MODULAR RELATIONS BETWEEN CHROMATIC SYMMETRIC FUNCTIONS

Farid Aliniaeifard

The University of British Columbia

Joint work with Victor Wang and Stephanie van Willigenburg

Combinatorics and Graph Theory, MSU, Feb. 2, 2022

GRAPHS

A graph $G = (V, E)$ consists of a non-empty set of vertices V and a set of edges $E \subseteq {V \choose 2}$.

 \blacktriangleright All graphs in this talk have finite sets of vertices.

PROPER COLOURING

Given G with vertex set V a proper colouring κ of G in k colours is

 $\kappa : V \to \{1, 2, 3, ..., k\}$

so if $\mathsf{v}_i,\mathsf{v}_j\in\mathsf{V}$ are joined by an edge then

 $\kappa(v_i) \neq \kappa(v_i)$.

CHROMATIC POLYNOMIAL: BIRKHOFF 1912

Given G the chromatic polynomial $\chi_G(k)$ is the number of proper colourings with k colours.

4 ロ → 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - 9 Q Q - 4/46

DELETION-CONTRACTION

Delete ϵ : remove edge ϵ to get $G - \epsilon$.

Shrink ϵ : shrink edge ϵ and identify the vertices to get G/ϵ .

Theorem (Deletion-Contraction)

$$
\chi_G(k) = \chi_{G-\epsilon}(k) - \chi_{G/\epsilon}(k)
$$

Equivalently, $\chi_{G/\epsilon}(k) = \chi_{G-\epsilon}(k) - \chi_G(k)$ $\chi_{G/\epsilon}(k) = \chi_{G-\epsilon}(k) - \chi_G(k)$ $\chi_{G/\epsilon}(k) = \chi_{G-\epsilon}(k) - \chi_G(k)$.

PROPER COLOURING WITH INFINITELY MANY **COLOURS**

Given G with vertex set V a proper colouring κ of G is

 $\kappa:V\rightarrow\mathbb{Z}^{+}$

so if $\mathsf{v}_i,\mathsf{v}_j\in\mathsf{V}$ are joined by an edge, then

 $\kappa(v_i) \neq \kappa(v_i)$.

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 블 ▶ - 블 - 9 Q Q - 6/46

CHROMATIC SYMMETRIC FUNCTIONS: STANLEY 1995

Given a proper colouring κ of G on vertices v_1, v_2, \ldots, v_n associate a monomial in commuting variables x_1, x_2, x_3, \ldots

 $X_{\kappa(v_1)}X_{\kappa(v_2)}\ldots X_{\kappa(v_n)}$

7/46

CHROMATIC SYMMETRIC FUNCTIONS: STANLEY 1995

Given G with vertices v_1, v_2, \ldots, v_n the chromatic symmetric function of G is

$$
X_G = \sum_{\kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \dots X_{\kappa(v_n)}
$$

where the sum is over all proper colourings κ .

Let $\mathfrak{S}_{(\infty)}$ be the group of all permutations σ of the set $\{1, 2, 3, \ldots\}$ which leave all but finitely many elements invariant; that is, $\sigma(i) \neq i$ for finitely many positive integers i.

A symmetric function is a formal power series f of bounded degree in commuting variables x_1, x_2, \ldots such that for all permutations $\sigma\in\mathfrak{S}_{(\infty)}$,

 $f(x_1, x_2, \dots) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots)$

Let Sym be the set of all symmetric functions.

 $X_G \in \text{Sym}$

10 X 4 8 X 4 2 X 4 5 X 3 4 9 9 4 10/4 6

An integer partition λ of n is a list $\lambda_1 \lambda_2 \ldots \lambda_{\ell(\lambda)}$ of positive integers such that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{\ell(\lambda)}$ and their sum is *n*.

$544211 + 17$

The i-th elementary symmetric function is

$$
e_i=\sum_{j_1
$$

and for $\lambda = \lambda_1 \lambda_2 \ldots \lambda_{\ell(\lambda)}$,

 $e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \dots e_{\lambda_{\ell(\lambda)}}.$

11/46

Let

$$
\mathrm{Sym}_n=\mathbb{Q}\text{-span}\{e_\lambda:\lambda\vdash n\}
$$

Then

$$
Sym = \bigoplus_{n \geq 0} Sym_n.
$$

Proposition

Sym is a graded subalgebra of bounded degree power series, and $\{e_{\lambda}\}\)$ is a basis for it.

1日 → 1日 → 1日 → 1日 → 1日 → 2010 → 12/46

CHROMATIC SYMMETRIC FUNCTIONS IN TERMS OF e-BASIS

Which chromatic symmetric functions are e-positive?

13/46

UNIT INTERVAL GRAPHS

Consider a set $\{I_1, I_2, \ldots, I_n\}$ and identify them with unit intervals

$$
I_1 = [a_1, b_1], I_2 = [a_2, b_2], \ldots, I_n = [a_n, b_n]
$$

such that $a_1 \le a_2 \le \cdots \le a_n$.

A unit interval graph is a graph with vertex set $\{\{l_1, l_2, \ldots, l_n\}\}\$ such that I_i is adjacent to I_j if $I_i\cap I_j\neq\emptyset.$

FIRST OPEN PROBLEM: STANLEY-STEMBRIDGE, GUAY-PAQUET

If G is the following unit interval graph

10 H 4 d + 4 d + 4 d + 15/46

Then
$$
X_G = 2e_{31} + 16e_4
$$
.

Conjecture

Evey unit interval graph is e-positive.

SECOND OPEN PROBLEM

Stanley 1995:

FIG. 1. Graphs G and H with $X_G = X_H$.

We do not know whether X_G distinguishes trees.

Heil and Ji 2018: The chromatic symmetric function distinguishes all trees up to 29 vertices.

(There are 5469566585 nonisomorphic trees on 29 vertices!)

Conjecture

If T and T' are trees. If $X_T = X_{T'}$, then $T \cong T'$.

EQUIVALENT WITH RESPECT TO EDGES

We say $(G, u\nu)$ is equivalent to $(H, u'\nu')$ written $(G, uv) \sim (H, u'v')$ if there is a bijection f from $V(G)$ to $V(H)$ If $f(u) = u'$ and $f(v) = v'$, and \blacktriangleright f : $V(G/uv) \rightarrow V(H/u'v')$ is an isomorphism.

Another Example

4 ロ → 4 @ ▶ 4 로 → 4 로 → 그로 → 9 Q Q + 20/46

We have $(G, \epsilon) \sim (H, \epsilon').$

We have $(G, \epsilon) \sim (H, \epsilon').$

CHROMATIC BASES

$$
G_1 = \circ
$$

Pick favourite simple connected graph on two vertices:

$$
G_2 = \circ \!\! - \!\! \circ
$$

Pick favourite simple connected graph on three vertices:

$$
G_3 = \circ \!\!-\!\! \circ \!\!-\!\! \circ
$$

And so on \ldots

Let G_λ be the disjoint union $\mathsf{G}_{\lambda_1}\cup\cdots\cup\mathsf{G}_{\lambda_\ell}$.

CHROMATIC BASES

Theorem (Cho and van Willigenburg 2016)

$$
\operatorname{Sym}_n = \mathbb{Q}\text{-span}\{X_{G_\lambda} : \lambda \vdash n\}
$$

where

$$
X_{G_{\lambda}}=X_{G_{\lambda_1}}\cdots X_{G_{\lambda_{\ell}}}.
$$

Example

$$
G_{211} = \begin{matrix} 0 & -0 & 0 & 0 \end{matrix}
$$

$$
X_{G_{211}} = X_{G_2} X_{G_1} X_{G_1}
$$

= 2e₂e₁e₁ = 2e₂₁₁

4 ロ → 4 @ → 4 ミ → 4 ミ → 24/46

TO PATHS

 $INPI/T$: a tree T OUTPUT: expansion of X_T in terms of path basis.

1. Set L a list with element (c, X_T) 2. Set $c = 1$. 2. While S contains (c, X_T) , T not a path do 3. Choose one of its edges ϵ connected to a vertex of $deg > 2$. 4. In S, replace $(c, X_{\mathcal{T}})$ by $(c, X_{\mathcal{T}-\epsilon}), (-c, X_{\mathcal{T}_{\epsilon}-\epsilon'}), (c, X_{\mathcal{T}_{\epsilon}})$ 5. Return $\sum_{(c,X_\mathcal{T}) \in \mathcal{S}} cX_\mathcal{T}.$

4 ロ → 4 @ ▶ 4 를 → 4 를 → - 를 → 9 Q Q - 26/46

Theorem (A, Wang, and van Willigenburg 2021)

If
$$
(G, \epsilon) \sim (H, \epsilon')
$$
 and $G \cong H - \epsilon'$, then

$$
X_G = \frac{X_H + X_{G-\epsilon}}{2}
$$

.

4 ロ → 4 個 → 4 ミ → 4 ミ → 27/46

Consequently, if X_H and $X_{G-\epsilon}$ are e-positive so is X_G .

Theorem (A, Wang, and van Willigenburg 2021)

If
$$
(G_1, \epsilon_1) \sim (G_2, \epsilon_2) \sim \cdots \sim (G_n, \epsilon_n)
$$
 and $G_0 \cong G_1 - \epsilon_1, G_i \cong$
 $G_{i+1} - \epsilon_{i+1}$, then

$$
X_{G_j} = \frac{k-j}{k} X_{G_0} + \frac{j}{k} X_{G_k} \quad \text{ for all } 0 \le j \le k \le n.
$$

Consequently, if X_{G_0} and X_{G_k} are e - or s -positive so is $X_{G_j}.$

4 ロ → 4 @ ▶ 4 로 → 4 로 → 28 → 28/46

EXAMPLE

$$
X_{G_1} = \frac{2}{3}X_{G_0} + \frac{1}{3}X_{G_3}.
$$

 $X_{G_0} = 5760 s_{(1^9)} + 7200 s_{(2,1^7)} + 3168 s_{(2^2,1^5)} + 468 s_{(2^3,1^3)} + 2880 s_{(3,1^6)}$ $+864s_{(3,2,1^4)}+360s_{(4,1^5)},$ $X_{G_3} = 1$ 4400s $_{(1^9)}+12960$ s $_{(2,1^7)}+3888$ s $_{(2^2,1^5)}+288$ s $_{(2^3,1^3)}+2880$ s $_{(3,1^6)}$ $+432s_{(3,2,14)},$

which are both Schur-positive. The graph G_1 is also Schur-positive, since

$$
X_{G_1}=\frac{2}{3}X_{G_0}+\frac{1}{3}X_{G_3}=8640s_{(1^9)}+9120s_{(2,1^7)}+3408s_{(2^2,1^5)}+408s_{(2^3,1^3)}+
$$

$$
2880s_{(3,1^6)}+720s_{(3,2,1^4)}+240s_{(4,1^5)}.
$$

4 ロ → 4 @ ▶ 4 로 → 4 로 → 로 → 9 Q (* 30/46)

When we identify a vertex of complete graph K_m with a vertex at the end of a path P_{n+1} , we have the lollipop graph $L_{m,n}$.

Theorem (Gebhard and Sagan 2001)

Lollipop graphs are e-positive.

TYPE I MELTING LOLLIPOP GRAPH

The type I melting lollipop graphs $L_{m,n}^{(k)}$ for $m,n\geq 1$ and $0 \leq k \leq m-1$, obtained by deleting the edges between vertex m and vertices $1, \ldots, k$ from $L_{m,n}$.

Theorem (Huh, Nam, and Yoo 2020)

Type I melting lollipop graphs are e-positive.

TYPE II MELTING LOLLIPOP GRAPH

Type II melting lollipop graphs $\mathsf{\Gamma}_{m,n}^{(k)}$ for $m\geq 3,~n\geq 1$ and $1 \leq k \leq m-1$, obtained by deleting the edges between vertex 1 and vertices $m, \ldots, m - k + 1$ from $L_{m,n}$.

4 ロ → 4 @ ▶ 4 로 → 4 로 → 로 → 9 Q (* 33/46)

TYPE II MELTING LOLLIPOP GRAPHS ARE e-POSITIVE

SET PARTITIONS

A set partition π of $[n] = \{1, 2, ..., n\}$ is a set of disjoint sets B_1, B_2, \ldots, B_ℓ called blocks so that

$$
\begin{aligned} \triangleright \quad & B_i \neq \emptyset \\ \triangleright \quad & B_1 \cup B_2 \cup \cdots \cup B_\ell = [n]. \end{aligned}
$$

$$
\pi=B_1/B_2/\cdots/B_\ell\vdash [n]
$$

Example

$$
\{\{1,3,4\},\{2,5\},\{6\},\{7,8\}\}
$$

is a set partition of [8], or

$$
\pi = 134/25/6/78 \vdash [8].
$$

CHROMATIC SYMMETRIC FUNCTIONS IN NON-COMMUTING VARIABLES: GEBHARD-SAGAN 2001

Given a proper colouring κ of vertices v_1, v_2, \ldots, v_n and v_i labelled with i , associate a monomial in non-commuting variables $x_1, x_2, x_3, \ldots, x_{\kappa(v_1)}x_{\kappa(v_2)}\cdots x_{\kappa(v_n)}$

CHROMATIC SYMMETRIC FUNCTIONS IN NON-COMMUTING VARIABLES: GEBHARD-SAGAN 2001

Given labelled G with vertices v_1, v_2, \ldots, v_n the chromatic symmetric function of G in non-commuting variables x_1, x_2, \ldots is

$$
Y_G = \sum_{\kappa} X_{\kappa(v_1)} X_{\kappa(v_2)} \cdots X_{\kappa(v_n)}
$$

where the sum over all proper colourings κ .

4 ロ → 4 個 → 4 ミ → 4 ミ → 三 → 9 Q Q + 38/46

A symmetric function in non-commuting variable x_1, x_2, \ldots is a formal power series f of bounded degree in non-commuting variables x_1, x_2, \ldots such that for all permutations $\sigma \in \mathfrak{S}_{(\infty)}$,

$$
f(x_1,x_2,\dots)=f(x_{\sigma(1)},x_{\sigma(2)},\dots).
$$

Let NCSym be the set of all symmetric functions in non-commuting variables.

 $Y_G \in \text{NCSym}$

4 ロ → 4 @ ▶ 4 를 → 4 를 → - 를 → 9 Q Q - 39/46

ELEMENTARY FUNCTIONS IN NCSym

The elementary symmetric function in NCSym for $\pi \vdash [n]$ is

$$
e_{\pi}=\sum_{(i_1,i_2,\ldots,i_n)}x_{i_1}x_{i_2}\cdots x_{i_n}
$$

summed over all tuples (i_1, i_2, \ldots, i_n) with

 $i_i \neq i_k$

if *j* and *k* are in the same block of π .

Example

 $e_{13/2} = x_1x_1x_2+x_1x_2x_2+x_2x_2x_1+x_2x_1x_1+\cdots+x_1x_2x_3+\cdots$ and $\rho(e_{13/2})=2!1!e_{21}$

SYMMETRIC FUNCTIONS IN NON-COMMUTING VARIABLES

Let

$$
\mathrm{NCSym}_n=\mathbb{Q}\text{-span}\{e_\pi:\pi\vdash [n]\}.
$$

Then

$$
\mathrm{NCSym}=\bigoplus_{n\geq 0}\mathrm{NCSym}_n.
$$

Proposition

NCSym is a graded subalgebra of bounded degree power series in non-commuting variables, and $\{e_{\pi}\}\$ is a basis for it.

Let G be the following path graph.

Then

$$
Y_G = \frac{1}{2}e_{123} + \frac{1}{2}e_{1/23} - \frac{1}{2}e_{13/2} + \frac{1}{2}e_{12/3}.
$$

Even the paths are not e-positive in NCSym!

4 ロ → 4 @ ▶ 4 로 → 4 로 → 로 → 9 Q + 42/46

Given a set partition $\pi \vdash [n]$, define type(π) to be the pair (λ , a) where a is the size of the block containing n and the parts of λ are the sizes of the remaining blocks, e.g. type $(1/24/35) = (21, 2)$. Let

$$
\mathcal{T}=\mathbb{Q}\text{-span}\{e_{\pi}-e_{\pi'}:\mathrm{type}(\pi)=\mathrm{type}(\pi')\}.
$$

T is an ideal of NCSym.

Let

$$
\overline{e_{\pi}} = e_{\pi} + T \in \mathrm{NCSym}/T := \mathrm{UBCSym}
$$

and

 $\overline{Y_G} = Y_G + T \in \text{UBCSym}.$

4 ロ → 4 @ ▶ 4 로 → 4 로 → 2 → 9 Q → 43/46

Now we want to see which graphs are \overline{e} -positive, that is when $\overline{Y_G}$ can be written as a positive linear combination of $\{\overline{e_{\pi}}\}.$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ _ 로 _ 9 Q Q _ 44/46

Conjecture

Evey unit interval graph is \overline{e} -positive.

ARITHMETIC PROGRESSION

Theorem (A, Wang, and van Willigenburg 2021) ► If $(G, \epsilon) \sim (H, \epsilon')$ and $G \cong H - \epsilon'$ with some certain labelling, then $\overline{Y_G} = \frac{Y_H + Y_{G-\epsilon}}{2}$ $\frac{16-\epsilon}{2}$ Consequently, if $\overline{Y_H}$ and $\overline{Y_{G-6}}$ are \overline{e} -positive so is $\overline{Y_G}$. \triangleright If $(G_1, \epsilon_1) \sim (G_2, \epsilon_2) \sim \cdots \sim (G_n, \epsilon_n)$ and $G_0 \cong G_1 - \epsilon_1, G_i \cong G_{i+1} - \epsilon_{i+1}$, with some certain labelling, then $\overline{Y_{G_j}} = \frac{k-j}{k}$ $\frac{-j}{k} \overline{Y_{G_0}} + \frac{j}{k}$ $\frac{J}{k}Y_{G_k}$ for all $0 \leq j \leq k \leq n$. Consequently, if Y_{G_0} and Y_{G_k} are \overline{e} -positive so is Y_{G_j} .

45/46

Thank you ...

4日 → 4日 → 4日 → 4日 → 日本 → 990 + 46/46