A poset of lattice path matroids

Carolina Benedetti Velásquez

with K. Knauer (\geq 20)

Combinatorics Seminar MSU

Linear matroids

Positroids and LPMs

Quotients of positroids

The (real) grassmannian $Gr_{k,n}$ consists of all the *k*-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

 $V = \langle (2,0,0,1), (1,1,0,2)
angle \in \mathit{Gr}_{2,4}$

The (real) grassmannian $Gr_{k,n}$ consists of all the *k*-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$\mathcal{V}=\langle (2,0,0,1), (1,1,0,2)
angle\in \mathit{Gr}_{2,4} \rightsquigarrow \mathcal{A}=egin{pmatrix} 2 & 0 & 0 & 1\ 1 & 1 & 0 & 2 \end{pmatrix}.$$

The (real) grassmannian $Gr_{k,n}$ consists of all the *k*-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2)
angle \in \mathit{Gr}_{2,4} \rightsquigarrow A = egin{pmatrix} 2 & 0 & 0 & 1 \ 1 & 1 & 0 & 2 \end{pmatrix}.$$

 $\circ~\textit{Gr}_{k,n}$ can be thought of as $\textit{M}_{k,n}/\sim$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2)
angle \in \mathit{Gr}_{2,4} \rightsquigarrow A = egin{pmatrix} 2 & 0 & 0 & 1 \ 1 & 1 & 0 & 2 \end{pmatrix}.$$

 $\circ~{\it Gr}_{k,n}$ can be thought of as ${\it M}_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a **linear matroid** M = ([n], B) of rank k where $B \in B$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2)
angle \in \mathit{Gr}_{2,4} \rightsquigarrow A = egin{pmatrix} 2 & 0 & 0 & 1 \ 1 & 1 & 0 & 2 \end{pmatrix}.$$

 $\circ~{\it Gr}_{k,n}$ can be thought of as ${\it M}_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a **linear matroid** M = ([n], B) of rank k where $B \in B$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

$$V:\begin{pmatrix}2&0&0&1\\1&1&0&2\end{pmatrix}\rightsquigarrow$$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$V = \langle (2,0,0,1), (1,1,0,2)
angle \in \mathit{Gr}_{2,4} \rightsquigarrow A = egin{pmatrix} 2 & 0 & 0 & 1 \ 1 & 1 & 0 & 2 \end{pmatrix}.$$

 $\circ~{\it Gr}_{k,n}$ can be thought of as ${\it M}_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a **linear matroid** M = ([n], B) of rank k where $B \in B$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

$$V:\begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix} \rightsquigarrow M_V = ([4], \{12, 14, 24\}).$$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V \in Gr_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

$$\mathcal{V}=\langle (2,0,0,1), (1,1,0,2)
angle\in \mathit{Gr}_{2,4}\leadsto \mathcal{A}=egin{pmatrix} 2 & 0 & 0 & 1\ 1 & 1 & 0 & 2 \end{pmatrix}.$$

 \circ $Gr_{k,n}$ can be thought of as $M_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a **linear matroid** M = ([n], B) of rank k where $B \in B$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

$$V:\begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix} \rightsquigarrow M_V = ([4], \{12, 14, 24\}).$$

• Every linear matroid arises this way.

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

•
$$P = ([5], \mathcal{B})$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$:

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

•
$$P = ([5], \mathcal{B})$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$: $\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix} \checkmark$

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid P = ([n], B) such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

•
$$P = ([5], \mathcal{B})$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$: $\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix} \checkmark$

• M = ([4], B) where $B = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid P = ([n], B) such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

•
$$P = ([5], \mathcal{B})$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$: $\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix} \checkmark$

- M = ([4], B) where $B = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.
- Positroids care about the labelling of the ground set.

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid P = ([n], B) such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

•
$$P = ([5], \mathcal{B})$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$: $\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix} \checkmark$

- M = ([4], B) where $B = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.
- Positroids care about the labelling of the ground set. M = ([4], B) where $B = \{13, 14, 23, 24\}$ is a positroid:

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid P = ([n], B) such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

•
$$P = ([5], \mathcal{B})$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$: $\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix} \checkmark$

- M = ([4], B) where $B = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.
- Positroids care about the labelling of the ground set. $M = ([4], \mathcal{B})$ where $\mathcal{B} = \{13, 14, 23, 24\}$ is a positroid: $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid P = ([5], B) where $B = \{13, 14, 15, 34, 35, 45\}$ can be encoded by its

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid P = ([5], B) where $B = \{13, 14, 15, 34, 35, 45\}$ can be encoded by its

• Grassmann necklace $I_P = (13, 34, 34, 45, 51)$

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid P = ([5], B) where $B = \{13, 14, 15, 34, 35, 45\}$ can be encoded by its

- Grassmann necklace $I_P = (13, 34, 34, 45, 51)$
- Decorated permutation $\pi = 42513$

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid P = ([5], B) where $B = \{13, 14, 15, 34, 35, 45\}$ can be encoded by its

- Grassmann necklace $I_P = (13, 34, 34, 45, 51)$
- Decorated permutation $\pi = 42513$
- and many more combinatorial objects...

Lattice path matroids LPMs

Fix $0 \le k \le n$ and let $U, L \in {[n] \choose k}$. The lattice path matroid M[U, L] is the matroid on [n] whose bases are those $B \in {[n] \choose k}$ such that $U \le B \le L$.

Lattice path matroids LPMs

Fix $0 \le k \le n$ and let $U, L \in {[n] \choose k}$. The lattice path matroid M[U, L] is the matroid on [n] whose bases are those $B \in {[n] \choose k}$ such that $U \le B \le L$.

For instance, let $k = 6, n = 13, U = \{1, 2, 5, 9, 11, 12\}, L = \{4, 7, 8, 9, 12, 13\}.$

then $B = \{2, 4, 7, 9, 11, 13\}$ is a basis of M[U, L].

Lattice path matroids LPMs

Fix $0 \le k \le n$ and let $U, L \in {[n] \choose k}$. The lattice path matroid M[U, L] is the matroid on [n] whose bases are those $B \in {[n] \choose k}$ such that $U \le B \le L$.

For instance, let $k = 6, n = 13, U = \{1, 2, 5, 9, 11, 12\}, L = \{4, 7, 8, 9, 12, 13\}.$

then $B = \{2, 4, 7, 9, 11, 13\}$ is a basis of M[U, L].

Every LPM is a positroid.

A point in the (full) flag variety $\mathcal{F}\ell_n$ is a flag $F: V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

A point in the (full) flag variety $\mathcal{F}\ell_n$ is a flag $F: V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ & & \\$$

A point in the (full) flag variety $\mathcal{F}\ell_n$ is a flag $F: V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ & & \\$$

A *circuit* of *M* is a minimal linearly dependent subset of [*n*].
A matroid *M* is a **quotient** of *N* if every circuit of *N* is union of circuits of *M*.

• A collection of matroids $\{M_1, \ldots, M_n\}$ on the set [n] are a (full) flag matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.

A point in the (full) flag variety $\mathcal{F}\ell_n$ is a flag $F: V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ & & \\$$

A *circuit* of *M* is a minimal linearly dependent subset of [*n*].
A matroid *M* is a **quotient** of *N* if every circuit of *N* is union of circuits of *M*.

• A collection of matroids $\{M_1, \ldots, M_n\}$ on the set [n] are a (full) flag matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.

 $\mathcal{C}(M_2)$

A point in the (full) flag variety $\mathcal{F}\ell_n$ is a flag $F: V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ & & \\$$

A *circuit* of *M* is a minimal linearly dependent subset of [*n*].
A matroid *M* is a **quotient** of *N* if every circuit of *N* is union of circuits of *M*.

• A collection of matroids $\{M_1, \ldots, M_n\}$ on the set [n] are a (full) flag matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.

 $\mathcal{C}(M_2)=\{13\},$

A point in the (full) flag variety $\mathcal{F}\ell_n$ is a flag $F: V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ & & \\$$

A *circuit* of *M* is a minimal linearly dependent subset of [*n*].
A matroid *M* is a **quotient** of *N* if every circuit of *N* is union of circuits of *M*.

• A collection of matroids $\{M_1, \ldots, M_n\}$ on the set [n] are a (full) flag matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.

 $C(M_2) = \{13\}, C(M_1)$

A point in the (full) flag variety $\mathcal{F}\ell_n$ is a flag $F: V_1 \subset V_2 \subset \cdots \subset V_n = \mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ & & \\$$

A *circuit* of *M* is a minimal linearly dependent subset of [*n*].
A matroid *M* is a **quotient** of *N* if every circuit of *N* is union of circuits of *M*.

• A collection of matroids $\{M_1, \ldots, M_n\}$ on the set [n] are a (full) flag matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.

 $C(M_2) = \{13\}, C(M_1) = \{1, 3\}.$

$V \in Gr_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k

$V \in Gr_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$

$V \in Gr_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$
$A \in \mathit{Gr}_{k,n}^{\geq 0}$	Positroids of rank k

$V \in Gr_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$
$A \in \mathit{Gr}_{k,n}^{\geq 0}$	Positroids of rank <i>k</i>
$F \in \mathcal{F}\ell_n$	Linear flag matroid $M_1 \subset \cdots \subset M_n$

$V \in Gr_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$
$A \in \mathit{Gr}_{k,n}^{\geq 0}$	Positroids of rank <i>k</i>
$F \in \mathcal{F}\ell_n$	Linear flag matroid $M_1 \subset \cdots \subset M_n$
$F \in \mathcal{F}\ell_n^{\geq 0}$?

• $F\ell_n^{\geq 0}$: $A_{n \times n}$ whose top *i* rows give a point in $Gr_{i,n}^{\geq 0}$, for $i \in [n]$.

$V \in Gr_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$
$A \in \mathit{Gr}_{k,n}^{\geq 0}$	Positroids of rank <i>k</i>
$F \in \mathcal{F}\ell_n$	Linear flag matroid $M_1 \subset \cdots \subset M_n$
$F \in \mathcal{F}\ell_n^{\geq 0}$?

• $F\ell_n^{\geq 0}$: $A_{n \times n}$ whose top *i* rows give a point in $Gr_{i,n}^{\geq 0}$, for $i \in [n]$.

$V \in Gr_{k,n}$	Linear $M = ([n], \mathcal{B})$ of rank k
Richardson cell X_U^L	LPM $M(U, L)$
$A \in Gr_{k,n}^{\geq 0}$	Positroids of rank <i>k</i>
$F \in \mathcal{F}\ell_n$	Linear flag matroid $M_1 \subset \cdots \subset M_n$
$F \in \mathcal{F}\ell_n^{\geq 0}$?

• $F\ell_n^{\geq 0}$: $A_{n \times n}$ whose top *i* rows give a point in $Gr_{i,n}^{\geq 0}$, for $i \in [n]$.

Problems:

- (1) Given two positroids *P*, *Q* on [*n*], can you tell combinatorially if *P* is a quotient of *Q*, or viceversa?
- (2) Is every flag $P_1 \subset \cdots \subset P_n$ of positroids a point in $\mathcal{F}\ell_n^{\geq 0}$?
- (3) What can we say about flags $L_1 \subset \cdots \subset L_n$ of LPMs?

(1) Given two positroids *P*, *Q* on [*n*], how to tell (combinatorially) if *P* is a quotient of *Q*, or viceversa?

(1) Given two positroids *P*, *Q* on [*n*], how to tell (combinatorially) if *P* is a quotient of *Q*, or viceversa?

A. Chavez UC Davis

D. Tamayo U. Paris-Saclay

Quotients of uniform positroids. arXiv:1912.06873

(1) Given two positroids *P*, *Q* on [*n*], how to tell (combinatorially) if *P* is a quotient of *Q*, or viceversa?

 Given two positroids P, Q on [n], how to tell (combinatorially) if P is a quotient of Q, or viceversa?

Theorem [B-Knauer'20]: Let M = M[U, L]be an LPM of rank k on [n] and let $i, j \in [n]$. Then M[U/j, L/i] is a quotient of M if and only if max $(0, u_j - \ell_i) \le j - i$.

K. Knauer U. of Barcelona

A poset of LPMs

◦ Given two LPMs P, Q on [n] let P ≤ Q if and only if P is a quotient of Q.

A poset of LPMs

 \circ Given two LPMs P, Q on [n] let $P \leq Q$ if and only if P is a quotient of Q.

A poset of LPMs

• Given two LPMs P, Q on [n] let $P \leq Q$ if and only if P is a quotient of Q.

◦ We know: $#{P \in LPM_n : r(P) = n - k} = a(n + 1, k + 1)$ [Narayana numbers] ◦ We don't know: Möbius function of this poset.

NO. The flag $3\underline{2}1 < 231$ is not a point in $\mathcal{F}\ell_n^{\geq 0}$: $3\underline{2}1 : \{1,3\}$ $231 : \{12,23,13\}$ $\begin{pmatrix} a & 0 & b \\ c & d & e \end{pmatrix}$

[Tsukerman, Williams'15] If $F \in \mathcal{F}\ell_n^{\geq 0}$ then $F : P_1 \subset \cdots \subset P_n$ is a flag positroid and is flag positroid polytope $\Delta_F = \Delta_{P_1} + \cdots + \Delta_{P_n}$ is a Bruhat interval polytope.

[Tsukerman, Williams'15] If $F \in \mathcal{F}\ell_n^{\geq 0}$ then $F : P_1 \subset \cdots \subset P_n$ is a flag positroid and is flag positroid polytope $\Delta_F = \Delta_{P_1} + \cdots + \Delta_{P_n}$ is a Bruhat interval polytope.

[Tsukerman, Williams'15] If $F \in \mathcal{F}\ell_n^{\geq 0}$ then $F : P_1 \subset \cdots \subset P_n$ is a flag positroid and is flag positroid polytope $\Delta_F = \Delta_{P_1} + \cdots + \Delta_{P_n}$ is a Bruhat interval polytope.

• Out of the 22 flags of positroids on [3], only 19 correspond to points in $\mathcal{F}\ell_n^{\geq 0}$.

[Tsukerman, Williams'15] If $F \in \mathcal{F}\ell_n^{\geq 0}$ then $F : P_1 \subset \cdots \subset P_n$ is a flag positroid and is flag positroid polytope $\Delta_F = \Delta_{P_1} + \cdots + \Delta_{P_n}$ is a Bruhat interval polytope.

Out of the 22 flags of positroids on [3], only 19 correspond to points in *Fℓ^{≥0}_n*.
 Out of these 19 flags in *Fℓ^{≥0}_n*. 17 are flags of LPMs.

[Tsukerman, Williams'15] If $F \in \mathcal{F}\ell_n^{\geq 0}$ then $F : P_1 \subset \cdots \subset P_n$ is a flag positroid and is flag positroid polytope $\Delta_F = \Delta_{P_1} + \cdots + \Delta_{P_n}$ is a Bruhat interval polytope.

Out of the 22 flags of positroids on [3], only 19 correspond to points in *Fℓ^{≥0}_n*.
 Out of these 19 flags in *Fℓ^{≥0}_n*. 17 are flags of LPMs.

Theorem: [B-Knauer'20] Every flag $L_1 \subset \cdots \subset L_n$ of LPMs is an interval in the Bruhat order.

Theorem: [B-Knauer'20] Every flag $L_1 \subset \cdots \subset L_n$ of LPMs is an interval in the Bruhat order.

(3') What intervals in the Bruhat order correspond to flags $L_1 \subset \cdots \subset L_n$ of LPMs?

Theorem: [B-Knauer'20] Every flag $L_1 \subset \cdots \subset L_n$ of LPMs is an interval in the Bruhat order.

(3') What intervals in the Bruhat order correspond to flags $L_1 \subset \cdots \subset L_n$ of LPMs?

Proposition: [B-Knauer'20] If an interval [u, v] in the (right weak) Bruhat order is a hypercube then it is a flag of LPMs.

