Involutive Groups from Graphs

Ben Adenbaum (Joint work with Alexander Wilson and Jonathan Bloom)

Dartmouth College

November 1, 2023

Let E be a finite set, and let L be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Let E be a finite set, and let L be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$
t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in L \\ \end{cases}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Let E be a finite set, and let L be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$
t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in L \\ X \setminus \{e\} & \text{if } e \in X \text{ and } X \setminus \{e\} \in L \end{cases}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Let E be a finite set, and let L be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$
t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in L \\ X \setminus \{e\} & \text{if } e \in X \text{ and } X \setminus \{e\} \in L \\ X & \text{otherwise} \end{cases}
$$

KORKARYKERKER OQO

The set $\{t_e | e \in E\}$ are the set of toggles. Let $T(L)$ be the subgroup of \mathfrak{S}_L generated by the toggles.

Let E be a finite set, and let L be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$
t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in L \\ X \setminus \{e\} & \text{if } e \in X \text{ and } X \setminus \{e\} \in L \\ X & \text{otherwise} \end{cases}
$$

KORKARYKERKER OQO

The set $\{t_e | e \in E\}$ are the set of toggles. Let $T(L)$ be the subgroup of G_L generated by the toggles.

Order Ideals (Cameron and Fon der Flaas)

Let E be a finite set, and let L be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$
t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in L \\ X \setminus \{e\} & \text{if } e \in X \text{ and } X \setminus \{e\} \in L \\ X & \text{otherwise} \end{cases}
$$

KORKARYKERKER OQO

The set $\{t_e | e \in E\}$ are the set of toggles. Let $T(L)$ be the subgroup of G_L generated by the toggles.

- Order Ideals (Cameron and Fon der Flaas)
- **•** Antichains

Let E be a finite set, and let L be any subset of the power set 2^E . For each $e \in E$, the toggle t_e is defined as follows:

$$
t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in L \\ X \setminus \{e\} & \text{if } e \in X \text{ and } X \setminus \{e\} \in L \\ X & \text{otherwise} \end{cases}
$$

KORKARYKERKER OQO

The set $\{t_e | e \in E\}$ are the set of toggles. Let $T(L)$ be the subgroup of \mathfrak{S}_L generated by the toggles.

- Order Ideals (Cameron and Fon der Flaas)
- **•** Antichains
- Independent Sets of a graph

Examples of Generalized Toggle Groups

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example (Order Ideals)

 $P = [2] \times [2]$. So $E = P$,

 $P = [2] \times [2]$. So $E = P$,

 $L = \{\emptyset, \{(1, 1)\}, \{(1, 1), (1, 2)\}, \{(1, 1), (2, 1)\},\$

 $\{(1, 1), (1, 2), (2, 1)\}, \{(1, 1), (1, 2), (2, 1), (2, 2)\}\}\$

KORK EXTERNE PROVIDE

 $\bullet \tau_{(1,1)} = (\emptyset, \{(1,1)\})$

 $P = [2] \times [2]$. So $E = P$,

 $L = \{\emptyset, \{(1, 1)\}, \{(1, 1), (1, 2)\}, \{(1, 1), (2, 1)\}\,$

 $\{(1, 1), (1, 2), (2, 1)\}, \{(1, 1), (1, 2), (2, 1), (2, 2)\}\}\$

$$
\bullet\ \tau_{(1,1)} = (\emptyset, \{(1,1)\})
$$

 \bullet $\tau_{(1,2)} =$ $({(1, 1)}, {(1, 1), (1, 2)})(({1, 1), (1, 2), (2, 1)}, ({1, 1), (2, 1)})$

KORK EXTERNE PROVIDE

 $P = [2] \times [2]$. So $E = P$,

 $L = \{\emptyset, \{(1, 1)\}, \{(1, 1), (1, 2)\}, \{(1, 1), (2, 1)\}\,$

 $\{(1, 1), (1, 2), (2, 1)\}, \{(1, 1), (1, 2), (2, 1), (2, 2)\}\}\$

$$
\bullet\ \tau_{(1,1)} = (\emptyset, \{(1,1)\})
$$

- \bullet $\tau_{(1,2)} =$ $({(1, 1)}, {(1, 1), (1, 2)})({(1, 1), (1, 2), (2, 1)}, {(1, 1), (2, 1)})$
- $\tau_{(2,1)} =$ $({(1, 1)}, {(1, 1), (2, 1)})(({1, 1), (1, 2), (2, 1)}, ({1, 1), (1, 2)})$

 $P = [2] \times [2]$. So $E = P$,

 $L = \{\emptyset, \{(1, 1)\}, \{(1, 1), (1, 2)\}, \{(1, 1), (2, 1)\}\,$

 $\{(1, 1), (1, 2), (2, 1)\}, \{(1, 1), (1, 2), (2, 1), (2, 2)\}\}\$

$$
\bullet\ \tau_{(1,1)} = (\emptyset, \{(1,1)\})
$$

- \bullet $\tau_{(1,2)} =$ $({(1, 1)}, {(1, 1), (1, 2)})({(1, 1), (1, 2), (2, 1)}, {(1, 1), (2, 1)})$
- \bullet $\tau_{(2,1)} =$ $({(1, 1)}, {(1, 1), (2, 1)})(({1, 1), (1, 2), (2, 1)}, ({1, 1), (1, 2)}))$

 \bullet $\tau_{(2,2)} = (\{(1,1), (1,2), (2,1)\}, \{(1,1), (1,2), (2,1), (2,2)\})$

In this case $T_1 = \mathfrak{S}_1$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example (Antichains)

$$
P = [2] \times [2]
$$
. So $E = P$,

Example (Antichains)

$$
P = [2] \times [2]
$$
. So $E = P$,

 $L = \{\emptyset, \{(1, 1)\}, \{(1, 2)\}, \{(2, 1)\}, \{(1, 2), (2, 1)\}, \{(2, 2)\}\}\$

KORKARYKERKER OQO

$$
\bullet\ \tau_{(1,1)} = (\emptyset, \{(1,1)\})
$$

- $\bullet \tau_{(1,2)} = (\emptyset, \{(1,2)\}) (\{(1,2), (2, 1)\}, \{(2, 1)\})$
- $\bullet \tau_{(2,1)} = (\emptyset, \{(2,1)\}) (\{(1,2), (2, 1)\}, \{(1, 2)\})$
- $\bullet \tau_{(2,2)} = (\emptyset, \{(2,2)\})$

In this case $T_1 = \mathfrak{S}_1$

Example (Independent Sets)

$G = C_5$, presented as $V(G) = [5]$ and $E(G) = \{(i, i + 1 \mod 5)\}.$ So $E = [5]$,

KORK EXTERNE PROVIDE

Example (Independent Sets)

 $G = C_5$, presented as $V(G) = [5]$ and $E(G) = \{(i, i + 1 \mod 5)\}.$ So $E = [5]$,

 $L = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}\$

KORKARYKERKER OQO

Example (Independent Sets)

- $G = C_5$, presented as $V(G) = [5]$ and $E(G) = \{(i, i + 1 \mod 5)\}.$ So $E = [5]$,
- $L = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{1, 3\}, \{1, 4\}, \{2, 4\}, \{2, 5\}, \{3, 5\}\}\$

KORKARYKERKER OQO

- $\bullet \tau_1 = (\emptyset, \{1\}) (\{3\}, \{1, 3\}) (\{4\}, \{1, 4\})$
- $\bullet \tau_2 = (\emptyset, \{2\}) (\{4\}, \{2,4\}) (\{5\}, \{2,5\})$
- $\bullet \tau_3 = (\emptyset, \{3\}) (\{1\}, \{1, 3\}) (\{5\}, \{3, 5\})$
- $\bullet \ \tau_4 = (\emptyset, \{4\}) (\{1\}, \{1, 4\}) (\{2\}, \{2, 4\})$
- $\bullet \tau_5 = (\emptyset, \{5\}) (\{2\}, \{2, 5\}) (\{3\}, \{3, 5\})$

In this case $T_1 = \mathfrak{S}_1$

Example

Let $E = [4]$ and $L = \{\emptyset, \{1\}, \{1, 2\}, \{1, 2, 3\}, \{1, 2, 3, 4\}, \{4\}, \{3, 4\}, \{2, 3, 4\}\}\$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Example

Let $E = [4]$ and

$$
L=\{\emptyset, \{1\}, \{1,2\}, \{1,2,3\}, \{1,2,3,4\}, \{4\}, \{3,4\}, \{2,3,4\}\}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

$$
\bullet\ \tau_1=(\emptyset,\{1\})(\{2,3,4\},\{1,2,3,4\})
$$

$$
\bullet \tau_2 = (\{1\}, \{1,2\}) (\{3,4\}, \{2,3,4\})
$$

$$
\bullet \ \tau_3 = (\{1,2\},\{1,2,3\})(\{4\},\{3,4\})
$$

$$
\bullet\ \tau_4=(\emptyset,\{4\})(\{1,2,3\},\{1,2,3,4\})
$$

In this case $T_L \cong S_4 \rtimes C_2^3$

Natural Associated Poset Structure

To all generalized toggle groups, there is a natural partial order called the *toggle poset* which we denote by P_L .

Natural Associated Poset Structure

To all generalized toggle groups, there is a natural partial order called the *toggle poset* which we denote by P_L . The cover relations in this poset are given by $X \le Y$ if $X \subseteq Y$ and there exists some $e \in E$ such that $t_e(X) = Y$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Natural Associated Poset Structure

To all generalized toggle groups, there is a natural partial order called the *toggle poset* which we denote by P_L . The cover relations in this poset are given by $X \le Y$ if $X \subseteq Y$ and there exists some $e \in E$ such that $t_e(X) = Y$. Importantly, each edge of the Hasse diagram is naturally labeled by the element toggled in for the cover.

Example

$$
\{1,2,3,4\} \qquad \{4 \qquad \backslash 1 \qquad \{1,2,3\} \qquad \{2,3,4\} \qquad \{1,2\} \qquad \{3,4\} \qquad \{1,2\} \qquad \{3,4\} \qquad \{1\} \qquad \{4\}
$$

Larger Family

All we had here was finite graphs (the Hasse diagrams) and a proper edge coloring (no two edges that share an endpoint have the same color).

Larger Family

All we had here was finite graphs (the Hasse diagrams) and a proper edge coloring (no two edges that share an endpoint have the same color).

Definition

For $G = ([n], E)$ with proper surjective edge coloring $\kappa : E \to [i],$ we define the permutation group \mathfrak{G}_{κ} as follows. For each $j \in [i]$, let $\tau_j = \prod_{\{a,b\} \in \kappa^{-1}(i)} (a,b)$ as an element of $\mathfrak{S}_n.$ Then \mathfrak{G}_κ is the group generated by the set of τ_j 's.

This generalizes toggle groups and contains groups that are not toggle groups.

KORKAR KERKER SAGA

Larger Family

All we had here was finite graphs (the Hasse diagrams) and a proper edge coloring (no two edges that share an endpoint have the same color).

Definition

For $G = ([n], E)$ with proper surjective edge coloring $\kappa : E \to [i],$ we define the permutation group \mathfrak{G}_{κ} as follows. For each $j \in [j]$, let $\tau_j = \prod_{\{a,b\} \in \kappa^{-1}(i)} (a,b)$ as an element of $\mathfrak{S}_n.$ Then \mathfrak{G}_κ is the group generated by the set of τ_j 's.

This generalizes toggle groups and contains groups that are not toggle groups.

Example

$$
P_4, \kappa = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet
$$

$$
\mathfrak{G}_{\kappa} = \langle (1,2)(3,4), (2,3) \rangle \cong D_4
$$

KORKAR KERKER SAGA

Everything if we don't impose any restrictions.

Theorem

Let $\mathfrak G$ be a finite group generated by involutions. Then there is a simple connected graph G with proper edge coloring κ such that \mathfrak{G}_{κ} is isomorphic to \mathfrak{G}_{κ} .

KO KA KO KERKER KONGK

Everything if we don't impose any restrictions.

Theorem

Let $\mathfrak G$ be a finite group generated by involutions. Then there is a simple connected graph G with proper edge coloring κ such that \mathfrak{G}_{κ} is isomorphic to \mathfrak{G}_{κ} .

Sketch of proof.

Consider the coloring κ of the Cayley Graph of $\mathfrak G$ from the presentation generated by involutions where each edge is colored by the generator used. This is proper because the generators are involutions. Additionally for each generator g_i , $\tau_{\mathcal{g}_i}$ and g_i act identically, so the groups generated are isomorphic.

Unfortunately, while the argument is constructive the resulting graphs are not helpful, as for instance \mathfrak{S}_n the resulting graph has n! vertices.

Centralizer

Definition

For a graph G of order n with proper edge coloring $\kappa : E(G) \to [k],$ the group Aut_{κ}(G) \subseteq S_n consists of all permutations $\sigma \in S_n$ such that $\{i, j\}$ is an edge of G colored a under κ if and only if $\{\sigma(i), \sigma(j)\}\$ is an edge of G colored a under κ .

KORKARYKERKER POLO

Centralizer

Definition

For a graph G of order n with proper edge coloring $\kappa : E(G) \to [k]$, the group Aut_{κ}(G) $\subseteq S_n$ consists of all permutations $\sigma \in S_n$ such that $\{i, j\}$ is an edge of G colored a under κ if and only if $\{\sigma(i), \sigma(j)\}\$ is an edge of G colored a under κ .

Theorem

For a graph G of order n with proper edge coloring κ , the centralizer $\mathsf{C}_{\mathsf{S}_n}(\mathfrak{G}_\kappa)$ of the corresponding group in the symmetric group is isomorphic to $Aut_{\kappa}(G)$.

KOD KARD KED KED A GAA

Centralizer

Definition

For a graph G of order n with proper edge coloring $\kappa : E(G) \to [k],$ the group Aut_k(G) $\subset S_n$ consists of all permutations $\sigma \in S_n$ such that $\{i, j\}$ is an edge of G colored a under κ if and only if $\{\sigma(i), \sigma(j)\}\$ is an edge of G colored a under κ .

Theorem

For a graph G of order n with proper edge coloring κ , the centralizer $\mathsf{C}_{\mathsf{S}_n}(\mathfrak{G}_\kappa)$ of the corresponding group in the symmetric group is isomorphic to $Aut_{\kappa}(G)$.

This means [t](#page-56-0)hat the ce[n](#page-30-0)ter of \mathfrak{G}_{κ} \mathfrak{G}_{κ} \mathfrak{G}_{κ} is contain[ed](#page-29-0) [wi](#page-31-0)t[hi](#page-28-0)n [Au](#page-0-0)t_{$\kappa(G)$ $\kappa(G)$ $\kappa(G)$}.

 000

Classification of when the center is non-trivial for trees

Lemma

For G a tree and $\kappa : E(G) \to [k]$ a proper edge coloring, $Aut_{\kappa}(G)$ is either trivial or has order two.

KORK EXTERNE PROVIDE

Classification of when the center is non-trivial for trees

Lemma

For G a tree and $\kappa : E(G) \to [k]$ a proper edge coloring, $Aut_{\kappa}(G)$ is either trivial or has order two.

Sketch.

Consider the vertices of maximum eccentricity. If unique, then $Aut_{\kappa}(G)$ is trivial. If not unique and the rooted trees are not color isomorphic then $Aut_{\kappa}(G)$ is trivial. If not unique and the trees are color isomorphic can swap the two of them, which forces the trees to just be swapped.

KORKAR KERKER ST VOOR

Theorem

For G a tree and $\kappa : E(G) \to [\kappa]$, either $Z(\mathfrak{G}_{\kappa})$ is trivial, or $|G| = 2m$ is even and $\mathfrak{G}_{\kappa} \subset B_m$.

Classification of when the center is non-trivial for trees

Lemma

For G a tree and $\kappa : E(G) \to [k]$ a proper edge coloring, $Aut_{\kappa}(G)$ is either trivial or has order two.

Sketch.

Consider the vertices of maximum eccentricity. If unique, then $Aut_{\kappa}(G)$ is trivial. If not unique and the rooted trees are not color isomorphic then $Aut_{\kappa}(G)$ is trivial. If not unique and the trees are color isomorphic can swap the two of them, which forces the trees to just be swapped.

Theorem

For G a tree and $\kappa : E(G) \to [\kappa]$, either $Z(\mathfrak{G}_{\kappa})$ is trivial, or $|G| = 2m$ is even and $\mathfrak{G}_{\kappa} \subset B_{m}$.

This is an if and only if as every \mathfrak{G}_{κ} on a tree contains a cycle on all vertices and in B_m B_m any such cycle σ has [tha](#page-32-0)t $\sigma^m_{\epsilon m} \in Z(B_m)$ $\sigma^m_{\epsilon m} \in Z(B_m)$ $\sigma^m_{\epsilon m} \in Z(B_m)$ $\sigma^m_{\epsilon m} \in Z(B_m)$ $\sigma^m_{\epsilon m} \in Z(B_m)$.

 000

Examples

Examples

Example

Trivially, we can always realize the Symmetric Group on any graph, if we just give every edge a distinct color. But how few do we need?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Trivially, we can always realize the Symmetric Group on any graph, if we just give every edge a distinct color. But how few do we need?

If T is a tree and $\Delta(T)$ denotes the maximum degree of a vertex, we always need at most $\Delta(T) + 1$ colors.

Sketch.

Suppose κ is an edge coloring of T using $\Delta(T)$ colors and suppose ℓ is a leaf. Let κ' denote the coloring obtained by changing the edge adjacent to ℓ to a new color. Then $\mathfrak{G}_{\kappa'}\cong \mathfrak{S}_{|\mathcal{T}|}.$

In the case where $\Delta(T) \geq \frac{|T|}{2}$ $\frac{7}{2}$ then any coloring of T produces $\mathfrak{S}_{|\mathcal{T}|}.$

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

Once we move to the case where G is a path of length $n + 1$, we can identify a coloring with a word of length n over a finite alphabet.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Paths

Once we move to the case where G is a path of length $n + 1$, we can identify a coloring with a word of length n over a finite alphabet. How can we get the Symmetric Group? No nice classification, but have some sufficient conditions.

Once we move to the case where G is a path of length $n + 1$, we can identify a coloring with a word of length n over a finite alphabet. How can we get the Symmetric Group? No nice classification, but have some sufficient conditions.

Definition

Let *abc* be a sequence of distinct, adjacent letters in a word w (with a or c allowed to be empty if b is the first or last letter respectively). We call abc a symmetric triple if there exists a subset S containing a and c of letters in w such that the graph obtained by deleting the edges labeled by elements of S in the path graph colored by w has exactly one component that has even order.

Once we move to the case where G is a path of length $n + 1$, we can identify a coloring with a word of length n over a finite alphabet. How can we get the Symmetric Group? No nice classification, but have some sufficient conditions.

Definition

Let *abc* be a sequence of distinct, adjacent letters in a word w (with a or c allowed to be empty if b is the first or last letter respectively). We call abc a symmetric triple if there exists a subset S containing a and c of letters in w such that the graph obtained by deleting the edges labeled by elements of S in the path graph colored by w has exactly one component that has even order.

Theorem

If $w = w_1 \dots w_\ell$ contains a symmetric triple abc, then $\mathfrak{G}_w \cong \mathfrak{S}_{\ell+1}$.

Primitive Groups

Definition

A group G acting transitively on a set X is *primitive* if the only partitions of X preserved by the action of G are X or $|X|$ blocks of size 1. A group is *imprimitive* if it is not primitive.

KORKARYKERKER POLO

Definition

A group G acting transitively on a set X is *primitive* if the only partitions of X preserved by the action of G are X or |X| blocks of size 1. A group is *imprimitive* if it is not primitive.

Definition

For a graph G with proper edge coloring $\kappa : E(G) \rightarrow [k]$, consider a vertex coloring of $\nu : V(G) \to [\ell]$. The coloring ν is called imprimitive if the following holds. If an edge colored b connects a vertex colored a to a vertex colored c with $a \neq c$, then every vertex colored a is connected to a vertex colored c by an edge colored b .

KORKARYKERKER POLO

Definition

A group G acting transitively on a set X is *primitive* if the only partitions of X preserved by the action of G are X or $|X|$ blocks of size 1. A group is *imprimitive* if it is not primitive.

Definition

For a graph G with proper edge coloring $\kappa : E(G) \rightarrow [k]$, consider a vertex coloring of $\nu : V(G) \to [\ell]$. The coloring ν is called imprimitive if the following holds. If an edge colored b connects a vertex colored a to a vertex colored c with $a \neq c$, then every vertex colored a is connected to a vertex colored c by an edge colored b .

Lemma

For a graph G with proper edge coloring κ , the group \mathfrak{G}_{κ} is imprimitive if and only if there exists an imprimitive vertex coloring of G with respect to the edge coloring κ .

Kロトメ部トメミトメミト ミニのQC

Definition

The word w of a coloring κ of P_n is said to be a toggle word if for any consecutive subword w' of w with $\vert w' \vert > 1$ there are at least two letters that appear an odd number of times.

KORKARYKERKER POLO

Importantly, this means that \mathfrak{G}_{κ} is not a subgroup of A_n .

Theorem

Let κ be the coloring of a toggle word on P_n . Then \mathfrak{G}_{κ} is primitive.

Definition

The word w of a coloring κ of P_n is said to be a toggle word if for any consecutive subword w' of w with $\vert w' \vert > 1$ there are at least two letters that appear an odd number of times.

Importantly, this means that \mathfrak{G}_{κ} is not a subgroup of A_n .

Theorem

Let κ be the coloring of a toggle word on P_n . Then \mathfrak{G}_{κ} is primitive. In particular, either

- $\mathfrak{G}_{\kappa} \cong \mathfrak{S}_n$
- $PGL_d(q) \leq \mathfrak{G}_{\kappa} \leq P\Gamma L_d(q)$ where $n = \frac{q^d-1}{q-1}$ $\frac{q^2-1}{q-1}$ for some prime power q and $d > 2$.

KORKAR KERKER SAGA

Theorem

If κ is a coloring of P_n , then for any $i, j \in [n]$ there is an involution in \mathfrak{G}_{κ} that sends i to j.

Conjecture

If κ corresponds to a toggle word on P_n then $\mathfrak{G}_\kappa \cong \mathfrak{S}_n$

Theorem

If G is the Hasse Diagram of an Independence Poset of size n with κ the coloring of the edges induced by the vertices of the underlying Directed Acyclic Graph, then \mathfrak{G}_{κ} contains A_n .

Conjecture

If G is the Hasse Diagram of a semidistrim lattice L of size n with κ the canonical labeling by the join irreducibles then \mathfrak{G}_{κ} contains A_n .