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GRAPHS

A graph G = (V, E) consists of a non-empty set of vertices V' and
a set of edges E C (‘2/)

» All graphs in this talk have finite sets of vertices.

Example

> V= {V17 V2, V3, V4, V5, V6}

> E= {V1V27 V1Vv3, ViV, V2V3, V2 Va, V2 Ve, V3V5, V5V6}




PROPER COLOURING

Given G with vertex set V a proper colouring k of G in k colours is
k:V—={1,23,...,k}
so if vi,v; € V are joined by an edge then

R(v7) # K(v).
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CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G the chromatic polynomial x (k) is the number of proper
colourings with k colours.

Example

If G is the following graph

VAN

then xg(k) = k(k — 1)(k — 2).




DELETION-CONTRACTION

Delete e: remove edge € to get G — e.

—O O

Shrink e: shrink edge € and identify the vertices to get G/e.

Theorem (Deletion-Contraction)

X6 (k) = xG6-e(k) — Xxg/e(k)
Equivalently, xg/c(k) = xc—-e(k) — xc (k).




PROPER COLOURING WITH INFINITELY MANY
COLOURS

Given G with vertex set V a proper colouring k of G is
k:V—Z"
so if vj,v; € V are joined by an edge, then

R(v7) # k().



CHROMATIC SYMMETRIC FUNCTIONS: STANLEY
1995

Given a proper colouring k of G on vertices v, vo, ..., v, associate
a monomial in commuting variables x1, x2, x3, . . .

Xio(vi) Xk (va) + * + Xk(vin)-

Example

6 6
[T7=1 Xe(v) = xaxexzxaxixa [17=1 Xu(v) = Xaxax1x5x5xa

_ 2 2 _ 2,2
= X{ XoX3X} = X1X2X3X3 X5




CHROMATIC SYMMETRIC FUNCTIONS: STANLEY
1995

Given G with vertices vy, vo, ..., v, the chromatic symmetric
function of G is

XG = ZX (v1)*k(v2) - (v)

where the sum is over all proper colourings k.




EXAMPLE

Example

Let G be the following graph.

Oo—0O0—0

Then the proper colourings of G are

and so on.
X¢ = bx1x0x3 + X12X2 + -




SYMMETRIC FUNCTIONS

Let G be the group of all permutations o of the set
{1,2,3,...} which leave all but finitely many elements invariant;
that is, (i) # i for finitely many positive integers i.

A symmetric function is a formal power series f of bounded degree
in commuting variables xi, xo, ... such that for all permutations
o c (‘5(00),

f(x,x2,. ) = f(Xo(1), Xo(2), - - )

Let Sym be the set of all symmetric functions.

X6 € Sym



ELEMENTARY SYMMETRIC FUNCTIONS

An integer partition A of nis a list Ay Az ... Ay(y) of positive
integers such that Ay > X > .- > )\g()\) and their sum is n.

544211 - 17

The i-th elementary symmetric function is

= — E : Xj Xz - = = Xjps

J1<pa< <

and for A = A1z Ay,

€\ = €\;6xp - e)\w).



SYMMETRIC FUNCTIONS

Let
Sym,, = Q-span{ey : A - n}
Then
Sym = @ Sym,,.
n>0
Proposition

Sym is a graded subalgebra of bounded degree power series,
and {e\} is a basis for it.




CHROMATIC SYMMETRIC FUNCTIONS IN TERMS OF
e-BASIS

Example

If G is the path
o——CO—-—oO0 X =33+ en

But if G is a claw,

Xc = ev11 — 2ex + besp + 4dey.

Which chromatic symmetric functions are e-positive?



UNIT INTERVAL GRAPHS

Consider a set {1, b, ..., I} and identify them with unit intervals
ll — [a17 b1]7 /2 - [327 b2]7 000 In = [am bn]

such that a1 < ap, < .- < a,.
A unit interval graph is a graph with vertex set {{h, h,...,Ih}}
such that /; is adjacent to [; if [; N [; # 0.

Example

L = —0.250—00.75

I = 0o—o1

I3 = 0.50——o01.5

Iy = 0.90—o01.9

h b KB Iy




FIRST OPEN PROBLEM: STANLEY-STEMBRIDGE,
GUAY-PAQUET

If G is the following unit interval graph

‘o

Then Xg = 2e31 + 16¢€4.

Conjecture

Evey unit interval graph is e-positive.




SECOND OPEN PROBLEM

Stanley 1995:

>

Fic. 1. Graphs G and H with X;=X.

We do not know whether X distinguishes trees.

Heil and Ji 2018: The chromatic symmetric function distinguishes
all trees up to 29 vertices.
(There are 5469566585 nonisomorphic trees on 29 vertices!)

Conjecture ]

If T and T’ are trees. If X7 = X7/, then T = T'. J




EQUIVALENT WITH RESPECT TO EDGES

We say (G, uv) is equivalent to (H, u’'v’) written

(G,uv) ~ (H,u'Vv') if there is a bijection f from V(G) to V(H)
» f(u) =u and f(v) =/, and
> f:V(G/uv) = V(H/J'V') is an isomorphism.

Example

(G,45) (H,45)




Another Example

Example

(G,12) (H,12)

1 234056 7 1 34265 6 7

Then (G,12) ~ (H,12).

G/12 H/12

3 4125 6 7 12 3 4 5 6 7




MODULAR RELATIONS

Theorem (A, Wang, and van Willigenburg 2020)

If (G,uv) ~ (H,u'Vv'), then

Xe—w — X6 = Xy—w v — Xn.




EXAMPLE

g oo

We have (G, ¢)

We have (G, ¢€) ~ (H,€).



EXAMPLE

Example

_XG—XH e’_XH or XG—XG e_XH €/"f‘)(H

% &&@i&o

%gﬂ% %gﬂ_%




EXAMPLE

Example

+X




CHROMATIC BASES

G =0
Pick favourite simple connected graph on two vertices:
G, = 00
Pick favourite simple connected graph on three vertices:
G3 = 0—0—0
And soon ...

Let Gy be the disjoint union Gy, U---U G,,.

Example

G211 = O_O O O




CHROMATIC BASES

Theorem (Cho and van Willigenburg 2016)

Sym, = Q-span{Xg, : A+ n}

where

X6, = X6, Xa,,-

A

Example

6Gu=0—0 O O

XG211 = XG2XG1XG1
= 2epe161 = 26011







TO PATHS: ALGORITHM

INPUT: a tree T
OUTPUT: expansion of X7t in terms of path basis.

1. Set L a list with element (c, X7)

2. Set c = 1.

2. While S contains (¢, X7), T not a path do

3. Choose one of its edges € connected to a vertex of

deg > 2.

4. In'S, replace (¢, X71) by (¢, X7—-¢), (—¢, X1.—¢/), (¢, XT.)
5. Return 3 x;)es €XT-



e-POSITIVITY RESULTS

Theorem (A, Wang, and van Willigenburg 2021)

If (G,e) ~ (H,€') and G = H — ¢, then

o Xy + X6—e

Xe >

Consequently, if Xy and X¢g_. are e-positive so is Xg.




ARITHMETIC PROGRESSION

Theorem (A, Wang, and van Willigenburg 2021)

|f(G1,€1) ~ (G2,62) R 000 RY (Gn,en) and Go = G1—€1, G,' =
G,'_|_1 — €j41, then
k—j

XGj = Xe, +

J

kXGk forall 0 <j <k <n.

Consequently, if Xg, and Xg, are e- or s-positive so is Xg,.




EXAMPLE

v3

V2

vi

Go Gy G

Gs X = %XGO ity %X@.



EXAMPLE

XGO = 57605(19) —+ 72005(2,17) +3168S(22’15) +4685(23713) +28805(3’16)

+8645(372714) + 3605(4715),
Xe; = 144005(19)+129605(2717)+38885(22715)+2885(23’13)+28805(3716)
—'—4325(372’14),
which are both Schur-positive.
The graph Gi is also Schur-positive, since
2
3

L
3
28805(3’16) + 7205(3’2714) =+ 2405(4715).

Xe = s Xg,+5 X, = 86405(19)4-91205(2717)—1-34085(22715)—1—4085(23713)4-



LOLLIPOP GRAPHS

When we identify a vertex of complete graph K, with a vertex at
the end of a path P,.1, we have the lollipop graph L, ,.

(N

Lyp

Theorem (Gebhard and Sagan 2001)

Lollipop graphs are e-positive.

Example




TYPE | MELTING LOLLIPOP GRAPH

The type | melting lollipop graphs Lg,lf),, for m,n>1 and

0 < k < m—1, obtained by deleting the edges between vertex m

and vertices 1,..., k from L, ,.
Example )
1
LS

Theorem (Huh, Nam, and Yoo 2020)

Type | melting lollipop graphs are e-positive.




TYPE Il MELTING LOLLIPOP GRAPH

Type Il melting lollipop graphs Fs,fy),, form>3,n>1and
1 < k < m—1, obtained by deleting the edges between vertex 1

and vertices m,...,m— k +1 from L, ..
Example
re




TYPE Il MELTING LOLLIPOP GRAPHS ARE
e-POSITIVE

Kils_12 F(3)
L)

Theorem (A, Wang, and van Willigenburg 2021)

Type Il melting lollipop graphs are e-positive.




SET PARTITIONS

A set partition 7 of [n] = {1,2,...,n} is a set of disjoint sets
Bi, By, ..., By called blocks so that

> B #0
> BlUBQU'”UBg:[n].

W:Bl/Bz/“'/Bgl—[n]

Example

{{1,3,4},{2,5},{6},{7,8}}

is a set partition of [8], or

™ =134/25/6/78 |- [8].




CHROMATIC SYMMETRIC FUNCTIONS IN

NON-COMMUTING VARIABLES: GEBHARD-SAGAN
2001

Given a proper colouring x of vertices vi, v, ..., v, and v; labelled
with 7, associate a monomial in non-commuting variables
X1, X2, X35 .4y XH,(Vl)X/'{(VQ) i 'Xf:,(v,,)'

Example

6 6
H,-:1 Xie(v;) = XaX2X3X1X1X4 H;Zl Xi(v;) = X1X2X6XaX5X6




CHROMATIC SYMMETRIC FUNCTIONS IN

NON-COMMUTING VARIABLES: GEBHARD-SAGAN
2001

Given labelled G with vertices vy, v», ..., v, the chromatic
symmetric function of G in non-commuting variables xj, xo, ... is

Yo = ZXH(V:[)XK(VQ) © Xi(va)

where the sum over all proper colourings .




EXAMPLE

Example

Let G be the following graph.

Then the proper colourings of G are
1 2 3 1 2 1

and so on.
Ye = x1x0x3 + X1 X0x1 + . ..




A symmetric function in non-commuting variable xi, xp,... is a
formal power series f of bounded degree in non-commuting
variables x1, x2, ... such that for all permutations o € &),

f(x1,x2, -+ ) = F(Xo(1)s Xo(2)5 - - - )-

Let NCSym be the set of all symmetric functions in
non-commuting variables.

Y € NCSym



ELEMENTARY FUNCTIONS IN NCSym

The elementary symmetric function in NCSym for 7 = [n] is

er = E Xig Xip * * + Xi,

(ils’IZ:-“-,"n)
summed over all tuples (i1, iz, . .., in) with
i 7 Ik

if j and k are in the same block of .

Example

€13/2 = X1X1X2 +X1X2X2 + X0 X2 X1 +XoX1 X1 + - - + X1 X0X3+ - - -
and p(ey3/2) = 2!1len




SYMMETRIC FUNCTIONS IN NON-COMMUTING
VARIABLES

Let
NCSym,, = Q-span{e; : 7 I [n]}.
Then
NCSym = EB NCSym,,.
n>0
Proposition

NCSym is a graded subalgebra of bounded degree power se-
ries in non-commuting variables, and {e;} is a basis for it.




PATHS ARE NOT e-POSITIVE

Let G be the following path graph.

Then
1 1 1 1
Yo = 56123 7€1/23 — 5€13/2 + S €1/3-

Even the paths are not e-positive in NCSym!



UBCSym

Given a set partition 7 I [n], define type(r) to be the pair (A, a)
where a is the size of the block containing n and the parts of X are
the sizes of the remaining blocks, e.g. type(1/24/35) = (21,2).

- T = Q-span{e, — e, : type(m) = type(n’)}.
T is an ideal of NCSym.
Let
e =¢e;+ T € NCSym/T := UBCSym
and

Ye =Yg + T € UBCSym.



e-POSITIVITY, DAHLBERG 2019

Now we want to see which graphs are e-positive, that is when Yg
can be written as a positive linear combination of {&;}.

Conjecture

Evey unit interval graph is e-positive.




ARITHMETIC PROGRESSION

Theorem (A, Wang, and van Willigenburg 2021)

> If (G,e) ~ (H,€') and G = H — €’ with some certain
labelling, then

Y_G _ Yy + che.
2
Consequently, if Yy and Y¢_. are @-positive so is Y.
> If (Gl,el) o~ (G2,€2) N (Gn,e,,) and

Go = G1 — €1, G; = Gjt1 — €41, with some certain
labelling, then

_ k— g
Va=__9

: p Y_Go—l—JZY_Gk forall 0 < j < k<n.

Consequently, if Yg, and Y, are €-positive so is Yg,.




THANK YOU

Thank you ...



