Kraśkiewicz-Hecke Insertion, a Type B Analogue to Hecke Insertion

Joshua Arroyo (University of Florida) Joint work with Zachary Hamaker, Graham Hawkes, Jianping Pan

March 20, 2024

Definition (Insertion Algorithm)

An algorithm that takes in data and outputs combinatorial objects such that there is a bijection between the set of all possible data and set of combinatorial objects.

Definition (Permutation)

A *permutation* is some ordering of $[n] = \{1, 2, ..., n\}$. Let S_n denote the set of permutations.

Example

The elements of S_3 are:

Reduced Words

Definition (Simple Transposition)

A simple transposition, s_i , swaps positions i and i + 1 of a permutation. S_n is generated by s_1, \ldots, s_{n-1} .

Definition (Reduced Word)

A reduced word of a permutation π is a minimal sequence of simple transpositions that compose into π .

Example

The reduced word(s) for each element of S_3 are:

- 123 231: *s*₁*s*₂
- 132: *s*₂
- 213: *s*₁

- 312: *s*₂*s*₁
- **321**: $s_1s_2s_1$, $s_2s_1s_2$

Definition (Signed Permutations (Type B))

A signed permutation is a permutation, π , on $[-n] \cup [n]$ such that $\pi(i) = -\pi(-i)$. Signed permutations are generated by $s_0, s_1, \ldots, s_{n-1}$. Denote the set of signed permutations on $[-n] \cup [n]$ as B_n .

Type B

Definition (Signed Permutations (Type B))

A signed permutation is a permutation, π , on $[-n] \cup [n]$ such that $\pi(i) = -\pi(-i)$. Signed permutations are generated by $s_0, s_1, \ldots, s_{n-1}$. Denote the set of signed permutations on $[-n] \cup [n]$ as B_n .

Example

The elements of B_2 are:

Definition (Reduced Word)

A reduced word of a signed permutation π is a minimal sequence of generators that produce π .

Example

The reduced words for $31\overline{2}$ are:

- 10212
- 10121
- 12012

Commutation $s_i s_j = s_j s_i$ if $|i - j| \ge 2$, Short Braid $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ if $i \ge 1$, Long Braid $s_0 s_1 s_0 s_1 = s_1 s_0 s_1 s_0$.

Example

The reduced words for $31\overline{2}$ are:

- 10212
- 10121
- 12012

Definition (Strict Partition)

A strict partition, λ , of n is a sequence of k positive integers such that $\lambda_1 > \lambda_2 > \cdots > \lambda_k$ and $\lambda_1 + \lambda_2 + \cdots + \lambda_k = n$.

Example

Definition

A Standard Shifted Young Tableau (SShT) is a shifted diagram filled with $\{1, \ldots, n\}$ such that rows are increasing rightwards and columns are increasing downwards.

Definition

The *peak set* of a Standard Shifted Young Tableau is the set of entries i such that i is right of i - 1 and above i + 1.

Definition

A Standard Shifted Young Tableau (SShT) is a shifted diagram filled with $\{1, \ldots, n\}$ such that rows are increasing rightwards and columns are increasing downwards.

Definition

The *peak set* of a Standard Shifted Young Tableau is the set of entries i such that i is right of i - 1 and above i + 1.

Definition (Unimodal)

A *unimodal* sequence is a sequence that is initially strictly decreasing, then strictly increasing.

$$a_1 > a_2 > \ldots > a_k < a_{k+1} < \ldots < a_\ell$$

Definition

A Standard Decomposition Tableau (SDT) is a shifted tableau filled with nonnegative integers with rows R_1, \ldots, R_ℓ such that:

- **1** $R_{\ell}R_{\ell-1}\ldots R_2R_1$ is a reduced word for a permutation π , call this sequence the reading word of the tableau.
- **2** R_i is a unimodal subsequence of maximum length in $R_{\ell}R_{\ell-1}, \ldots, R_{i+1}R_i$.

4	3	1	0	1	4
	3	2	0		
		1			

Kraśkiewicz insertion is a bijection from reduced words to pairs of Standard Decomposition and Standard Shifted Tableau of the same shape.

$$\{\text{Reduced words}\} \leftrightarrow \bigsqcup_{\lambda \vdash n \text{ strict}} \text{ SDT}(\lambda) \times \text{SShT}(\lambda)$$

Example $0143 \leftrightarrow \begin{array}{cccc} 4 & 1 & 3 \\ 0 & & 4 \end{array}, \begin{array}{cccc} 1 & 2 & 3 \\ 4 & & 4 \end{array}$

Properties of Kraśkiewicz Insertion

- The reading word of the insertion tableau is the same permutation as the input.
- 2 The peak set of the input is the same as the peak set of the recording tableau.
- 3 The algorithm only depends on the insertion tableau.

Example

01432340

 $\leftarrow \mathbf{0}$

01432340

0

B_n Stable Schubert Polynomials

Definition (a-compatible sequence)

Let a be a reduced word. A sequence of integers (i_1,\ldots,i_n) is a a-compatible sequence if

$$1 \quad i_1 \leq i_2 \leq \cdots \leq i_n,$$

2 $i_j = \cdots = i_k$ only when $a_j \cdots a_k$ is a unimodal sequence.

Theorem (Billey-Haiman)

Let $G_w(\mathbf{x})$ be the B_n stable Schubert polynomial for the permutation w, let R(w) be the set of reduced words for w, and let $K(\mathbf{a})$ be the set of a-compatible sequences, then

$$G_w(\mathbf{x}) = \sum_{\mathbf{a} \in R(w)} \sum_{\mathbf{i} \in K(\mathbf{a})} 2^{\ell(\mathbf{i}) - \ell_0(w)} x_{i_1} \cdots x_{i_r}$$

Definition (0-Hecke Expression)

A 0-Hecke expression for a permutation π is a sequence of simple transpositions that compose into π , if you ignore the transpositions that do not increase the length of the permutation.

(Annihilation) $s_i s_i = s_i$ Commutation $s_i s_j = s_j s_i$ if $|i - j| \ge 2$, Short Braid $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$ if $i \ge 1$, Long Braid $s_0 s_1 s_0 s_1 = s_1 s_0 s_1 s_0$.

Example

Some 0-Hecke expressions for $\overline{2}31$ are:

102	1022
120	1200
1020	1202

- The reading word of the insertion tableau is the same permutation as the input.
- 2 The peak set of the input is the same as the peak set of the recording tableau.
- **3** The algorithm only depends on the insertion tableau.

Definition

- A shifted tableau P is a Strict Decomposition Tableau of π if:
 - **1** $R_{\ell}R_{\ell-1}\ldots R_1$ is a 0-Hecke expression for π .
 - **2** Each row, R_i , is unimodal.
 - **3** The first and last entries of R_{i+1} are less than the first entry of R_i for $i \in [k-1]$.
 - 4 When considering sign if an element a is less than the element above it, b, then each value, v, in the reading word between a and b either satisfies $v \le |a|$ and v < |b| or satisfies $v \ge |a|$ and v > |b|.

4	1	0	3
	2	3	

4	1	0	3
	2	1	

4	0	1	3
	2	3	

4	3	1	3
	1	0	2

4	1	0	3
	$\overline{2}$	3	

$\overline{4}$	1	0	3
	$\overline{2}$	ī	

$\overline{4}$	0	1	3
	$\overline{2}$	3	

$\overline{4}$	$\overline{3}$	ī	3
	1	0	2

4	1	0	3
	$\overline{2}$	3	

$\overline{4}$	1	0	3
	$\overline{2}$	1	

4	0	1	3
	$\overline{2}$	3	

$\overline{4}$	$\overline{3}$	ī	3
	1	0	2

4	1	0	3
	$\overline{2}$	3	

$\overline{4}$	1	0	3
	$\overline{2}$	1	

4	0	1	3
	$\overline{2}$	3	

$\overline{4}$	$\overline{3}$	1	3
	1	0	2

Insert the smallest number between 1 and 3 in the green region. If no such number exists insert 3 instead.

1	2	3	4	5
	6	7	8	9

Insert the largest number between 0 and 2 in the green region. If no such number exists insert 0 instead.

4	2	0	1	3	
	2	0	1	3	$\leftarrow 1$

1	2	3	4	5
	6	7	8	9

Insert the largest number between ∞ and 3 in the green region. If no such number exists insert 3 instead.

	4	2	0	1	3
3	$3 \rightarrow$	2	0	1	3

1	2	3	4	5
	6	7	8	9

4	2	0	1	3
	3	0	1	3
		2		

1	2	3	4	5
	6	7	8	9
		10		

4	2	0	1	3	
	3	0	1	3	
		2	$\leftarrow 2$		

1	2	3	4	5
	6	7	8	9
		10		

Insert the largest number between ∞ and ∞ in the green region. If no such number exists insert ∞ instead.

4	2	0	1	3
	3	0	1	3
		2		

1	2	3	4	5
	6	7	8	9
		10, 11		

Theorem (A, Hawkes, Hamaker, Pan)

The insertion algorithm described, called Kraśkiewicz–Hecke insertion, gives a bijection between the set of 0-Hecke expressions and pairs of strict decomposition tableau and shifted set valued tableau of the same shape.

Theorem (A, Hawkes, Hamaker, Pan)

The insertion algorithm described, called Kraśkiewicz–Hecke insertion, gives a bijection between the set of 0-Hecke expressions and pairs of strict decomposition tableau and shifted set valued tableau of the same shape.

- The reading word of the insertion tableau is the same permutation as the input.
- 2 The peak set of the input is the same as the peak set of the recording tableau.
- **3** The algorithm only depends on the insertion tableau.

Theorem (A, Hamaker, Hawkes, Pan)

The insertion algorithm described, called Kraśkiewicz–Hecke insertion, gives a bijection between the set of 0-Hecke expressions and pairs of strict decomposition tableau and shifted set valued tableau of the same shape.

- The reading word of the insertion tableau is the same permutation as the input.
- 2 The peak set of the input is the same as the peak set of the recording tableau.
- 3 The algorithm only depends on the insertion tableau.

Definition

The *peak set* of a Standard Shifted Tableau is the set of entries i such that i is right of i - 1 and above i + 1.

Consider the set of words of length up to 5 equivalent to 10201:

Consider the set of words of length up to 5 equivalent to 10201:

Definition

The *peak set* of a Standard Shifted Tableau is the set of entries i such that i is right of i - 1 and above i + 1.

Definition

The *peak set* of a Standard Shifted Tableau is the set of entries i such that i is right of i - 1 and above i + 1.

Thank you for listening!

Questions?

References

- Sara Billey and Mark Haiman. Schubert polynomials for the classical groups. *Journal of the American Mathematical Society*, pages 443–482, 1995.
- [2] Anders Skovsted Buch, Andrew Kresch, Mark Shimozono, Harry Tamvakis, and Alexander Yong. Stable Grothendieck polynomials and K-theoretic factor sequences. *Mathematische annalen*, 340:359–382, 2008.
- [3] W Kraskiewcz. Reduced decompositions in hyperoctahedral groups. Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 309(16):903–907, 1989.
- [4] Tao Kai Lam. B and D analogues of stable Schubert polynomials and related insertion algorithms. PhD thesis, Massachusetts Institute of Technology, 1995.
- [5] Eric Marberg. Shifted combinatorial Hopf algebras from *K*-theory. *arXiv preprint arXiv:2211.01092*, 2022.