Involutive Groups from Graphs

Ben Adenbaum (Joint work with Alexander Wilson and Jonathan Bloom)

Dartmouth College

November 1, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Let *E* be a finite set, and let *L* be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

Let *E* be a finite set, and let *L* be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in L \end{cases}$$

Let *E* be a finite set, and let *L* be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$t_e(X) = egin{cases} X \cup \{e\} & ext{if } e \notin X ext{ and } X \cup \{e\} \in L \ X \setminus \{e\} & ext{if } e \in X ext{ and } X \setminus \{e\} \in L \end{cases}$$

Let *E* be a finite set, and let *L* be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in L \\ X \setminus \{e\} & \text{if } e \in X \text{ and } X \setminus \{e\} \in L \\ X & \text{otherwise} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The set $\{t_e | e \in E\}$ are the set of toggles. Let T(L) be the subgroup of \mathfrak{S}_L generated by the toggles.

Let *E* be a finite set, and let *L* be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in L \\ X \setminus \{e\} & \text{if } e \in X \text{ and } X \setminus \{e\} \in L \\ X & \text{otherwise} \end{cases}$$

The set $\{t_e | e \in E\}$ are the set of toggles. Let T(L) be the subgroup of \mathfrak{S}_L generated by the toggles.

• Order Ideals (Cameron and Fon der Flaas)

Let *E* be a finite set, and let *L* be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in L \\ X \setminus \{e\} & \text{if } e \in X \text{ and } X \setminus \{e\} \in L \\ X & \text{otherwise} \end{cases}$$

The set $\{t_e | e \in E\}$ are the set of toggles. Let T(L) be the subgroup of \mathfrak{S}_L generated by the toggles.

- Order Ideals (Cameron and Fon der Flaas)
- Antichains

Let *E* be a finite set, and let *L* be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in L \\ X \setminus \{e\} & \text{if } e \in X \text{ and } X \setminus \{e\} \in L \\ X & \text{otherwise} \end{cases}$$

The set $\{t_e | e \in E\}$ are the set of toggles. Let T(L) be the subgroup of \mathfrak{S}_L generated by the toggles.

- Order Ideals (Cameron and Fon der Flaas)
- Antichains
- Independent Sets of a graph

Examples of Generalized Toggle Groups

Example (Order Ideals)

 $P = [2] \times [2]$. So E = P,

 $P = [2] \times [2]$. So E = P,

 $L = \{\emptyset, \{(1,1)\}, \{(1,1), (1,2)\}, \{(1,1), (2,1)\},$

 $\{(1,1),(1,2),(2,1)\},\{(1,1),(1,2),(2,1),(2,2)\}\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $\tau_{(1,1)} = (\emptyset, \{(1,1)\})$

 $P = [2] \times [2]$. So E = P,

 $L = \{ \emptyset, \{ (1,1) \}, \{ (1,1), (1,2) \}, \{ (1,1), (2,1) \},$

 $\{(1,1),(1,2),(2,1)\},\{(1,1),(1,2),(2,1),(2,2)\}\}$

•
$$\tau_{(1,1)} = (\emptyset, \{(1,1)\})$$

• $\tau_{(1,2)} = (\{(1,1)\}, \{(1,1), (1,2)\})(\{(1,1), (1,2), (2,1)\}, \{(1,1), (2,1)\})$

 $P = [2] \times [2]$. So E = P,

 $L = \{ \emptyset, \{ (1,1) \}, \{ (1,1), (1,2) \}, \{ (1,1), (2,1) \},$

 $\{(1,1),(1,2),(2,1)\},\{(1,1),(1,2),(2,1),(2,2)\}\}$

•
$$\tau_{(1,1)} = (\emptyset, \{(1,1)\})$$

- $\tau_{(1,2)} = (\{(1,1)\}, \{(1,1), (1,2)\})(\{(1,1), (1,2), (2,1)\}, \{(1,1), (2,1)\})$
- $\tau_{(2,1)} = (\{(1,1)\}, \{(1,1), (2,1)\})(\{(1,1), (1,2), (2,1)\}, \{(1,1), (1,2)\})$

 $P = [2] \times [2]$. So E = P,

 $L = \{ \emptyset, \{ (1,1) \}, \{ (1,1), (1,2) \}, \{ (1,1), (2,1) \},$

 $\{(1,1),(1,2),(2,1)\},\{(1,1),(1,2),(2,1),(2,2)\}\}$

•
$$\tau_{(1,1)} = (\emptyset, \{(1,1)\})$$

- $\tau_{(1,2)} = (\{(1,1)\}, \{(1,1), (1,2)\})(\{(1,1), (1,2), (2,1)\}, \{(1,1), (2,1)\})$
- $\tau_{(2,1)} = (\{(1,1)\}, \{(1,1), (2,1)\})(\{(1,1), (1,2), (2,1)\}, \{(1,1), (1,2)\})$

• $\tau_{(2,2)} = (\{(1,1), (1,2), (2,1)\}, \{(1,1), (1,2), (2,1), (2,2)\})$

In this case $T_L = \mathfrak{S}_L$

Example (Antichains)

 $P = [2] \times [2]$. So E = P,

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Example (Antichains)

$$P = [2] \times [2]$$
. So $E = P$,

 $L = \{\emptyset, \{(1,1)\}, \{(1,2)\}, \{(2,1)\}, \{(1,2), (2,1)\}, \{(2,2)\}\}$

•
$$\tau_{(1,1)} = (\emptyset, \{(1,1)\})$$

- $\tau_{(1,2)} = (\emptyset, \{(1,2)\})(\{(1,2), (2,1)\}, \{(2,1)\})$
- $\tau_{(2,1)} = (\emptyset, \{(2,1)\})(\{(1,2), (2,1)\}, \{(1,2)\})$
- $\tau_{(2,2)} = (\emptyset, \{(2,2)\})$

In this case $T_L = \mathfrak{S}_L$

Example (Independent Sets)

$G = C_5$, presented as V(G) = [5] and $E(G) = \{(i, i + 1 \mod 5)\}$. So E = [5],

Example (Independent Sets)

 $G = C_5$, presented as V(G) = [5] and $E(G) = \{(i, i + 1 \mod 5)\}$. So E = [5],

 $L = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,3\}, \{1,4\}, \{2,4\}, \{2,5\}, \{3,5\} \}$

Example (Independent Sets)

- $G = C_5$, presented as V(G) = [5] and $E(G) = \{(i, i + 1 \mod 5)\}$. So E = [5],
- $L = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1,3\}, \{1,4\}, \{2,4\}, \{2,5\}, \{3,5\} \}$

- $\tau_1 = (\emptyset, \{1\})(\{3\}, \{1,3\})(\{4\}, \{1,4\})$
- $\tau_2 = (\emptyset, \{2\})(\{4\}, \{2, 4\})(\{5\}, \{2, 5\})$
- $\tau_3 = (\emptyset, \{3\})(\{1\}, \{1,3\})(\{5\}, \{3,5\})$
- $\tau_4 = (\emptyset, \{4\})(\{1\}, \{1, 4\})(\{2\}, \{2, 4\})$
- $\tau_5 = (\emptyset, \{5\})(\{2\}, \{2, 5\})(\{3\}, \{3, 5\})$

In this case $T_L = \mathfrak{S}_L$

Example

Let E = [4] and $L = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}, \{4\}, \{3, 4\}, \{2, 3, 4\}\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example

Let E = [4] and

$$L = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}, \{4\}, \{3, 4\}, \{2, 3, 4\}\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

•
$$\tau_1 = (\emptyset, \{1\})(\{2, 3, 4\}, \{1, 2, 3, 4\})$$

•
$$\tau_2 = (\{1\}, \{1, 2\})(\{3, 4\}, \{2, 3, 4\})$$

•
$$\tau_3 = (\{1,2\},\{1,2,3\})(\{4\},\{3,4\})$$

•
$$au_4 = (\emptyset, \{4\})(\{1, 2, 3\}, \{1, 2, 3, 4\})$$

In this case $T_L \cong S_4 \rtimes C_2^3$

Natural Associated Poset Structure

To all generalized toggle groups, there is a natural partial order called the *toggle poset* which we denote by P_L .

Natural Associated Poset Structure

To all generalized toggle groups, there is a natural partial order called the *toggle poset* which we denote by P_L . The cover relations in this poset are given by $X \leq Y$ if $X \subseteq Y$ and there exists some $e \in E$ such that $t_e(X) = Y$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Natural Associated Poset Structure

To all generalized toggle groups, there is a natural partial order called the *toggle poset* which we denote by P_L . The cover relations in this poset are given by $X \ll Y$ if $X \subseteq Y$ and there exists some $e \in E$ such that $t_e(X) = Y$. Importantly, each edge of the Hasse diagram is naturally labeled by the element toggled in for the cover.

Example

Larger Family

All we had here was finite graphs (the Hasse diagrams) and a proper edge coloring (no two edges that share an endpoint have the same color).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Larger Family

All we had here was finite graphs (the Hasse diagrams) and a proper edge coloring (no two edges that share an endpoint have the same color).

Definition

For G = ([n], E) with proper surjective edge coloring $\kappa : E \to [i]$, we define the permutation group \mathfrak{G}_{κ} as follows. For each $j \in [i]$, let $\tau_j = \prod_{\{a,b\} \in \kappa^{-1}(i)} (a, b)$ as an element of \mathfrak{S}_n . Then \mathfrak{G}_{κ} is the group generated by the set of τ_j 's.

This generalizes toggle groups and contains groups that are not toggle groups.

Larger Family

All we had here was finite graphs (the Hasse diagrams) and a proper edge coloring (no two edges that share an endpoint have the same color).

Definition

For G = ([n], E) with proper surjective edge coloring $\kappa : E \to [i]$, we define the permutation group \mathfrak{G}_{κ} as follows. For each $j \in [i]$, let $\tau_j = \prod_{\{a,b\} \in \kappa^{-1}(i)} (a, b)$ as an element of \mathfrak{S}_n . Then \mathfrak{G}_{κ} is the group generated by the set of τ_j 's.

This generalizes toggle groups and contains groups that are not toggle groups.

Example

$$egin{aligned} \mathcal{P}_4,\kappa=&ullet_{\kappa}=\langle (1,2)(3,4),(2,3)
angle&=\mathcal{D}_4 \end{aligned}$$

Everything if we don't impose any restrictions.

Theorem

Let \mathfrak{G} be a finite group generated by involutions. Then there is a simple connected graph G with proper edge coloring κ such that \mathfrak{G}_{κ} is isomorphic to \mathfrak{G} .

Everything if we don't impose any restrictions.

Theorem

Let \mathfrak{G} be a finite group generated by involutions. Then there is a simple connected graph G with proper edge coloring κ such that \mathfrak{G}_{κ} is isomorphic to \mathfrak{G} .

Sketch of proof.

Consider the coloring κ of the Cayley Graph of \mathfrak{G} from the presentation generated by involutions where each edge is colored by the generator used. This is proper because the generators are involutions. Additionally for each generator g_i , τ_{g_i} and g_i act identically, so the groups generated are isomorphic.

Unfortunately, while the argument is constructive the resulting graphs are not helpful, as for instance \mathfrak{S}_n the resulting graph has n! vertices.

Centralizer

Definition

For a graph G of order n with proper edge coloring $\kappa : E(G) \to [k]$, the group $\operatorname{Aut}_{\kappa}(G) \subseteq S_n$ consists of all permutations $\sigma \in S_n$ such that $\{i, j\}$ is an edge of G colored a under κ if and only if $\{\sigma(i), \sigma(j)\}$ is an edge of G colored a under κ .

Centralizer

Definition

For a graph G of order n with proper edge coloring $\kappa : E(G) \to [k]$, the group $\operatorname{Aut}_{\kappa}(G) \subseteq S_n$ consists of all permutations $\sigma \in S_n$ such that $\{i, j\}$ is an edge of G colored a under κ if and only if $\{\sigma(i), \sigma(j)\}$ is an edge of G colored a under κ .

Theorem

For a graph G of order n with proper edge coloring κ , the centralizer $C_{S_n}(\mathfrak{G}_{\kappa})$ of the corresponding group in the symmetric group is isomorphic to $\operatorname{Aut}_{\kappa}(G)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Centralizer

Definition

For a graph G of order n with proper edge coloring $\kappa : E(G) \to [k]$, the group $\operatorname{Aut}_{\kappa}(G) \subseteq S_n$ consists of all permutations $\sigma \in S_n$ such that $\{i, j\}$ is an edge of G colored a under κ if and only if $\{\sigma(i), \sigma(j)\}$ is an edge of G colored a under κ .

Theorem

For a graph G of order n with proper edge coloring κ , the centralizer $C_{S_n}(\mathfrak{G}_{\kappa})$ of the corresponding group in the symmetric group is isomorphic to $\operatorname{Aut}_{\kappa}(G)$.

This means that the center of \mathfrak{G}_{κ} is contained within Aut_{κ}(G).

Classification of when the center is non-trivial for trees

Lemma

For G a tree and $\kappa : E(G) \to [k]$ a proper edge coloring, $Aut_{\kappa}(G)$ is either trivial or has order two.

Classification of when the center is non-trivial for trees

Lemma

For G a tree and $\kappa : E(G) \to [k]$ a proper edge coloring, $Aut_{\kappa}(G)$ is either trivial or has order two.

Sketch.

Consider the vertices of maximum eccentricity. If unique, then $\operatorname{Aut}_{\kappa}(G)$ is trivial. If not unique and the rooted trees are not color isomorphic then $\operatorname{Aut}_{\kappa}(G)$ is trivial. If not unique and the trees are color isomorphic can swap the two of them, which forces the trees to just be swapped.

Theorem

For G a tree and $\kappa : E(G) \to [k]$, either $Z(\mathfrak{G}_{\kappa})$ is trivial, or |G| = 2m is even and $\mathfrak{G}_{\kappa} \subseteq B_m$.

Classification of when the center is non-trivial for trees

Lemma

For G a tree and $\kappa : E(G) \to [k]$ a proper edge coloring, $Aut_{\kappa}(G)$ is either trivial or has order two.

Sketch.

Consider the vertices of maximum eccentricity. If unique, then $\operatorname{Aut}_{\kappa}(G)$ is trivial. If not unique and the rooted trees are not color isomorphic then $\operatorname{Aut}_{\kappa}(G)$ is trivial. If not unique and the trees are color isomorphic can swap the two of them, which forces the trees to just be swapped.

Theorem

For G a tree and $\kappa : E(G) \to [k]$, either $Z(\mathfrak{G}_{\kappa})$ is trivial, or |G| = 2m is even and $\mathfrak{G}_{\kappa} \subseteq B_m$.

This is an if and only if as every \mathfrak{G}_{κ} on a tree contains a cycle on all vertices and in B_m any such cycle σ has that $\sigma_{\kappa,\sigma}^m \in Z(B_m)$.

Examples

Examples

Example

Trivially, we can always realize the Symmetric Group on any graph, if we just give every edge a distinct color. But how few do we need?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Trivially, we can always realize the Symmetric Group on any graph, if we just give every edge a distinct color. But how few do we need?

If T is a tree and $\Delta(T)$ denotes the maximum degree of a vertex, we always need at most $\Delta(T) + 1$ colors.

Sketch.

Suppose κ is an edge coloring of T using $\Delta(T)$ colors and suppose ℓ is a leaf. Let κ' denote the coloring obtained by changing the edge adjacent to ℓ to a new color. Then $\mathfrak{G}_{\kappa'} \cong \mathfrak{S}_{|T|}$.

In the case where $\Delta(T) \geq \frac{|T|}{2}$ then any coloring of T produces $\mathfrak{S}_{|T|}$.

Once we move to the case where G is a path of length n + 1, we can identify a coloring with a word of length n over a finite alphabet.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Once we move to the case where G is a path of length n + 1, we can identify a coloring with a word of length n over a finite alphabet. How can we get the Symmetric Group? No nice classification, but have some sufficient conditions.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Once we move to the case where G is a path of length n + 1, we can identify a coloring with a word of length n over a finite alphabet. How can we get the Symmetric Group? No nice classification, but have some sufficient conditions.

Definition

Let *abc* be a sequence of distinct, adjacent letters in a word w (with *a* or *c* allowed to be empty if *b* is the first or last letter respectively). We call *abc* a symmetric triple if there exists a subset *S* containing *a* and *c* of letters in *w* such that the graph obtained by deleting the edges labeled by elements of *S* in the path graph colored by *w* has exactly one component that has even order.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Once we move to the case where G is a path of length n + 1, we can identify a coloring with a word of length n over a finite alphabet. How can we get the Symmetric Group? No nice classification, but have some sufficient conditions.

Definition

Let *abc* be a sequence of distinct, adjacent letters in a word w (with *a* or *c* allowed to be empty if *b* is the first or last letter respectively). We call *abc* a symmetric triple if there exists a subset *S* containing *a* and *c* of letters in *w* such that the graph obtained by deleting the edges labeled by elements of *S* in the path graph colored by *w* has exactly one component that has even order.

Theorem

If $w = w_1 \dots w_\ell$ contains a symmetric triple abc, then $\mathfrak{G}_w \cong \mathfrak{S}_{\ell+1}$.

Primitive Groups

Definition

A group G acting transitively on a set X is *primitive* if the only partitions of X preserved by the action of G are X or |X| blocks of size 1. A group is *imprimitive* if it is not primitive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

A group G acting transitively on a set X is *primitive* if the only partitions of X preserved by the action of G are X or |X| blocks of size 1. A group is *imprimitive* if it is not primitive.

Definition

For a graph G with proper edge coloring $\kappa : E(G) \to [k]$, consider a vertex coloring of $\nu : V(G) \to [\ell]$. The coloring ν is called imprimitive if the following holds. If an edge colored b connects a vertex colored a to a vertex colored c with $a \neq c$, then every vertex colored a is connected to a vertex colored c by an edge colored b.

Definition

A group G acting transitively on a set X is *primitive* if the only partitions of X preserved by the action of G are X or |X| blocks of size 1. A group is *imprimitive* if it is not primitive.

Definition

For a graph G with proper edge coloring $\kappa : E(G) \to [k]$, consider a vertex coloring of $\nu : V(G) \to [\ell]$. The coloring ν is called imprimitive if the following holds. If an edge colored b connects a vertex colored a to a vertex colored c with $a \neq c$, then every vertex colored a is connected to a vertex colored c by an edge colored b.

Lemma

For a graph G with proper edge coloring κ , the group \mathfrak{G}_{κ} is imprimitive if and only if there exists an imprimitive vertex coloring of G with respect to the edge coloring κ .

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Definition

The word w of a coloring κ of P_n is said to be a toggle word if for any consecutive subword w' of w with |w'| > 1 there are at least two letters that appear an odd number of times.

Importantly, this means that \mathfrak{G}_{κ} is not a subgroup of A_n .

Theorem

Let κ be the coloring of a toggle word on P_n . Then \mathfrak{G}_{κ} is primitive.

Definition

The word w of a coloring κ of P_n is said to be a toggle word if for any consecutive subword w' of w with |w'| > 1 there are at least two letters that appear an odd number of times.

Importantly, this means that \mathfrak{G}_{κ} is not a subgroup of A_n .

Theorem

Let κ be the coloring of a toggle word on P_n . Then \mathfrak{G}_{κ} is primitive. In particular, either

- $\mathfrak{G}_{\kappa} \cong \mathfrak{S}_n$
- $PGL_d(q) \le \mathfrak{G}_{\kappa} \le P\Gamma L_d(q)$ where $n = \frac{q^d 1}{q 1}$ for some prime power q and $d \ge 2$.

Theorem

If κ is a coloring of P_n , then for any $i, j \in [n]$ there is an involution in \mathfrak{G}_{κ} that sends i to j.

Conjecture

If κ corresponds to a toggle word on P_n then $\mathfrak{G}_{\kappa} \cong \mathfrak{S}_n$

Theorem

If G is the Hasse Diagram of an Independence Poset of size n with κ the coloring of the edges induced by the vertices of the underlying Directed Acyclic Graph, then \mathfrak{G}_{κ} contains A_n .

Conjecture

If G is the Hasse Diagram of a semidistrim lattice L of size n with κ the canonical labeling by the join irreducibles then \mathfrak{G}_{κ} contains A_n .