# MODULAR RELATIONS BETWEEN CHROMATIC SYMMETRIC FUNCTIONS

### Farid Aliniaeifard

The University of British Columbia



#### Joint work with Victor Wang and Stephanie van Willigenburg

Combinatorics and Graph Theory, MSU, Feb. 2, 2022

### GRAPHS

A graph G = (V, E) consists of a non-empty set of vertices V and a set of edges  $E \subseteq \binom{V}{2}$ .

All graphs in this talk have finite sets of vertices.



## PROPER COLOURING

Given G with vertex set V a proper colouring  $\kappa$  of G in k colours is

 $\kappa: V \rightarrow \{1, 2, 3, \ldots, k\}$ 

so if  $v_i, v_j \in V$  are joined by an edge then

 $\kappa(\mathbf{v}_i) \neq \kappa(\mathbf{v}_j).$ 



## CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G the chromatic polynomial  $\chi_G(k)$  is the number of proper colourings with k colours.



## **DELETION-CONTRACTION**

Delete  $\epsilon$ : remove edge  $\epsilon$  to get  $G - \epsilon$ .



Shrink  $\epsilon$ : shrink edge  $\epsilon$  and identify the vertices to get  $G/\epsilon$ .



Theorem (Deletion-Contraction)

$$\chi_{G}(k) = \chi_{G-\epsilon}(k) - \chi_{G/\epsilon}(k)$$

Equivalently,  $\chi_{G/\epsilon}(k) = \chi_{G-\epsilon}(k) - \chi_G(k)$ .

# PROPER COLOURING WITH INFINITELY MANY COLOURS

Given G with vertex set V a proper colouring  $\kappa$  of G is

 $\kappa: V \to \mathbb{Z}^+$ 

so if  $v_i, v_j \in V$  are joined by an edge, then

 $\kappa(\mathbf{v}_i) \neq \kappa(\mathbf{v}_j).$ 

# CHROMATIC SYMMETRIC FUNCTIONS: STANLEY 1995

Given a proper colouring  $\kappa$  of G on vertices  $v_1, v_2, \ldots, v_n$  associate a monomial in commuting variables  $x_1, x_2, x_3, \ldots$ 

 $X_{\kappa(v_1)}X_{\kappa(v_2)}\cdots X_{\kappa(v_n)}.$ 



7/46

# CHROMATIC SYMMETRIC FUNCTIONS: STANLEY 1995

Given G with vertices  $v_1, v_2, \ldots, v_n$  the chromatic symmetric function of G is

$$X_G = \sum_{\kappa} x_{\kappa(v_1)} x_{\kappa(v_2)} \dots x_{\kappa(v_n)}$$

where the sum is over all proper colourings  $\kappa$ .





Let  $\mathfrak{S}_{(\infty)}$  be the group of all permutations  $\sigma$  of the set  $\{1, 2, 3, \ldots\}$  which leave all but finitely many elements invariant; that is,  $\sigma(i) \neq i$  for finitely many positive integers *i*.

A symmetric function is a formal power series f of bounded degree in commuting variables  $x_1, x_2, \ldots$  such that for all permutations  $\sigma \in \mathfrak{S}_{(\infty)}$ ,

 $f(x_1, x_2, \dots) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots)$ 

Let Sym be the set of all symmetric functions.

 $X_G \in Sym$ 

<□ ▶ < @ ▶ < E ▶ < E ▶ E の < 0 10/46

An integer partition  $\lambda$  of *n* is a list  $\lambda_1 \lambda_2 \dots \lambda_{\ell(\lambda)}$  of positive integers such that  $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_{\ell(\lambda)}$  and their sum is *n*.

#### 544211 ⊢ 17

The *i*-th elementary symmetric function is

$$e_i = \sum_{j_1 < j_2 < \cdots < j_i} x_{j_1} x_{j_2} \ldots x_{j_i},$$

and for  $\lambda = \lambda_1 \lambda_2 \dots \lambda_{\ell(\lambda)}$ ,

 $e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \dots e_{\lambda_{\ell(\lambda)}}.$ 

< □ ▶ < @ ▶ < E ▶ < E ▶ E りへで 11/46

Let

$$\operatorname{Sym}_n = \mathbb{Q}\operatorname{-span}\{e_{\lambda} : \lambda \vdash n\}$$

Then

$$\operatorname{Sym} = \bigoplus_{n \ge 0} \operatorname{Sym}_n.$$

#### Proposition

Sym is a graded subalgebra of bounded degree power series, and  $\{e_{\lambda}\}$  is a basis for it.

## CHROMATIC SYMMETRIC FUNCTIONS IN TERMS OF *e*-BASIS



#### Which chromatic symmetric functions are *e*-positive?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 13/46

### UNIT INTERVAL GRAPHS

Consider a set  $\{I_1, I_2, \ldots, I_n\}$  and identify them with unit intervals

$$I_1 = [a_1, b_1], I_2 = [a_2, b_2], \dots, I_n = [a_n, b_n]$$

such that  $a_1 \leq a_2 \leq \cdots \leq a_n$ .

A unit interval graph is a graph with vertex set  $\{\{I_1, I_2, ..., I_n\}\}$  such that  $I_i$  is adjacent to  $I_j$  if  $I_i \cap I_j \neq \emptyset$ .



# FIRST OPEN PROBLEM: STANLEY-STEMBRIDGE, GUAY-PAQUET

If G is the following unit interval graph



Then 
$$X_G = 2e_{31} + 16e_4$$
.

#### Conjecture

Evey unit interval graph is *e*-positive.

## SECOND OPEN PROBLEM

Stanley 1995:

FIG. 1. Graphs G and H with  $X_G = X_H$ .

We do not know whether  $X_G$  distinguishes trees.

Heil and Ji 2018: The chromatic symmetric function distinguishes all trees up to 29 vertices.

(There are 5469566585 nonisomorphic trees on 29 vertices!)

#### Conjecture

If T and T' are trees. If  $X_T = X_{T'}$ , then  $T \cong T'$ .

## EQUIVALENT WITH RESPECT TO EDGES

We say (G, uv) is equivalent to (H, u'v') written  $(G, uv) \sim (H, u'v')$  if there is a bijection f from V(G) to V(H)  $\blacktriangleright f(u) = u'$  and f(v) = v', and  $\blacktriangleright f : V(G/uv) \rightarrow V(H/u'v')$  is an isomorphism.



### Another Example



18/46





We have  $(G,\epsilon) \sim (H,\epsilon')$ .





< □ ▶ < 酉 ▶ < 壹 ▶ < 壹 ▶ Ξ · ♡ < ♡ 20/46



We have  $(G, \epsilon) \sim (H, \epsilon')$ .

# Example $X_{G-\epsilon} - X_G = X_{H-\epsilon'} - X_H$ or $X_G = X_{G-\epsilon} - X_{H-\epsilon'} + X_H$ Х X -X+X



### CHROMATIC BASES

$$G_1 = \circ$$

Pick favourite simple connected graph on two vertices:

$$G_2 = -$$

Pick favourite simple connected graph on three vertices:

$$G_3 = \circ \circ \circ \circ$$

And so on ...

Let  $G_{\lambda}$  be the disjoint union  $G_{\lambda_1} \cup \cdots \cup G_{\lambda_{\ell}}$ .



### CHROMATIC BASES

Theorem (Cho and van Willigenburg 2016)

$$\operatorname{Sym}_n = \mathbb{Q}\operatorname{-span}\{X_{G_\lambda} : \lambda \vdash n\}$$

where

$$X_{G_{\lambda}}=X_{G_{\lambda_1}}\cdots X_{G_{\lambda_{\ell}}}.$$

Example

$$G_{211} = O O O$$

$$X_{G_{211}} = X_{G_2} X_{G_1} X_{G_1}$$
$$= 2e_2 e_1 e_1 = 2e_{211}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○ 24/46

## TO PATHS



*INPUT*: a tree T*OUTPUT*: expansion of  $X_T$  in terms of path basis.

Set L a list with element (c, X<sub>T</sub>)
 Set c = 1.
 While S contains (c, X<sub>T</sub>), T not a path do
 Choose one of its edges ε connected to a vertex of deg > 2.
 In S, replace (c, X<sub>T</sub>) by (c, X<sub>T-ε</sub>), (-c, X<sub>T<sub>ε</sub>-ε'</sub>), (c, X<sub>T<sub>ε</sub></sub>)
 Return Σ<sub>(c,X<sub>T</sub>)∈S</sub> cX<sub>T</sub>.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Theorem (A, Wang, and van Willigenburg 2021)

If 
$$(G,\epsilon) \sim (H,\epsilon')$$
 and  $G \cong H - \epsilon'$ , then

$$X_G = \frac{X_H + X_{G-\epsilon}}{2}$$

Consequently, if  $X_H$  and  $X_{G-\epsilon}$  are *e*-positive so is  $X_G$ .

#### Theorem (A, Wang, and van Willigenburg 2021)

If 
$$(G_1, \epsilon_1) \sim (G_2, \epsilon_2) \sim \cdots \sim (G_n, \epsilon_n)$$
 and  $G_0 \cong G_1 - \epsilon_1, G_i \cong G_{i+1} - \epsilon_{i+1}$ , then

$$X_{\mathcal{G}_j} = rac{k-j}{k} X_{\mathcal{G}_0} + rac{j}{k} X_{\mathcal{G}_k} \hspace{0.5cm} ext{ for all } 0 \leq j \leq k \leq n$$

Consequently, if  $X_{G_0}$  and  $X_{G_k}$  are *e*- or *s*-positive so is  $X_{G_i}$ .

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ ○ 28/46

## EXAMPLE









$$X_{G_1} = \frac{2}{3}X_{G_0} + \frac{1}{3}X_{G_3}.$$

$$\begin{split} X_{G_0} &= 5760 s_{(1^9)} + 7200 s_{(2,1^7)} + 3168 s_{(2^2,1^5)} + 468 s_{(2^3,1^3)} + 2880 s_{(3,1^6)} \\ &\quad + 864 s_{(3,2,1^4)} + 360 s_{(4,1^5)}, \\ X_{G_3} &= 14400 s_{(1^9)} + 12960 s_{(2,1^7)} + 3888 s_{(2^2,1^5)} + 288 s_{(2^3,1^3)} + 2880 s_{(3,1^6)} \\ &\quad + 432 s_{(3,2,1^4)}, \end{split}$$

which are both Schur-positive. The graph  $G_1$  is also Schur-positive, since

$$X_{G_1} = \frac{2}{3}X_{G_0} + \frac{1}{3}X_{G_3} = 8640s_{(1^9)} + 9120s_{(2,1^7)} + 3408s_{(2^2,1^5)} + 408s_{(2^3,1^3)} + 2880s_{(3,1^6)} + 720s_{(3,2,1^4)} + 240s_{(4,1^5)}.$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ ↔ 30/46

When we identify a vertex of complete graph  $K_m$  with a vertex at the end of a path  $P_{n+1}$ , we have the lollipop graph  $L_{m,n}$ .



#### Theorem (Gebhard and Sagan 2001)

Lollipop graphs are *e*-positive.

## TYPE I MELTING LOLLIPOP GRAPH

The type I melting lollipop graphs  $L_{m,n}^{(k)}$  for  $m, n \ge 1$  and  $0 \le k \le m-1$ , obtained by deleting the edges between vertex m and vertices  $1, \ldots, k$  from  $L_{m,n}$ .



Theorem (Huh, Nam, and Yoo 2020)

Type I melting lollipop graphs are *e*-positive.

## TYPE II MELTING LOLLIPOP GRAPH

Type II melting lollipop graphs  $\Gamma_{m,n}^{(k)}$  for  $m \ge 3$ ,  $n \ge 1$  and  $1 \le k \le m-1$ , obtained by deleting the edges between vertex 1 and vertices  $m, \ldots, m-k+1$  from  $L_{m,n}$ .



# TYPE II MELTING LOLLIPOP GRAPHS ARE *e*-POSITIVE



## SET PARTITIONS

A set partition  $\pi$  of  $[n] = \{1, 2, ..., n\}$  is a set of disjoint sets  $B_1, B_2, ..., B_\ell$  called blocks so that

$$B_i \neq \emptyset$$

$$B_1 \cup B_2 \cup \cdots \cup B_{\ell} = [n].$$

$$\pi = B_1/B_2/\cdots/B_\ell \vdash [n]$$

#### Example

$$\{\{1,3,4\},\{2,5\},\{6\},\{7,8\}\}$$

is a set partition of [8], or

$$\pi = 134/25/6/78 \vdash [8].$$

# CHROMATIC SYMMETRIC FUNCTIONS IN NON-COMMUTING VARIABLES: GEBHARD-SAGAN 2001

Given a proper colouring  $\kappa$  of vertices  $v_1, v_2, \ldots, v_n$  and  $v_i$  labelled with *i*, associate a monomial in non-commuting variables

 $X_1, X_2, X_3, \ldots, X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}$ 



# CHROMATIC SYMMETRIC FUNCTIONS IN NON-COMMUTING VARIABLES: GEBHARD-SAGAN 2001

Given labelled G with vertices  $v_1, v_2, \ldots, v_n$  the chromatic symmetric function of G in non-commuting variables  $x_1, x_2, \ldots$  is

$$Y_{G} = \sum_{\kappa} x_{\kappa(v_{1})} x_{\kappa(v_{2})} \cdots x_{\kappa(v_{n})}$$

where the sum over all proper colourings  $\kappa$ .





C 37/46



A symmetric function in non-commuting variable  $x_1, x_2, \ldots$  is a formal power series f of bounded degree in non-commuting variables  $x_1, x_2, \ldots$  such that for all permutations  $\sigma \in \mathfrak{S}_{(\infty)}$ ,

$$f(x_1, x_2, \dots) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots).$$

Let NCSym be the set of all symmetric functions in non-commuting variables.

 $Y_G \in \operatorname{NCSym}$ 

## ELEMENTARY FUNCTIONS IN NCSym

The elementary symmetric function in NCSym for  $\pi \vdash [n]$  is

$$e_{\pi} = \sum_{(i_1,i_2,\ldots,i_n)} x_{i_1} x_{i_2} \cdots x_{i_n}$$

summed over all tuples  $(i_1, i_2, \ldots, i_n)$  with

 $i_j \neq i_k$ 

if j and k are in the same block of  $\pi$ .

#### Example

 $e_{13/2} = x_1 x_1 x_2 + x_1 x_2 x_2 + x_2 x_2 x_1 + x_2 x_1 x_1 + \dots + x_1 x_2 x_3 + \dots$ and  $\rho(e_{13/2}) = 2!1!e_{21}$ 

# SYMMETRIC FUNCTIONS IN NON-COMMUTING VARIABLES

Let

$$\operatorname{NCSym}_n = \mathbb{Q}\operatorname{-span}\{e_{\pi} : \pi \vdash [n]\}.$$

Then

$$\operatorname{NCSym} = \bigoplus_{n \geq 0} \operatorname{NCSym}_n.$$

Proposition

NCSym is a graded subalgebra of bounded degree power series in non-commuting variables, and  $\{e_{\pi}\}$  is a basis for it.

Let G be the following path graph.



#### Then

$$Y_{G} = \frac{1}{2}e_{123} + \frac{1}{2}e_{1/23} - \frac{1}{2}e_{13/2} + \frac{1}{2}e_{12/3}.$$

Even the paths are not e-positive in NCSym!

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ℃ 42/46

Given a set partition  $\pi \vdash [n]$ , define type( $\pi$ ) to be the pair ( $\lambda$ , a) where a is the size of the block containing n and the parts of  $\lambda$  are the sizes of the remaining blocks, e.g. type(1/24/35) = (21, 2). Let

$$\mathcal{T} = \mathbb{Q} ext{-span}\{e_{\pi} - e_{\pi'} : \operatorname{type}(\pi) = \operatorname{type}(\pi')\}.$$

#### T is an ideal of NCSym.

Let

$$\overline{e_{\pi}} = e_{\pi} + T \in \operatorname{NCSym}/T := \operatorname{UBCSym}$$

and

 $\overline{Y_G} = Y_G + T \in \text{UBCSym.}$ 

<□▶ < □▶ < □▶ < □▶ < □▶ < □▶ = りへで 43/46

Now we want to see which graphs are  $\overline{e}$ -positive, that is when  $\overline{Y_G}$  can be written as a positive linear combination of  $\{\overline{e_\pi}\}$ .

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の へ で 44/46

#### Conjecture

Evey unit interval graph is  $\overline{e}$ -positive.

## ARITHMETIC PROGRESSION



Thank you ...

< □ > < ■ > < ≧ > < ≧ > 差 の < ~ 46/46