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GRAPHS

A graph G = (V ,E ) consists of a non-empty set of vertices V and
a set of edges E ⊆

(V
2

)
.

I All graphs in this talk have finite sets of vertices.

Example

v4 v2

v3

v1

v5

v6

I V = {v1, v2, v3, v4, v5, v6}
I E = {v1v2, v1v3, v1v4, v2v3, v2v4, v2v6, v3v5, v5v6}
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PROPER COLOURING

Given G with vertex set V a proper colouring κ of G in k colours is

κ : V → {1, 2, 3, . . . , k}

so if vi , vj ∈ V are joined by an edge then

κ(vi ) 6= κ(vj).

v4 v2

v3

v1

v5

v6

v4 v2

v3

v1

v5

v6

3 7
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CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G the chromatic polynomial χG (k) is the number of proper
colourings with k colours.

Example

If G is the following graph

then χG (k) = k(k − 1)(k − 2).
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DELETION-CONTRACTION

Delete ε: remove edge ε to get G − ε.

Shrink ε: shrink edge ε and identify the vertices to get G/ε.

Theorem (Deletion-Contraction)

χG (k) = χG−ε(k)− χG/ε(k)

Equivalently, χG/ε(k) = χG−ε(k)− χG (k).
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PROPER COLOURING WITH INFINITELY MANY
COLOURS

Given G with vertex set V a proper colouring κ of G is

κ : V → Z+

so if vi , vj ∈ V are joined by an edge, then

κ(vi ) 6= κ(vj).
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CHROMATIC SYMMETRIC FUNCTIONS: STANLEY
1995

Given a proper colouring κ of G on vertices v1, v2, . . . , vn associate
a monomial in commuting variables x1, x2, x3, . . .

xκ(v1)xκ(v2) . . . xκ(vn).

Example

v4
1

v2
2

v3
3

v1
4

v5
1

v6
4 v4

5

v2
2

v3
1

v1
4

v5
5

v6
4

∏6
i=1 xκ(vi ) = x4x2x3x1x1x4

= x21x2x3x
2
4

∏6
i=1 xκ(vi ) = x4x2x1x5x5x4

= x1x2x3x24x
2
5
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CHROMATIC SYMMETRIC FUNCTIONS: STANLEY
1995

Given G with vertices v1, v2, . . . , vn the chromatic symmetric
function of G is

XG =
∑
κ

xκ(v1)xκ(v2) . . . xκ(vn)

where the sum is over all proper colourings κ.
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EXAMPLE

Example

Let G be the following graph.

Then the proper colourings of G are

1 2 3 1 2 1

and so on.
XG = 6x1x2x3 + x21x2 + · · ·
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SYMMETRIC FUNCTIONS

Let S(∞) be the group of all permutations σ of the set
{1, 2, 3, . . . } which leave all but finitely many elements invariant;
that is, σ(i) 6= i for finitely many positive integers i .

A symmetric function is a formal power series f of bounded degree
in commuting variables x1, x2, . . . such that for all permutations
σ ∈ S(∞),

f (x1, x2, . . . ) = f (xσ(1), xσ(2), . . . )

Let Sym be the set of all symmetric functions.

XG ∈ Sym
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ELEMENTARY SYMMETRIC FUNCTIONS

An integer partition λ of n is a list λ1λ2 . . . λ`(λ) of positive
integers such that λ1 ≥ λ2 ≥ · · · ≥ λ`(λ) and their sum is n.

544211 ` 17

The i-th elementary symmetric function is

ei =
∑

j1<j2<···<ji

xj1xj2 . . . xji ,

and for λ = λ1λ2 . . . λ`(λ),

eλ = eλ1eλ2 . . . eλ`(λ) .
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SYMMETRIC FUNCTIONS

Let
Symn = Q-span{eλ : λ ` n}

Then
Sym =

⊕
n≥0

Symn.

Proposition

Sym is a graded subalgebra of bounded degree power series,
and {eλ} is a basis for it.
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CHROMATIC SYMMETRIC FUNCTIONS IN TERMS OF
e-BASIS

Example

If G is the path

XG = 3e3 + e21

But if G is a claw,

XG = e211 − 2e22 + 5e31 + 4e4.

Which chromatic symmetric functions are e-positive?
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UNIT INTERVAL GRAPHS

Consider a set {I1, I2, . . . , In} and identify them with unit intervals

I1 = [a1, b1], I2 = [a2, b2], . . . , In = [an, bn]

such that a1 ≤ a2 ≤ · · · ≤ an.
A unit interval graph is a graph with vertex set {{I1, I2, . . . , In}}
such that Ii is adjacent to Ij if Ii ∩ Ij 6= ∅.

Example

I2 = 0 1
I3 = 0.5 1.5
I4 = 0.9 1.9

I1 = −0.25 0.75

I1 I2 I3 I4
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FIRST OPEN PROBLEM: STANLEY-STEMBRIDGE,
GUAY-PAQUET

If G is the following unit interval graph

Then XG = 2e31 + 16e4.

Conjecture

Evey unit interval graph is e-positive.
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SECOND OPEN PROBLEM

Stanley 1995:

We do not know whether XG distinguishes trees.

Heil and Ji 2018: The chromatic symmetric function distinguishes
all trees up to 29 vertices.
(There are 5469566585 nonisomorphic trees on 29 vertices!)

Conjecture

If T and T ′ are trees. If XT = XT ′ , then T ∼= T ′.



17/46

EQUIVALENT WITH RESPECT TO EDGES

We say (G , uv) is equivalent to (H, u′v ′) written
(G , uv) ∼ (H, u′v ′) if there is a bijection f from V (G ) to V (H)
I f (u) = u′ and f (v) = v ′, and
I f : V (G/uv)→ V (H/u′v ′) is an isomorphism.

Example

(G , 45) (H, 45)

1

2

3 4

5

6

7

8 1

2

3 4 5 6

7

8

Then (G , 45) ∼ (H, 45).

1

2

3 45 6

7

8 1

2

3 45 6

7

8
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Another Example

Example

(G , 12) (H, 12)

1 2 3 4 5 6 7 1 3 4 2 5 6 7

Then (G , 12) ∼ (H, 12).

G/12 H/12

3 4 12 5 6 7 12 3 4 5 6 7
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MODULAR RELATIONS

Theorem (A, Wang, and van Willigenburg 2020)

If (G , uv) ∼ (H, u′v ′), then

XG−uv − XG = XH−u′v ′ − XH .
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EXAMPLE

We have (G , ε) ∼ (H, ε′).

We have (G , ε) ∼ (H, ε′).
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EXAMPLE

Example

XG−ε − XG = XH−ε′ − XH or XG = XG−ε − XH−ε′ + XH

X = X

−X + X
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EXAMPLE

Example

X = X − X

+X
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CHROMATIC BASES
Pick favourite simple connected graph on 1 vertex:

G1 =

Pick favourite simple connected graph on two vertices:

G2 =

Pick favourite simple connected graph on three vertices:

G3 =

And so on . . .

Let Gλ be the disjoint union Gλ1 ∪ · · · ∪ Gλ` .

Example

G211 =
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CHROMATIC BASES

Theorem (Cho and van Willigenburg 2016)

Symn = Q-span{XGλ : λ ` n}

where
XGλ = XGλ1

· · ·XGλ`
.

Example

G211 =

XG211 = XG2XG1XG1

= 2e2e1e1 = 2e211
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TO PATHS

X = X −X +X

= X − X +

X − X + X
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TO PATHS: ALGORITHM

INPUT: a tree T
OUTPUT: expansion of XT in terms of path basis.

1. Set L a list with element (c ,XT )
2. Set c = 1.
2. While S contains (c ,XT ), T not a path do
3. Choose one of its edges ε connected to a vertex of
deg > 2.
4. In S, replace (c ,XT ) by (c ,XT−ε), (−c ,XTε−ε′), (c ,XTε)
5. Return

∑
(c,XT )∈S cXT .
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e-POSITIVITY RESULTS

Theorem (A, Wang, and van Willigenburg 2021)

If (G , ε) ∼ (H, ε′) and G ∼= H − ε′, then

XG =
XH + XG−ε

2
.

Consequently, if XH and XG−ε are e-positive so is XG .
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ARITHMETIC PROGRESSION

Theorem (A, Wang, and van Willigenburg 2021)

If (G1, ε1) ∼ (G2, ε2) ∼ · · · ∼ (Gn, εn) and G0
∼= G1−ε1,Gi

∼=
Gi+1 − εi+1, then

XGj
=

k − j

k
XG0 +

j

k
XGk

for all 0 ≤ j ≤ k ≤ n.

Consequently, if XG0 and XGk
are e- or s-positive so is XGj

.
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EXAMPLE

v1

v2

v3

w
G0 G1 G2

G3 XG1 = 2
3XG0 + 1

3XG3 .
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EXAMPLE

XG0 = 5760s(19)+7200s(2,17)+3168s(22,15)+468s(23,13)+2880s(3,16)

+864s(3,2,14) + 360s(4,15),

XG3 = 14400s(19)+12960s(2,17)+3888s(22,15)+288s(23,13)+2880s(3,16)

+432s(3,2,14),

which are both Schur-positive.
The graph G1 is also Schur-positive, since

XG1 =
2

3
XG0+

1

3
XG3 = 8640s(19)+9120s(2,17)+3408s(22,15)+408s(23,13)+

2880s(3,16) + 720s(3,2,14) + 240s(4,15).
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LOLLIPOP GRAPHS

When we identify a vertex of complete graph Km with a vertex at
the end of a path Pn+1, we have the lollipop graph Lm,n.

Example

L4,2

Theorem (Gebhard and Sagan 2001)

Lollipop graphs are e-positive.
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TYPE I MELTING LOLLIPOP GRAPH

The type I melting lollipop graphs L
(k)
m,n for m, n ≥ 1 and

0 ≤ k ≤ m − 1, obtained by deleting the edges between vertex m
and vertices 1, . . . , k from Lm,n.

Example

L5,2 L
(1)
5,2

Theorem (Huh, Nam, and Yoo 2020)

Type I melting lollipop graphs are e-positive.
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TYPE II MELTING LOLLIPOP GRAPH

Type II melting lollipop graphs Γ
(k)
m,n for m ≥ 3, n ≥ 1 and

1 ≤ k ≤ m − 1, obtained by deleting the edges between vertex 1
and vertices m, . . . ,m − k + 1 from Lm,n.

Example

L5,2 Γ
(2)
5,2
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TYPE II MELTING LOLLIPOP GRAPHS ARE
e-POSITIVE

K1L5−1,2 Γ
(3)
5,2

Γ
(2)
5,2 L

(1)
5,2

Theorem (A, Wang, and van Willigenburg 2021)

Type II melting lollipop graphs are e-positive.
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SET PARTITIONS

A set partition π of [n] = {1, 2, . . . , n} is a set of disjoint sets
B1,B2, . . . ,B` called blocks so that

I Bi 6= ∅
I B1 ∪ B2 ∪ · · · ∪ B` = [n].

π = B1/B2/ · · · /B` ` [n]

Example

{{1, 3, 4}, {2, 5}, {6}, {7, 8}}

is a set partition of [8], or

π = 134/25/6/78 ` [8].
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CHROMATIC SYMMETRIC FUNCTIONS IN
NON-COMMUTING VARIABLES: GEBHARD-SAGAN
2001

Given a proper colouring κ of vertices v1, v2, . . . , vn and vi labelled
with i , associate a monomial in non-commuting variables
x1, x2, x3, . . . , xκ(v1)xκ(v2) · · · xκ(vn).

Example

v4
1

v2
2

v3
3

v1
4

v5
1

v6
4 v4

4

v2
2

v3
6

v1
1

v5
5

v6
6

∏6
i=1 xκ(vi ) = x4x2x3x1x1x4

∏6
i=1 xκ(vi ) = x1x2x6x4x5x6
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CHROMATIC SYMMETRIC FUNCTIONS IN
NON-COMMUTING VARIABLES: GEBHARD-SAGAN
2001

Given labelled G with vertices v1, v2, . . . , vn the chromatic
symmetric function of G in non-commuting variables x1, x2, . . . is

YG =
∑
κ

xκ(v1)xκ(v2) · · · xκ(vn)

where the sum over all proper colourings κ.
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EXAMPLE

Example

Let G be the following graph.

v1 v2 v3

Then the proper colourings of G are

v1
1

v2
2

v3
3

v1
1

v2
2

v3
1

and so on.
YG = x1x2x3 + x1x2x1 + . . .
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NCSym

A symmetric function in non-commuting variable x1, x2, . . . is a
formal power series f of bounded degree in non-commuting
variables x1, x2, . . . such that for all permutations σ ∈ S(∞),

f (x1, x2, . . . ) = f (xσ(1), xσ(2), . . . ).

Let NCSym be the set of all symmetric functions in
non-commuting variables.

YG ∈ NCSym
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ELEMENTARY FUNCTIONS IN NCSym

The elementary symmetric function in NCSym for π ` [n] is

eπ =
∑

(i1,i2,...,in)

xi1xi2 · · · xin

summed over all tuples (i1, i2, . . . , in) with

ij 6= ik

if j and k are in the same block of π.

Example

e13/2 = x1x1x2+x1x2x2+x2x2x1+x2x1x1+ · · ·+x1x2x3+ · · ·
and ρ(e13/2) = 2!1!e21
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SYMMETRIC FUNCTIONS IN NON-COMMUTING
VARIABLES

Let
NCSymn = Q-span{eπ : π ` [n]}.

Then
NCSym =

⊕
n≥0

NCSymn.

Proposition

NCSym is a graded subalgebra of bounded degree power se-
ries in non-commuting variables, and {eπ} is a basis for it.
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PATHS ARE NOT e-POSITIVE

Let G be the following path graph.

v1 v2 v3

Then

YG =
1

2
e123 +

1

2
e1/23 −

1

2
e13/2 +

1

2
e12/3.

Even the paths are not e-positive in NCSym!
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UBCSym

Given a set partition π ` [n], define type(π) to be the pair (λ, a)
where a is the size of the block containing n and the parts of λ are
the sizes of the remaining blocks, e.g. type(1/24/35) = (21, 2).
Let

T = Q-span{eπ − eπ′ : type(π) = type(π′)}.

T is an ideal of NCSym.

Let
eπ = eπ + T ∈ NCSym/T := UBCSym

and
YG = YG + T ∈ UBCSym.
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e-POSITIVITY, DAHLBERG 2019

Now we want to see which graphs are e-positive, that is when YG

can be written as a positive linear combination of {eπ}.

Conjecture

Evey unit interval graph is e-positive.
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ARITHMETIC PROGRESSION

Theorem (A, Wang, and van Willigenburg 2021)

I If (G , ε) ∼ (H, ε′) and G ∼= H − ε′ with some certain
labelling, then

YG =
YH + YG−ε

2
.

Consequently, if YH and YG−ε are e-positive so is YG .

I If (G1, ε1) ∼ (G2, ε2) ∼ · · · ∼ (Gn, εn) and
G0
∼= G1 − ε1,Gi

∼= Gi+1 − εi+1, with some certain
labelling, then

YGj
=

k − j

k
YG0 +

j

k
YGk

for all 0 ≤ j ≤ k ≤ n.

Consequently, if YG0 and YGk
are e-positive so is YGj

.
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THANK YOU

Thank you ...


