Higher-Categorical Associahedra

Spencer Backman

University of Vermont

joint work with Nathaniel Bottman (Max Planck Institute for Mathematics) and Daria Poliakova (University of Hamburg)

March 27th, 2025

Catalan Numbers

The Catalan numbers are a sequence $\{C_n\}$ of natural numbers where

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

for $n \ge 0$.

The Catalan numbers enumerate many (at least 200) families of objects such as

- planar binary trees
- triangulations of a polygon
- maximal parenthesizations of a word
- Dyck paths
- Skeletal paths (B.-Charbonneau-Loehr-O'Connor-Mullins-Warrington)

```
• . . .
```

Definition

A bracketing of [n] is a collection of pairs of parentheses placed in this string of integers.

Example: Let n = 4. The maximal bracketings are

The pentagonal associahedron

Figure: The bracketings of [4] arranged as a pentagon.

Definition

The associahedron is a partially ordered set whose elements are the bracketings of [n] ordered by containment.

The associahedron was independently discovered by Dov Tamari and Jim Stasheff. Stasheff's motivation came from studying the associativity of H-spaces.

The associahedron can be realized geometrically.

Theorem (Many people)

The associahedron can be realized as the face poset of a polytope.

Realizations are due to

- Milnor (?)
- Haiman
- Lee
- Gelfand-Kapranov-Zelevinsky (secondary polytopes)
- Buchstaber, Shnider-Sternberg, Loday, Postnikov (generalized permutahedra)
- Chapoton-Fomin-Zelevinsky (cluster algebras)
- Rote-Santos-Steinu
- Black-De Loera-Lütjeharms-Sanyal (pivot rule polytopes)
- many others...

A realization of the associahedron

Figure: A 3-dimensional associahedron [Wikipedia]

Loday's realization of the associahedron

Loday's realization

• Inequalities:
$$\sum_{i=j}^{k} x_i \ge {\binom{k-j+1}{2}}$$
 for $1 \le j \le k \le n-1$

• Equality:
$$\sum_{i=1}^{n-1} = \binom{n}{2}$$
.

For the pentagon we take

- $(1,0,0)^T x \ge 1$
- $(1,1,0)^T x \ge 3$
- $(0,1,0)^T x \ge 1$
- $(0,1,1)^T x \ge 3$
- $(0,0,1)^T x \ge 1$
- $(1,1,1)^T x = 6$

Loday's realization of the associahedron

Figure: Loday's realization of the 2-dimensional associahedron

Loday's realization of the associahedron

Figure: Loday's realization of the 3-dimensional associahedron [Loday]

Classical connection to symplectic geometry

- Associahedra form an important example of what is called an operad.
- One may take a category over an operad.
- An A_{∞} -category is a category over the associahedron.
- The Fukaya category of a symplectic manifold is the collection of Lagrangian submanifolds together with morphisms given by Floer cochains.
- The Fukaya category is an A_{∞} -category.

2-associahedra and functors between Fukaya categories

- Fukaya categories famously play a central role in Kontsevich's homological mirror symmetry conjecture.
- Mau-Wehrheim-Woodward showed how to construct a functor between Fukaya categories from a Lagrangian correspondence.
- Nathaniel Bottman introduced a notion of 2-associahedra as a family of posets which can be used for defining $(A_{\infty}, 2)$ -categories of which these functors between Fukaya categories are an example.

Associahedra from compactified moduli spaces

A classical compactified moduli space [Kapranov, Drinfeld]

• The associahedron = poset of strata of a compactification of the moduli space of points on a real line.

Figure: A collision of points on a line and the corresponding bracketing

Compactified moduli spaces

- The associahedron = poset of strata of a compactification of the moduli space of points on a real line.
- Bottman proved that a 2-associahedron = poset of strata of a compactification of the moduli space of a collection of veritcal lines with marked points in ℝ².

We will use this model to give an intuitive combinatorial definition of 2-associahedra in terms of objects called 2-bracketings.

Definition (codimension one 2-bracketing)

Let X be a collection of vertical lines in \mathbb{R}^2 together with points on these lines. A codimension one 2-bracketing B of X is either

- a collision of points on a line where the points form a consecutive set, or
- a collision of lines and points, i.e. a consecutive subset of lines and an ordered partition of the points on these lines which respects the order of the points on the individual lines.

A codimension one 2-bracketing

Figure: A codimension one 2-bracketing encoding a collision of lines and points

Definition (2-associahedra)

- A 2-bracketing is a union of compatible codimension one 2-bracketings.
- The 2-associahedron W_X determined by X is the collection of all 2-bracketings ordered by containment.

Figure: A 2-bracketing

Spencer Backman (UVM)

Higher-Categorical Associahedra

э. 18 / 42 March 27th, 2025

Image: A matrix

2

Conjecture (Bottman)

The 2-associahedra can be realized as face posets of convex polytopes.

Partial results

- Bottman proved that they are abstract polytopes.
- Bottman-Mavrides proved they are Eulerian.
- Abouzaid-Bottman (using results of Bottman-Oblomkov) proved that they are homeomorphic to closed balls.

The 2-dimensional 2-associahedra

Spencer Backman (UVM)

March 27th, 2025 20 / 42

A 3-dimensional 2-associahedron

э

We introduce a natural extension of associahedra and 2-associahedra called categorical *n*-associahedra.

Definition (B.-Bottman-Poliakova)

Let X be an arrangement of affine coordinate flags in \mathbb{R}^n whose incidence relations are encoded by a rooted plane tree \mathcal{T} .

- A codimension one *n*-bracketing is a combinatorial object which encodes a collision of subspaces forming a subtree in this arrangement.
- An *n*-bracketing is a union of compatible codimension one *n*-bracketings.
- The *n*-associahedron W_X is the collection of *n*-bracketings ordered by containment.

A tree arrangement of affine coordinate flags

Figure: On the left is an arrangement of affine spaces for producing a categorical 3-associahedron. On the right is a rooted plane tree encoding the combinatorial type of the arrangement on the left.

A 2-dimensional 3-associahedron

Figure: A 2-dimensional 3-associahedron

Theorem (B.-Bottman-Poliakova)

There exists a family of complete fans whose face posets are the *n*-associahedra.

Spencer Backman (UVM)

э

For outlining the construction of our fan, we focus on the case of 2-associahedra.

Velocity fan

- Let R(X) be a geometric arrangement of lines and points where the lines are one unit apart and the heights of the points increase by one unit as we move from left to right.
- Let B be a collision of points and lines and let R(B) encode the arrangement of points and lines above after the collision.

A geometric arrangement of lines and points

Figure: A geometric arrangement of lines and points

Spencer Backman (UVM)

Higher-Categorical Associahedra

March 27th, 2025 27 / 42

A geometric collision of lines and points

Figure: A collision and the resulting geometric arrangement of lines and points

Velocity fan

We construct a vector v_B associated to B:

- Let $v_B(x_i)$ encode the change in distance between lines l_i and l_{i+1} when passing from R(X) to R(B).
- Let $v_B(y_i)$ encodes the change in vertical distance from points p_i and p_{i+1} when passing from R(X) to R(B).

The calculation of a ray of the velocity fan

 $V_{B} = (1, 1, 2)$

Figure: The calculation of a collision vector

Spencer Backman (UVM)

Higher-Categorical Associahedra

March 27th, 2025 30 / 42

Velocity fan

We construct a ray ρ_B associated to B:

- We let $\rho_B = \{\lambda v_B + \gamma \vec{1} : \lambda, \gamma \in \mathbb{R}, \lambda \ge 0\}.$
- For each 2-bracketing B of W_X, we associate the cone which is the convex hull of all ρ_B such that B ∈ B.
- The velocity fan is the collection of all such cones.

The velocity fan of a 2-dimensional 2-associahedron

The velocity fan labeling of a 3-dimensional 2-associahedron

Spencer Backman (UVM)

When n = 1, our fan specializes to the normal fan of Loday's associahedron.

Some Remarks

- Loday's associahedron is an example of a generalized permutahedron, equivalently a polymatroid. These are the polytopes whose normal fans coarsen the braid arrangement.
- It is impossible to realize all 2-associahedra as generalized permutahedra because their face posets are too large.
- Moreover, *n*-associahedra cannot be realized in any of the standard extensions of the braid arrangement.

Proof of fan property

- We introduce a notion of a metric *n*-bracketing.
- These are the conical combinations of compatible collisions and they can be equivalently described by a set of relations suggested by symplectic geometry.
- We prove that the collection of metric *n*-bracketings form a cone complex (a topological structure which arises naturally in logarithmic geometry), whose face poset is the corresponding *n*-associahedron.
- We produce a piecewise linear isomorphism from the cone complex of metric *n*-bracketings to the velocity fan.

We prove completeness by demonstrating combinatorially that the fan has no boundary.

2

Results

- We produce a canonical unimodular flag triangulation of the velocity fan on the same set of rays.
- We demonstrate a piecewise-unimodular function on the velocity fan such that the image of each cone is a union of cones in the braid arrangement.
- We describe the extent to which the local nested fiber product structure of *n*-associahedra is realized by the velocity fan.
- We give a recursive calculation of the normal vectors of the walls of the velocity fan.
- For the class of *concentrated n*-associahedra we exhibit generalized permutahedra having velocity fans as their normal fans recovering Loday's associahedron and Forcey's multiplihedron.

Definition

Let $\{\mathscr{C}_i : 1 \le i \le k\}$ be a collection of collisions. Suppose that for all $1 \le i < j \le k$ either

- $\textcircled{0} \ \ \mathcal{C}_i \sim \mathcal{C}_j \ \text{or}$
- $@ \mathscr{C}_i \to \mathscr{C}_j,$

then we say that the collection $\{\mathscr{C}_i\}$ is *nested*.

Theorem (B., Bottman, Poliakova)

The collection of nested collisions induces a canonical unimodular flag triangulation of the velocity fan on the same set of rays.

We also produce a second, finer unimodular flag triangulation, which provides a new generalization of the braid arrangement.

< □ > < □ > < □ > < □ > < □ > < □ >

Figure: The triangulation of a square cone in the velocity fan.

< 1 k

Figure: The velocity fan of $W_{2,1}$ and maps to the braid arrangement.

Spencer Backman (UVM)

Higher-Categorical Associahedra

March 27th, 2025 40 / 42

Local fiber product structure

Figure: A collision \mathscr{C} in a 2-associahedron, and the corresponding factorization of interval $\mathcal{K}(\mathcal{T})_{\mathscr{C}} = [\mathscr{C}, \star] \subseteq \mathcal{K}(\mathcal{T})$ into a smaller 2-associahedron $\mathcal{K}(\mathcal{T}/_{\mathscr{C}})$ on the left times the fiber product of three 2-associahedra over a single 1-associahedron $\mathcal{K}(\mathcal{T}|_{\mathscr{C}})$ on the right.

Spencer Backman (UVM)

Thank You!

• • • • • • • •

æ