then M[U/j , L/i ] is a quotient of M if and
only if max(0, uj − `i ) ≤ j − i .

uj

li



A poset of LPMs

◦ Given two LPMs P,Q on [n] let P ≤ Q if and only if P is a
quotient of Q.

◦ We know:
#{P ∈ LPMn : r(P) = n − k} = a(n + 1, k + 1) [Narayana numbers]

◦ We don’t know: Möbius function of this poset.
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(2) Is every flag P1 ⊂ · · · ⊂ Pn of positroids a point in F`≥0
n ?
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123

NO.
The flag 321 l 231
is not a point in
F`≥0

n :
321 : {1, 3}
231 : {12, 23, 13}(

a 0 b
c d e

)
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(3) Is every flag L1 ⊂ · · · ⊂ Ln of LPMs a point in F`≥0
n ?

[Tsukerman, Williams’15] If F ∈ F`≥0
n then F : P1 ⊂ · · · ⊂ Pn is a flag

positroid and is flag positroid polytope ∆F = ∆P1 + · · ·+ ∆Pn is a Bruhat
interval polytope.
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• Out of the 22 flags of positroids on [3], only 19 correspond to points in F`≥0
n .

• Out of these 19 flags in F`≥0
n , 17 are flags of LPMs.
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Theorem: [B-Knauer’20]
Every flag L1 ⊂ · · · ⊂ Ln of LPMs is an interval in the Bruhat order.

(3’) What intervals in the Bruhat order correspond to flags L1 ⊂ · · · ⊂ Ln

of LPMs?

Proposition: [B-Knauer’20]
If an interval [u, v ] in the (right weak) Bruhat order is a hypercube then
it is a flag of LPMs.
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Thank you!
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