A poset of lattice path matroids

Carolina Benedetti Velásquez

with K. Knauer (> 20)

Combinatorics Seminar MSU

[Linear matroids](#page-2-0)

[Positroids and LPMs](#page-10-0)

[Quotients of positroids](#page-39-0)

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V\in\mathsf{Gr}_{k,n}$ can be represented as a full rank matrix $A_{k\times n}$.

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V\in\mathsf{Gr}_{k,n}$ can be represented as a full rank matrix $A_{k \times n}$.

For instance,

 $V = \langle (2, 0, 0, 1), (1, 1, 0, 2) \rangle \in \mathsf{Gr}_{2, 4}$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V\in\mathsf{Gr}_{k,n}$ can be represented as a full rank matrix $A_{k\times n}$.

For instance,

$$
V=\langle (2,0,0,1), (1,1,0,2) \rangle \in \textit{Gr}_{2,4} \rightsquigarrow A=\begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.
$$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V\in\mathsf{Gr}_{k,n}$ can be represented as a full rank matrix $A_{k\times n}$.

For instance,

$$
V=\langle (2,0,0,1),(1,1,0,2)\rangle \in \textit{Gr}_{2,4} \rightsquigarrow A=\begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.
$$

○ $Gr_{k,n}$ can be thought of as $M_{k,n}/\sim$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V\in\mathsf{Gr}_{k,n}$ can be represented as a full rank matrix $A_{k\times n}$.

For instance,

$$
V=\langle (2,0,0,1), (1,1,0,2) \rangle \in \textit{Gr}_{2,4} \rightsquigarrow A=\begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.
$$

○ $Gr_{k,n}$ can be thought of as $M_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a linear matroid $M = ([n], \mathcal{B})$ of rank k where $B \in \mathcal{B}$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V\in\mathsf{Gr}_{k,n}$ can be represented as a full rank matrix $A_{k\times n}$.

For instance,

$$
V=\langle (2,0,0,1), (1,1,0,2) \rangle \in \textit{Gr}_{2,4} \rightsquigarrow A=\begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.
$$

○ $Gr_{k,n}$ can be thought of as $M_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a linear matroid $M = ([n], \mathcal{B})$ of rank k where $B \in \mathcal{B}$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

$$
V:\begin{pmatrix}2&0&0&1\\1&1&0&2\end{pmatrix}\leadsto
$$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V\in\mathsf{Gr}_{k,n}$ can be represented as a full rank matrix $A_{k\times n}$.

For instance,

$$
V=\langle (2,0,0,1),(1,1,0,2)\rangle \in \textit{Gr}_{2,4} \rightsquigarrow A=\begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.
$$

○ $Gr_{k,n}$ can be thought of as $M_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a linear matroid $M = ([n], \mathcal{B})$ of rank k where $B \in \mathcal{B}$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

$$
V: \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix} \rightsquigarrow M_V = ([4], \{12, 14, 24\}).
$$

The (real) grassmannian $Gr_{k,n}$ consists of all the k-dimensional vector spaces V in \mathbb{R}^n . Every $V\in\mathsf{Gr}_{k,n}$ can be represented as a full rank matrix $A_{k\times n}$.

For instance,

$$
V=\langle (2,0,0,1),(1,1,0,2)\rangle \in \textit{Gr}_{2,4} \rightsquigarrow A=\begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix}.
$$

○ $Gr_{k,n}$ can be thought of as $M_{k,n}/\sim$

Every $V \in Gr_{k,n}$ gives rise to a linear matroid $M = ([n], \mathcal{B})$ of rank k where $B \in \mathcal{B}$ if and only if $p_B \neq 0$. Here p_B is the $k \times k$ determinant of the matrix whose columns are those indexed by B.

$$
V: \begin{pmatrix} 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 2 \end{pmatrix} \rightsquigarrow M_V = ([4], \{12, 14, 24\}).
$$

◦ Every linear matroid arises this way.

The totally nonnegative Grassmannian $\,Gr_{k,n}^{\geq 0}\,$ is the subset of $\,Gr_{k,n}\,$ consisting of those $A_{k\times n}$ s.t. all its maximal minors are $\geq 0.$

The totally nonnegative Grassmannian $\,Gr_{k,n}^{\geq 0}\,$ is the subset of $\,Gr_{k,n}\,$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A positroid of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in \overline{\mathsf{Gr}^{\geq 0}_{k,n}}$.

The totally nonnegative Grassmannian $\,Gr_{k,n}^{\geq 0}\,$ is the subset of $\,Gr_{k,n}\,$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A positroid of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in \overline{\mathsf{Gr}^{\geq 0}_{k,n}}$.

• $P = ([5], B)$ where $B = \{13, 14, 15, 34, 35, 45\}$:

The totally nonnegative Grassmannian $\,Gr_{k,n}^{\geq 0}\,$ is the subset of $\,Gr_{k,n}\,$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A positroid of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in \overline{\mathsf{Gr}^{\geq 0}_{k,n}}$.

•
$$
P = ([5], \mathcal{B})
$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\} : \begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix} \checkmark$

The totally nonnegative Grassmannian $\,Gr_{k,n}^{\geq 0}\,$ is the subset of $\,Gr_{k,n}\,$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A positroid of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

•
$$
P = ([5], \mathcal{B})
$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\} : \begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}$

• $M = ([4], \mathcal{B})$ where $\mathcal{B} = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.

The totally nonnegative Grassmannian $\,Gr_{k,n}^{\geq 0}\,$ is the subset of $\,Gr_{k,n}\,$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A positroid of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

•
$$
P = ([5], \mathcal{B})
$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\} : \begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}$

- $M = ([4], \mathcal{B})$ where $\mathcal{B} = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.
- Positroids care about the labelling of the ground set.

The totally nonnegative Grassmannian $\,Gr_{k,n}^{\geq 0}\,$ is the subset of $\,Gr_{k,n}\,$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A positroid of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

•
$$
P = ([5], \mathcal{B})
$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\} : \begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}$

- $M = ([4], \mathcal{B})$ where $\mathcal{B} = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.
- Positroids care about the labelling of the ground set. $M = ([4], \mathcal{B})$ where $B = \{13, 14, 23, 24\}$ is a positroid:

The totally nonnegative Grassmannian $\,Gr_{k,n}^{\geq 0}\,$ is the subset of $\,Gr_{k,n}\,$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A positroid of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

•
$$
P = ([5], \mathcal{B})
$$
 where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$: $\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 1 & 2 \end{pmatrix}$

- $M = ([4], B)$ where $B = \{12, 14, 23, 34\}$ is linear but *is not* a positroid.
- Positroids care about the labelling of the ground set. $M = ([4], \mathcal{B})$ where $\mathcal{B} = \{13, 14, 23, 24\}$ is a positroid: $\begin{pmatrix} 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \end{pmatrix}$

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid $P = ([5], \mathcal{B})$ where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$ can be encoded by its

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid $P = (\mathfrak{[}5], \mathcal{B})$ where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$ can be encoded by its

• Grassmann necklace $I_P = (13, 34, 34, 45, 51)$

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A positroid of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid $P = (\mathfrak{[}5], \mathcal{B})$ where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$ can be encoded by its

- Grassmann necklace $I_P = (13, 34, 34, 45, 51)$
- Decorated permutation $\pi = 42513$

The totally nonnegative Grassmannian $Gr_{k,n}^{\geq 0}$ is the subset of $Gr_{k,n}$ consisting of those $A_{k \times n}$ s.t. all its maximal minors are ≥ 0 .

A **positroid** of rank k is a matroid $P = ([n], \mathcal{B})$ such that P can be represented by some $A_{k \times n} \in Gr_{k,n}^{\geq 0}$.

The positroid $P = ([5], \mathcal{B})$ where $\mathcal{B} = \{13, 14, 15, 34, 35, 45\}$ can be encoded by its

- Grassmann necklace $I_P = (13, 34, 34, 45, 51)$
- Decorated permutation $\pi = 42513$
- and many more combinatorial objects...

Lattice path matroids LPMs

Fix $0 \leq k \leq n$ and let $U, L \in \binom{[n]}{k}$. The lattice path matroid $M[U, L]$ is the matroid on $[n]$ whose bases are those $B \in \binom{[n]}{k}$ such that $U \leq B \leq L$.

Lattice path matroids LPMs

Fix $0 \leq k \leq n$ and let $U, L \in \binom{[n]}{k}$. The lattice path matroid $M[U, L]$ is the matroid on $[n]$ whose bases are those $B \in \binom{[n]}{k}$ such that $U \leq B \leq L$.

For instance, let $k = 6$, $n = 13$, $U = \{1, 2, 5, 9, 11, 12\}$, $L = \{4, 7, 8, 9, 12, 13\}$.

then $B = \{2, 4, 7, 9, 11, 13\}$ is a basis of $M[U, L]$.

Lattice path matroids LPMs

Fix $0 \leq k \leq n$ and let $U, L \in \binom{\lfloor n \rfloor}{k}$. The lattice path matroid $M[U, L]$ is the matroid on $[n]$ whose bases are those $B \in \binom{[n]}{k}$ such that $U \leq B \leq L$.

For instance, let $k = 6$, $n = 13$, $U = \{1, 2, 5, 9, 11, 12\}$, $L = \{4, 7, 8, 9, 12, 13\}$.

then $B = \{2, 4, 7, 9, 11, 13\}$ is a basis of $M[U, L]$.

◦ Every LPM is a positroid.

A point in the (full) fla<mark>g variety</mark> $\mathcal{F}\ell_n$ is a flag $F\colon V_1\subset V_2\subset\dots\subset V_n\!=\!\mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

A point in the (full) fla<mark>g variety</mark> $\mathcal{F}\ell_n$ is a flag $F\colon V_1\subset V_2\subset\dots\subset V_n\!=\!\mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$
\underbrace{(0 \quad 1 \quad 0)}_{M_1} \subset \underbrace{(\begin{matrix} 0 & 1 & 0 \\ 1 & 2 & -1 \end{matrix})}_{M_2} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}}_{M_3}
$$

A point in the (full) fla<mark>g variety</mark> $\mathcal{F}\ell_n$ is a flag $F\colon V_1\subset V_2\subset\dots\subset V_n\!=\!\mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$
\underbrace{(0 \quad \ \ 1 \quad \ \ 0)}_{M_1} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}}_{M_2} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}}_{M_3}
$$

 \circ A circuit of M is a minimal linearly dependent subset of $[n]$. \circ A matroid M is a quotient of N if every circuit of N is union of circuits of M.

```
\circ A collection of matroids \{M_1, \ldots, M_n\} on the set [n] are a (full) flag
matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.
```
A point in the (full) fla<mark>g variety</mark> $\mathcal{F}\ell_n$ is a flag $F\colon V_1\subset V_2\subset\dots\subset V_n\!=\!\mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$
\underbrace{(0 \quad \ \ 1 \quad \ \ 0)}_{M_1} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}}_{M_2} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}}_{M_3}
$$

 \circ A circuit of M is a minimal linearly dependent subset of $[n]$. \circ A matroid M is a quotient of N if every circuit of N is union of circuits of M.

```
\circ A collection of matroids \{M_1, \ldots, M_n\} on the set [n] are a (full) flag
matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.
```
 $C(M_2)$

A point in the (full) fla<mark>g variety</mark> $\mathcal{F}\ell_n$ is a flag $F\colon V_1\subset V_2\subset\dots\subset V_n\!=\!\mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$
\underbrace{(0\quad \ \ 1\quad \ \ 0)}_{M_1}\subset\underbrace{\begin{pmatrix}0\quad \ \ 1\quad \ \ 0\\1\quad \ \ 2\quad \, -1\end{pmatrix}}_{M_2}\subset\underbrace{\begin{pmatrix}0\quad \ \ 1\quad \ \ 0\\1\quad \ \ 2\quad \ \ -1\\2\quad \ \ 1\quad \ \ 1\end{pmatrix}}_{M_3}
$$

 \circ A circuit of M is a minimal linearly dependent subset of $[n]$. \circ A matroid M is a quotient of N if every circuit of N is union of circuits of M.

```
\circ A collection of matroids \{M_1, \ldots, M_n\} on the set [n] are a (full) flag
matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.
```
 $C(M_2) = \{13\},\$

A point in the (full) fla<mark>g variety</mark> $\mathcal{F}\ell_n$ is a flag $F\colon V_1\subset V_2\subset\dots\subset V_n\!=\!\mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$
\underbrace{(0\quad \ \ 1\quad \ \ 0)}_{M_1}\subset\underbrace{\begin{pmatrix}0\quad \ \ 1\quad \ \ 0\\1\quad \ \ 2\quad \, -1\end{pmatrix}}_{M_2}\subset\underbrace{\begin{pmatrix}0\quad \ \ 1\quad \ \ 0\\1\quad \ \ 2\quad \ \ -1\\2\quad \ \ 1\quad \ \ 1\end{pmatrix}}_{M_3}
$$

 \circ A circuit of M is a minimal linearly dependent subset of $[n]$. \circ A matroid M is a quotient of N if every circuit of N is union of circuits of M.

```
\circ A collection of matroids \{M_1, \ldots, M_n\} on the set [n] are a (full) flag
matroid F if M_{i-1} is a quotient of M_i for 1 < i < n.
```
 $C(M_2) = \{13\}, C(M_1)$

A point in the (full) fla<mark>g variety</mark> $\mathcal{F}\ell_n$ is a flag $F\colon V_1\subset V_2\subset\dots\subset V_n\!=\!\mathbb{R}^n$ of subspaces with dim $V_i = i$. Every $F \in \mathcal{F}\ell_n$ can be thought of as a full rank $n \times n$ matrix A.

$$
\underbrace{(0 \quad \ \ 1 \quad \ \ 0)}_{M_1} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \end{pmatrix}}_{M_2} \subset \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & 1 & 1 \end{pmatrix}}_{M_3}
$$

 \circ A circuit of M is a minimal linearly dependent subset of $[n]$. \circ A matroid M is a quotient of N if every circuit of N is union of circuits of M.

 \circ A collection of matroids $\{M_1, \ldots, M_n\}$ on the set $[n]$ are a (full) flag matroid F if M_{i-1} is a quotient of M_i for $1 < i < n$.

 $C(M_2) = \{13\}, C(M_1) = \{1, 3\}.$

 \bullet $F\ell_n^{\geq 0}$: $A_{n\times n}$ whose top i rows give a point in $Gr_{i,n}^{\geq 0}$, for $i\in [n].$

 \bullet $F\ell_n^{\geq 0}$: $A_{n\times n}$ whose top i rows give a point in $Gr_{i,n}^{\geq 0}$, for $i\in [n].$

 \bullet $F\ell_n^{\geq 0}$: $A_{n\times n}$ whose top i rows give a point in $Gr_{i,n}^{\geq 0}$, for $i\in [n].$

Problems:

- (1) Given two positroids P , Q on $[n]$, can you tell combinatorially if P is a quotient of Q , or viceversa?
- (2) Is every flag $P_1 \subset \cdots \subset P_n$ of positroids a point in $\mathcal{F}\ell_n^{\geq 0}$?
- (3) What can we say about flags $L_1 \subset \cdots \subset L_n$ of LPMs?

A. Chavez

D. Tamayo U. Paris-Saclay

Quotients of uniform positroids. arXiv:1912.06873

Theorem [B-Knauer'20]: Let $M = M[U, L]$ be an LPM of rank k on $[n]$ and let $i, j \in [n]$. Then $M[U/j, L/i]$ is a quotient of M if and only if max $(0, u_i - \ell_i) \leq j - i$.

K. Knauer U. of Barcelona

A poset of LPMs

 \circ Given two LPMs P, Q on [n] let $P \leq Q$ if and only if P is a quotient of Q.

A poset of LPMs

 \circ Given two LPMs P, Q on [n] let $P \leq Q$ if and only if P is a quotient of Q.

A poset of LPMs

 \circ Given two LPMs P, Q on [n] let $P \le Q$ if and only if P is a quotient of Q.

◦ We know: #{ $P \in LPM_n$: $r(P) = n - k$ } = $a(n + 1, k + 1)$ [Narayana numbers] ○ We don't know: Möbius function of this poset.

(2) Is every flag
$$
P_1 \subset \cdots \subset P_n
$$
 of positroids a point in $\mathcal{F}\ell_n^{\geq 0}$?

[Tsukerman, Williams'15] If $F \in \mathcal{F}\ell_n^{\geq 0}$ then $F : P_1 \subset \cdots \subset P_n$ is a flag positroid and is flag positroid polytope $\Delta_{\mathcal{F}} = \Delta_{P_1} + \cdots + \Delta_{P_n}$ is a Bruhat interval polytope.

[Tsukerman, Williams'15] If $F \in \mathcal{F}\ell_n^{\geq 0}$ then $F : P_1 \subset \cdots \subset P_n$ is a flag positroid and is flag positroid polytope $\Delta_{\mathcal{F}} = \Delta_{P_1} + \cdots + \Delta_{P_n}$ is a Bruhat interval polytope.

[Tsukerman, Williams'15] If $F \in \mathcal{F}\ell_n^{\geq 0}$ then $F : P_1 \subset \cdots \subset P_n$ is a flag positroid and is flag positroid polytope $\Delta_{\mathcal{F}} = \Delta_{P_1} + \cdots + \Delta_{P_n}$ is a Bruhat interval polytope.

 \bullet Out of the 22 flags of positroids on [3], only 19 correspond to points in $\mathcal{F}\ell_n^{\geq 0}$.

[Tsukerman, Williams'15] If $F \in \mathcal{F}\ell_n^{\geq 0}$ then $F : P_1 \subset \cdots \subset P_n$ is a flag positroid and is flag positroid polytope $\Delta_{\mathcal{F}} = \Delta_{P_1} + \cdots + \Delta_{P_n}$ is a Bruhat interval polytope.

 \bullet Out of the 22 flags of positroids on [3], only 19 correspond to points in $\mathcal{F}\ell_n^{\geq 0}$. \bullet Out of these 19 flags in $\mathcal{F}\ell_{\overline{n}}^{\geq 0}$, 17 are flags of LPMs.

[Tsukerman, Williams'15] If $F \in \mathcal{F}\ell_n^{\geq 0}$ then $F : P_1 \subset \cdots \subset P_n$ is a flag positroid and is flag positroid polytope $\Delta_{\mathcal{F}} = \Delta_{P_1} + \cdots + \Delta_{P_n}$ is a Bruhat interval polytope.

 \bullet Out of the 22 flags of positroids on [3], only 19 correspond to points in $\mathcal{F}\ell_n^{\geq 0}$. \bullet Out of these 19 flags in $\mathcal{F}\ell_{\overline{n}}^{\geq 0}$, 17 are flags of LPMs.

Theorem: [B-Knauer'20] Every flag $L_1 \subset \cdots \subset L_n$ of LPMs is an interval in the Bruhat order.

Theorem: [B-Knauer'20] Every flag $L_1 \subset \cdots \subset L_n$ of LPMs is an interval in the Bruhat order.

(3') What intervals in the Bruhat order correspond to flags $L_1 \subset \cdots \subset L_n$ of LPMs?

Theorem: [B-Knauer'20] Every flag $L_1 \subset \cdots \subset L_n$ of LPMs is an interval in the Bruhat order.

(3') What intervals in the Bruhat order correspond to flags $L_1 \subset \cdots \subset L_n$ of LPMs?

Proposition: [B-Knauer'20] If an interval $[u, v]$ in the (right weak) Bruhat order is a hypercube then it is a flag of LPMs.

