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Implicit solvent models divide solvation free energies into

polar and nonpolar additive contributions, whereas polar and

nonpolar interactions are inseparable and nonadditive. We pre-

sent a feature functional theory (FFT) framework to break this

ad hoc division. The essential ideas of FFT are as follows: (i)

representability assumption: there exists a microscopic feature

vector that can uniquely characterize and distinguish one mol-

ecule from another; (ii) feature-function relationship assump-

tion: the macroscopic features, including solvation free energy,

of a molecule is a functional of microscopic feature vectors;

and (iii) similarity assumption: molecules with similar micro-

scopic features have similar macroscopic properties, such as

solvation free energies. Based on these assumptions, solvation

free energy prediction is carried out in the following protocol.

First, we construct a molecular microscopic feature vector that

is efficient in characterizing the solvation process using quan-

tum mechanics and Poisson–Boltzmann theory. Microscopic

feature vectors are combined with macroscopic features, that

is, physical observable, to form extended feature vectors.

Additionally, we partition a solvation dataset into queries

according to molecular compositions. Moreover, for each tar-

get molecule, we adopt a machine learning algorithm for its

nearest neighbor search, based on the selected microscopic

feature vectors. Finally, from the extended feature vectors of

obtained nearest neighbors, we construct a functional of sol-

vation free energy, which is employed to predict the solvation

free energy of the target molecule. The proposed FFT model

has been extensively validated via a large dataset of 668 mole-

cules. The leave-one-out test gives an optimal root-mean-

square error (RMSE) of 1.05 kcal/mol. FFT predictions of

SAMPL0, SAMPL1, SAMPL2, SAMPL3, and SAMPL4 challenge

sets deliver the RMSEs of 0.61, 1.86, 1.64, 0.86, and 1.14 kcal/

mol, respectively. Using a test set of 94 molecules and its asso-

ciated training set, the present approach was carefully com-

pared with a classic solvation model based on weighted

solvent accessible surface area. VC 2017 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.25107

Introduction

Life is associated with water—about 65–90% of human mass

is water. The understanding of solvation process is of funda-

mental importance for the study of more sophisticated physi-

cal, chemical, and biological processes, such as protein

binding, protein DNA and RNA binding, protein–protein inter-

action, and signal transduction.[1–4] As such, the modeling and

analysis of the solvation effects have drawn considerable

attention in the past few decades.[1–3,5–7] Since the most

important solvation observable is solvation free energies, the

accurate prediction of solvation free energies is the major task

in solvation modeling and analysis. Solvation and binding are

intrinsically connected. Therefore, the accurate solvation analy-

sis has a direct application to the binding free energy predic-

tion, which is crucial for computer aided drug design.[8] The

availability of a large amount of solvation data makes it possi-

ble to rigorously validate solvation analysis methods. As a

result, solvation analysis has become an attractive research

topic in computational biophysics. Nevertheless, the accurate

prediction of the solvation free energy remains a very chal-

lenging issue.[9]

Many theoretical approaches have been developed in the

past few decades for solvation free energy predictions. In gen-

eral, these approaches can be categorized into physical mod-

els, knowledge models, and combined physics and knowledge

models. In fact, even for physical models, a number of fitting

parameters are introduced to match experimental data. In this

sense, all predictive solvation models have certain knowledge

components. Physical models are attractive as they are, in prin-

ciple, able to reveal the physical nature of the solvation pro-

cess. There are two types of physical models based on the

treatment of the solvent molecules: explicit and implicit. Typi-

cal explicit solvent models in solvation analysis include molec-

ular mechanics (MM)[8] and hybrid quantum mechanics (QM)/

molecular mechanics approaches.[10] In contrast, there is a
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large variety of implicit solvent models, which are some of the

most popular solvation models due to their balance between

accuracy and efficiency. Commonly used implicit solvent mod-

els include the generalized Born (GB) model, which is a gener-

alization of the Born dielectric sphere model, including many

variants.[11–16] GBSA[17] and SM.x[18,19] are two typical exam-

ples. Polarizable continuum model (PCM) is a more accurate

approach, which incorporates the solvent–solute polarization

effects.[20–22] The most popular implicit solvent model is based

on the Poisson–Boltzmann (PB) theory, which retains an atom-

istic description of the solute molecule, while treating the sol-

vent and includes possible ions and cofactors as a dielectric

continuum.[23–28] More recently, Gaussian-based smooth dielec-

tric functions have also shown success for computing solvation

energy of both small molecules and proteins.[29,30] The PB

model is generally accepted to be one of the most accurate

implicit solvent models. In fact, it can be combined with the

density functional theory (DFT) for a more accurate description

of solvent polarization and solute response.[31–33] In most

implicit solvent approaches, the solvation free energy is split

into polar and nonpolar contributions. The polar part can be

calculated from the aforementioned models, while the nonpo-

lar component can be modeled by numerous approaches. The

scaled-particle theory (SPT) is popular for modeling nonpolar

solutes in aqueous solution.[34,35] Within the SPT theory, the

solvent-accessible surface area (SASA) is used to model nonpo-

lar solvation free energy. It is shown that a solvent-accessible

volume (SAV) term is also relevant to the nonpolar solvation

free energy in large length scale regimes.[36,37] Recent studies

indicate that SASA-based solvation models may not describe

van der Waals (vdW) interactions near solvent–solute inter-

face.[38–41] A combination of surface area, surface enclosed vol-

ume, and vdW potential has been shown to provide very

accurate nonpolar solvation predictions.[42,43]

In classical implicit solvent models, the polar and nonpolar

components are decoupled. Recently, the coupling of polar

and nonpolar components has been considered in several

models.[44–46] One representative model for this coupling is

based on differential geometry theory, variational approach

and geometric measure theory. These mathematical appara-

tuses give rise to an elegant dynamical coupling of polar and

nonpolar solvation components.[45–48] By applying constrained

optimization to nonpolar parameter selections, this model pro-

vides some of the best solvation free energy fitting and cross-

validation results for a large amount of solute molecules.[43]

Despite recent effort in coupling the polar and nonpolar

models,[44–46] when it comes to the total solvation free energy

calculation, the ad hoc assumption that polar and nonpolar

free energies are independent, linear and additive is still

applied.[33,47] However, in realistic solvation processes, polar

and nonpolar interactions are coupled and their free energies

are dependent, nonlinear, and nonadditive.

The objective of this work is to completely break the polar

and nonpolar division used in implicit solvent models. We pro-

pose a feature functional theory (FFT) for solvation free energy

modeling to capture the physics of the solvation process. In

this approach, instead of treating the solvation free energy as

two separated parts, namely, polar and nonpolar ones, we

consider the solvation free energy as a unity that is modeled

as a mathematical functional of microscopic and macroscopic

features. We assume that there exists a microscopic feature

vector that can uniquely characterize and distinguish one sol-

ute molecule from another (i.e., representability assumption).

These microscopic features seek an atomic level representation

of molecule properties based on quantum mechanical calcula-

tions. We also assume that such fine-scale features are able to

accurately capture molecular macroscopic features, namely,

physical and chemical properties, including solvation free ener-

gies and binding affinities. In other words, we assume that sol-

vation free energy is a functional of microscopic and

macroscopic features (i.e., feature-function relationship

assumption). Finally, we assume that molecules with similar

microscopic features have similar macroscopic properties, such

as solvation free energies (i.e., similarity assumption). Based on

the above assumptions, we introduce an FFT procedure for

predicting solvation free energy. First, we construct micro-

scopic feature vectors for molecules in the database. Both

quantum mechanics and Poisson–Boltzmann theory are uti-

lized for the extraction of microscopic features. Macroscopic

properties, that is, physical observables, are added to form

extended feature vectors. Then, we apply a machine learning

algorithm to search for the nearest neighbors of a target mol-

ecule based on microscopic feature vectors. We further learn a

solvation free energy functional based on the extended fea-

ture vectors of nearest neighbors. Finally, we predict the solva-

tion free energy of the target molecule by using the learned

energy functional. The proposed machine learning model has

been extensively validated by a set 668 molecules and

SAMPL0-SAMPL4 challenging sets.[49–51] Our results are state-

of-the-art in the field. The advantages of the proposed FFT

approach are twofold. First, the present FFT approach does

not depend on the conventional polar and nonploar division.

Second, there is no need to provide an explicit form of solva-

tion free energy functional, which can be constructed through

an optimization procedure. Finally, although nonpolar features

as not as important as polar ones for the solvation analysis of

668 molecules, their inclusion leads to more accurate solvation

predictions.

This article is structured as follows: Methods and algorithms

section is devoted to methods and algorithms. We elaborate

on three basic assumptions in basic assumptions section, fol-

lowed by a description of feature selection in microscopic fea-

ture selection section. The machine learning algorithm is

described in LTR algorithm section, which is divided into three

parts: (i) query construction, which incorporates the previous

nearest neighbor search results; (ii) feature selection; and (iii)

machine learning for molecular neighbor detection. The near-

est neighbor information-based algorithm for solvation free

energy prediction is presented in feature-function relationship

for solvation free energy prediction section. Numerical results

and discussions section presents numerical results and discus-

sions. After describing the dataset and force fields in dataset

and feature parametrization section, we offer the leave-one-

out validation of the proposed model in leave-one-out
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prediction section. SAMPLx challenges are presented in solva-

tion energy prediction of SAMPLx challenges section. Some of

the best results in solvation free energy prediction are

obtained. In particular, we show that the present approach

compares well with a classic solvation model based on

weighted solvent accessible surface area.[52] This article ends

with some concluding remarks.

Methods and Algorithms

Basic assumptions

To overcome the drawback of decoupled polar and nonpolar

solvation models, we present a theory based a few

assumptions.

Representability assumption. We consider a total of N mole-

cules fMigN
i51. Each molecule can be distinguished by a combi-

nation of its chemical formulas, chemical name, and geometric

structure. We assume that there exists an n-dimensional micro-

scopic feature vector, denoted as xi5ðxi1; xi1; � � � ; xinÞ to

uniquely characterize and distinguish the ith solute molecule.

Here, the vector components include various microscopic fea-

tures, such as atomic types and numbers, atomic charges,

atomic reaction field energies, atomic dipoles, atomic quadru-

poles, and pairwise atomic vdW interactions.

For ith molecule, apart from its n microscopic features, there

are l macroscopic features, or physical observables

oi5ðoi1;oi1; � � � ;oilÞ, such as density, pressure, boiling point,

enthalpy of formation, heat of combustion, solvation free

energy, pKa, pH, viscosity, permittivity, and electrical conductiv-

ity Whenever these macroscopic features are available, they

can be listed as part of an extended feature vector vi5ðxi;oiÞ
for the ith molecule.

Extended feature vectors fvigN
i51 span a vector space V. As

a vector space, it satisfies the commonly required eight axioms

for addition and multiplication, such as associativity, commuta-

tivity, identity element, inverse elements of addition, and com-

patibility of scalar multiplication with field multiplication.

However, no notion of nearness, angles or distances are

defined for the extended feature space—these tasks are

achieved via machine learning algorithms. The construction of

microscopic feature vectors or the selection of microscopic

features depends on what physical or chemical prediction is

interested in this work. For example, for solvation free energy

prediction, we select features that are derived from implicit

solvent models. This issue is discussed in more detail in micro-

scopic feature selection section.

Note that based on our assumption, microscopic features

play the unique role in characterizing and distinguishing mole-

cules. Therefore, for a given task, say solvation free energy pre-

diction, there is no need to include all the macroscopic

features in the feature vector oi. One needs only to select

oi5ðoi1Þ5DGi; 8i51; � � � ;N, where fDGig are known solvation

free energies. For this reason, the selection of macroscopic fea-

tures is described in the dataset preparation, that is, dataset

and feature parametrization section.

Feature-function relationship assumption. In this work, we are

interested in the prediction of solvation free energies based

on an existing dataset. The information from the dataset

includes molecular identities and corresponding solvation free

energies. We construct a feature space for the dataset and the

solvation free energy of target molecule A is expressed as a

functional of extended feature vectors

DGA5fsolðxA; v1; v2; � � � ; vNÞ (1)

where DGA is the solvation free energy of molecule A; fsol is

an unknown functional for modeling the relationship between

solvation free energy and extended features, and xA is the

microscopic feature vector of the target solute molecule.

In general, we assume a general feature-function relation-

ship to the jth physical observable oj of target molecule A

oAj5fjðxA; v1; v2; � � � ; vNÞ; (2)

where fj is an unknown functional modeling the jth physical

observable of molecule A. Therefore, the present approach can

be used for the prediction of other physical and chemical

properties as well. Obviously, the determination of fsol is a

major task of this work and will be discussed in more detail in

feature-function relationship for solvation free energy predic-

tion section.

Similarity assumption. We have observed that the solvation

free energy of a target molecule is quite close to that of its

nearest neighbors. Figure 1 depicts the correlation between

experimental solvation free energy from a molecule and that

of its nearest neighbors. The root-mean-square errors (RMSEs)

of solvation free energies between molecules and their first

and second nearest neighbors are 1.44 and 1.77 kcal/mol,

respectively.

Motivated by the above observation, we assume that mole-

cules with similar microscopic features have similar solvation

free energies. In other words, molecules with similar micro-

scopic features have similar macroscopic features, or physical

observable. This assumption underpins the use of learning-to-

rank (LTR) algorithm for the nearest neighbor search discussed

further in LTR algorithm section.

Figure 1. The plot of solvation free energies of the central and its neighbor

molecules, the left chart for the first nearest neighbor, the right chart for

the second nearest neighbor. In both cases, the horizontal axis represent

the solvation free energy for the central molecule, the vertical axis stands

for that of the nearest neighbor molecule. [Color figure can be viewed at

wileyonlinelibrary.com]
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Solvation prediction protocol. For a given molecule, we can

predict its solvation free energy in two steps, LTR and learn-

ing-to-predict:

� construct microscopic feature vectors for all molecules,

including the target one;

� find nearest neighbor molecules to the target molecule

in the database with the known solvation free energies

using a machine learning algorithm;

� learn the functional relation between the solvation free

energy and extended features (i.e., a feature functional)

according to a group of nearest neighbor molecules, and

then predict the solvation free energy for the target mol-

ecule by the feature functional.

In the following sections, we provide detailed descriptions

of feature selection, nearest neighbor search algorithm, and

feature functional construction for solvation free energy

prediction.

Microscopic feature selection

A fundamental assumption of our approach is that there exists

a microscopic feature vector that can uniquely characterize

and distinguish one molecule from another. Obviously, finding

such a feature vector is one of our most important tasks. In

our previous hybrid physical and knowledge (HPK) model,[33]

the goal of the feature selection is to find the closest set of

molecules to a given target molecule in the sense of func-

tional group similarity. Therefore, we selected microscopic fea-

tures that can distinguish molecules with different functional

groups, and designated molecules having the same functional

groups as similar. Desirable microscopic features should reflect

the similarity in solvation free energies. In other words, micro-

scopic features should be most important to the solvation pro-

cess. To this end, we first construct a set of microscopic

features whose Pearson correlation coefficients to solvation

free energies are larger than 0.65 or smaller than 20.65.

Table 1 lists these features.

As Table 1 shows, all highly correlated features are of polar

type, whereas the traditional assumption of implicit solvent

models states that nonpolar features also play an important

role in solvation process. As a consequence, we also combine

atomic surface areas along with the aforementioned polar fea-

tures. To make the present model scalable to different mole-

cules, atomic surface area features are constructed in an

element-wise manner. Specifically, for each element type,

atomic surface areas are summed together as a feature. As a

comparison, we use all available features to train models.

Therefore, we provide two sets of results, one for polar fea-

tures listed in Table 1, one for all features (both polar and non-

polar) provided in Supporting Information. We examine the

performance of these two sets of features on their prediction

of solvation free energies.

A major subset of features in Table 1 is derived from implicit

solvent models, such as atomic reaction field energy of the ith

atom

DGRF;i5
1

2
qið/ðriÞ2/hðriÞÞ; (3)

where qi is the partial charge of the ith atom at position ri,

and /ðriÞ and /hðriÞ are, respectively, electrostatic potential

and homogenous electrostatic potential from the Poisson

equation

2r � ð‹ðrÞr/ðrÞÞ5
XNm

i51

Qidðr2riÞ; (4)

with the interface conditions

½/�jC50; (5)

and

½‹/n�jC50; (6)

where Nm is the number of atoms, / is the electrostatics

potential over the whole solvent solute domain, Qi is the

Table 1. Microscopic features with high correlations to the solvation free energy.

Feature name Feature name

Sum of atomic reaction field energy Sum of the absolute value of atomic reaction field energy

Sum of H atomic reaction field energy Sum of the absolute value of H atomic reaction field energy

Sum of O atomic reaction field energy Sum of the absolute value of O atomic reaction field energy

Minimum value of atomic reaction field energy Maximum of the absolute value of reaction field energy

Minimum value of H atomic reaction field energy Maximum of the absolute value of H atomic reaction field energy

Mean of atomic reaction field energy Mean of the absolute value of atomic reaction field energy

Variance of atomic reaction field energy Variance of the absolute value of reaction field energy

Variance of H atomic reaction field energy Variance of the absolute value of H atomic reaction field energy

Sum of the absolute value of atomic charge Sum of H atomic charge

Sum of the absolute value of H atomic charge Sum of O atomic charge

Sum of the absolute value of O atomic charge Minimum of atomic charge

Maximum of the absolute value of atomic charge Maximum of H atomic charge

Maximum of the absolute value of H atomic charge Mean of the absolute value of atomic charge

Variance of the atomic charge Variance of the absolute value of atomic charge

Variance of the absolute value of H atomic charge Variance of H atomic charge
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partial charge located at ri and dðr2riÞ is the delta function at

point ri . The permittivity function �ðrÞ is given by

eðrÞ5
em51; r 2 Xm

es580; r 2 Xs

(
(7)

where Xm and Xs are solute and solvent domains, respectively,

which is separated by the molecular surface C.

The following Debye-Huckel type of boundary condition is

imposed to make the Poisson model well posed

/ðrÞ5
XNm

i51

Qi

4pesjr2rij
; if r 2 oX; (8)

where X5Xm[Xs. The homogenous electrostatic potential /hð
rÞ is obtained by setting eðrÞ51 in the whole computational

domain.

For given molecule A, the sum of atomic reaction field

energy is defined as

DGRF5
XNm

i51

DGRF;i;

which is the same as the electrostatic solvation free energy of

the solute molecule A, where Nm is the number of atoms in

solute M, DGRF;i is the reaction field energy contributed from

the ith atom.

The sum of the absolute value of atomic reaction field

energy is

DGabs
RF 5

XNm

i51

jDGel;ij:

The other features can be defined mathematically in the same

manner.

The above microscopic features are calculated by the follow-

ing methods.

� Atomic charges and dipoles can be computed by using

quantum mechanical theory.

� Atomic reaction field energies can be computed by using

PB theory.

� The calculations of maximum, minimum, sum, mean, and

variance are based on straightforward statistical theory.

Figure 2 plots some representative features compared to

experimental solvation free energies. From left to right, three

charts are the correlations of experimental solvation free ener-

gies with total reaction field energies, the absolute value of

the mean reaction field energies of all atoms, and the absolute

value of the total reaction field energy of hydrogen atoms,

respectively. Their Pearson correlation coefficients are 0.87,

20.76, and 20.80, respectively.

Remark 1. The high correlation of reaction field energy cal-

culated by the PB model with the solvation free energy indicates

that the PB is an effective approach for modeling the solvation

effects. The reaction field energy calculated by the PB is consis-

tent with the experimental solvation free energy.

LTR algorithm

In this section, we introduce the list-wise LTR algorithm for

ranking molecules. In the training procedure of the LTR algo-

rithm, the solvation free energy of the molecule is used as the

molecular label, which is consistent with our basic ansatz. A

scoring function is learned in the list-wise LTR method on the

set of training molecules and is utilized for ranking the mole-

cules in the set of testing molecules. The nearest neighbor

search can be regarded as a top-N recommendation problem,

which is mathematically the same as the item search in the

world-wide-web.

Query construction. In our FFT model, we use solvation free

energy as a label. Based on our assumption that molecules

with similar feature vectors have similar solvation free ener-

gies, its reverse statement is not true in general. To deal with

this deficiency in our LTR algorithm for nearest neighbor

search, we partition the whole dataset (which contains a total

668 molecules as described later) into a number of subsets,

where each subset is regarded as a query in the LTR terminol-

ogy. The basic requirement of the query construction is that

molecules in each query should have some chemical similarity.

Additionally, we require that each query is invariant to the

Figure 2. Correlations between features and experimental solvation free energies of 668 molecules. The horizontal axes represent the experimental solva-

tion free energies. From left to right, three charts in the vertical axes represent total reaction field energies, the absolute value of the mean reaction field

energies of all atoms, and the absolute value of the total reaction field energy of hydrogen atoms, respectively. [Color figure can be viewed at wileyonline-

library.com]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2017, DOI: 10.1002/jcc.25107 5

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


nearest molecule detection based on the cosine similarity of

the microscopic features proposed in our earlier work.[33] To

achieve this, the most straight forward approach is to make

each query of molecules contain the same functional group.

However, the complexity of the molecules in the dataset

makes this partition impractical. A direct relaxation is that mol-

ecules of each query have the same element types, which will

be used for query construction in this work.

We first construct seven groups of molecules, according to

element type: (i) H;C; (ii) H;C;O; (iii) H;C;N=H;C;N;O; (iv)

H;C;Cl; (v) H;C;O;Cl; (vi) H; S; and (vii) anything else, respec-

tively. The third group contains molecules either with H;C;

and N elements or with H;C;N; and O. This classification is

due to the fact that based on the cosine similarity, molecules

in these two categories may have their nearest neighbors

overlap. For the remaining molecules, we iteratively add them

into the above six groups based on their nearest neighbor’s

class label. The molecules that cannot be classified into any of

the above categories are regarded as a new query. We label

molecules in the dataset from 1 to 668. Figure 3 shows that

the queries constructed based on the above procedure are

invariant to the nearest neighbor search based on the measure

proposed in our earlier work,[33] where each block denotes a

query of molecules. It is easy to see that molecules’ nearest

neighbors are localized into each block. This invariance indi-

cates that our query construction preserves the molecular

chemical similarity, that is, each query of molecules is of some

similarity in the physical sense. Based on the above query con-

struction, we can approximately regard that close solvation

free energies indicate similar molecules in each query, which

makes the LTR-based nearest neighbor search physically

sound. We list all the queries in Supporting Information.

Since our partition of the dataset is based on our similarity

assumption with chemical constraints, we discuss the similarity

measure, microscopic feature selection based on chemical and

physical properties that facilitate the measure and LTR algo-

rithm for ranking the molecules. For nearest neighbor searches

in each query, we emphasize that the nearest neighbor is

measured based on the nearness of the solvation free ener-

gies, instead of the similarity measure used before.

Gradient boosted decision tree algorithm. In this work, we

choose gradient boosted decision tree (GBDT), a multiple addi-

tive regression tree (MART), as our ranking strategy. In this

part, we provide a brief overview of GBDT algorithm and also

discuss how to apply the GBDT algorithm to our solvation

modeling.

An overview of GBDT algorithm. GBDT is essentially an

ensemble method that has been widely used for biological

modeling. It naturally takes care of the correlation between

descriptors, usually does not need a feature selection proce-

dure and is generally insensitive to parameters. For more

details about this algorithm, the reader is referred to the

literature.[53,54]

GBDT for Molecules Ranking. Now let us turn to the applica-

tion of GBDT to the solvation prediction. In each query of the

molecules, the solvation free energies themselves are regarded

as the labels of molecules, and the corresponding features are

discussed in the next subsection. Our method can be summa-

rized as ranking the nearest neighbors of a target molecule

based on their solvation free energies, and then learning a

relation between features and solvation free energies for pre-

dicting the solvation free energy of the target molecule.

Feature-function relationship for solvation free energy

prediction

In this section, we discuss the solvation free energy prediction

for a given target molecule. Based on our assumption that sol-

ute solvation free energy is a functional of the feature vector,

solvation free energy prediction is should actually construct a

feature functional around the target molecule. This feature

functional will be utilized for solvation free energy prediction

for the target molecule.

Consider the solvation free energy for target molecule A

characterized by its feature vector xA5ðxA1; xA2; � � � ; xAnÞ,
where n is the dimension of the microscopic feature space,

that is, the space of all microscopic feature vectors. From the

LTR algorithm, we find m nearest neighbors with extended

feature vectors fvi5ðxi;DGiÞgm
i51. Note that in general, the

number of nearest neighbors found is far less than the dimen-

sion of the feature space, that is, m� n.

In this work, we assume the functional relation between

microscopic features and solvation free energies for target

molecule A can be approximated locally by

DGA5b1
Xn

i51

wixAi; (9)

where wi5wiðv1; v2; � � � vmÞ is the weight for feature xAi and b

5bðv1; v2; � � � vmÞ can be intuitively understood as the height

Figure 3. Localization of nearest neighbor molecules. The horizontal axis

stands for the index of a target molecule and the vertical axis denotes the

index of the nearest neighbor of the target molecule. Each block contains

a query of molecules. Note that axis labels reflect molecules in the whole

set, a total of 668 molecules. [Color figure can be viewed at wileyonlineli-

brary.com]
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of hyperplane embedded in the Euclidean space. Equation (9)

can be regarded as a linear approximation of the solvation

free energy functional DGA5fðxA; v1; v2; � � � vmÞ.
Since m� n, the direct regression based on the least

square approach may leads to over-fitting. To avoid over-

fitting, there are generally two strategies for determining fwig
and b:

� sparse solution via a compressed sensing approach;

� Tikhonov regularization-based least square fitting.

In this work, we use the second strategy for training the

local regression model for solvation free energy prediction.

The local regression problem is equivalent to solve the linear

system in eq. (10) in the L2 sense

DG1

DG2

�

DGm

0
BBBBB@

1
CCCCCA5

x11 x12 � � � x1n

x21 x22 � � � x2n

� � � �

xm1 xm2 � � � xmn

0
BBBBB@

1
CCCCCA

w1

w2

�

wn

0
BBBBB@

1
CCCCCA1

b

b

�

b

0
BBBBB@

1
CCCCCA: (10)

Equation (10) can be written as

DG5xw1b1; (11)

where DG5 DG1;DG2; � � � ;DGmð ÞT ; w5 w1;w2; � � � ;wnð ÞT ; 1 is a

m-dimensional column vector with all elements equal 1, and

matrix x is given by

x5

x11 x12 � � � x1n

x21 x22 � � � x2n

� � � �

xm1 xm2 � � � xmn

0
BBBBB@

1
CCCCCA:

To avoid overfitting, we add the L2 penalty to the weight vec-

tor w, and thus eq. (11) can be solved by the following optimi-

zation problem

min
w;b
jjDG2xw2b1jj221 jjkwjj22 :¼ min

w;b
F; (12)

where k is the regularization parameter, which is set to 1000

in this work, jj � jj2 denotes the L2 norm of the quantity �.
By solving @F

@w
50, we have

w5 xT x1 I
� �21

xTDG2xTðb1Þ
� �

; (13)

where I is m 3 m identity matrix.

To find the value b that solves the optimization problem eq.

(12), we relax b1 to arbitrary vector b5 b1; b2; � � � ; bmð ÞT, by

solving @F
@b 50, we have

b5DG2xw: (14)

Therefore, we obtain the unbiased estimation of b as

b5

Pm
i51 ðDG2xwÞi

m
; (15)

where ðDG2xwÞi is the ith component of the vector DG2xw.

We can solve the optimization problem eq. (12) by alternat-

ing iterations between eq. (13) and (15), which is essentially an

expectation-maximization (EM) algorithm. We summarize the

algorithm for solving eq. (12) in Algorithm 1.

In Algorithm 1, e0 is the threshold parameter for control the

convergence of the solution to the optimization problem and

is set to 0.01 in this work.

After obtaining optimized parameters w and b, the solvation

free energy of target molecule A, is predicted by eq. (9).

Numerical Results and Discussions

Dataset and feature parametrization

Dataset. To assess the performance of the present method,

we consider the same dateset that has been constructed in

our earlier work.[33] With a total of 668 molecules, this dataset

is referred as the 668 set and is the largest for solavtion free

energies to the best of our knowledge. It contains both mono-

functional group and polyfunctional group molecules. Experi-

mental solvation free energies are collected from the

literature.[55–57] The main part of our dataset, that is, 589 mole-

cules, overlaps with Mobley’s solvation database (http://

mobleylab.org/resources.html). All the structures of this data-

set are downloaded from the Pubchem project (https://pub-

chem.ncbi.nlm.nih.gov/). More detailed description of the

dataset can be found in our earlier work.[33]

Our dataset of 668 molecules contains all molecules of

SAMPL0, SAMPL1, SAMPL2, SAMPL3, and SAMPL4, except for

5-iodouracil in SAMPL2. Molecule 5-iodouracil involves one

iodine atom whose charge density cannot be evaluated using

the many force fields considered in the present work. Thus, it

is excluded in the present work.

Microscopic feature parametrization. In microscopic feature

generation, atomic charges and atomic dipoles are calculated

via the distributed multipole analysis method,[58] in which the

charge density is originally computed by the DFT with B3LYP

and 6–31G basis selection in Gaussian quantum chemistry soft-

ware.[59–61] Atomic reaction field energies (i.e., atomic electro-

static solvation energies) are calculated by our in-house MIBPB

Algorithm 1. EM algorithm for solving the optimization problem eq. (12)

1: Initialize: w50; b5

Pm

i51
DG

m ; F15jjDG2xw2b1jj221 jjwjj22; F25F111000.

2: do while (jF12F2j > �0)

3: Update F2: F2  F1.

4: Update w: w xT x1 Ið Þ21
xT DG2xT ðb1Þð Þ.

5: Update b: b 
Pm

i51
ðDG2xwÞi

m .

6: Update F1: F1  jjDG2xw2b1jj221 jjwjj22.

7: enddo
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software (http://weilab.math.msu.edu/MIBPB/)[62–65] with a

probe radius of 1.4 Å and dielectric constants being 1 and 80,

respectively, for the solute and solvent domains. A uniform

grid size of 0.25 Å is used in all atomic reaction field energy

calculations. To examine the sensitivity of the present

approach to charge force fields, which was a major issue in

our earlier HPK model, we utilize three types of atomic radii,

namely, Amber 6, Amber bondi, and Amber mbondi2.[66] Addi-

tionally, we consider three types of charge assignments,

namely, OpenEye-AM1-BCC v1 parameters,[67] Gasteiger,[68] and

Mulliken.[66] The combination of radius sets and charge sets

gives rise to a total of nine different parametrizations, which

have already been utilized in our earlier work[33] to offer some

of the best solvation prediction results. For the regularized

least square hyperplane fitting, the regularization parameter k
is set to 1000. Atomic surface areas are computed with our in-

house ESES software (http://weilab.math.msu.edu/ESES/).[69]

Accumulated atomic surface areas of individual element types

are used as features.

Leave-one-out prediction

First, we consider the leave-one-out test on the whole dataset

of 668 molecules. In this test, we regard the solvation free

energy of one molecule as unknown, and use the remaining

molecules to predict the solvation free energy for the target

molecule. The purpose of the leave-one-out test is two two-

fold. First, it helps for the parameter selection, that is, the

number of nearest neighbors to be used for the prediction of

the target molecule’s solvation free energy and the parameters

used in training the GBDT algorithm. Second, the leave-one-

out test can demonstrate the performance of the proposed

model for solvation free energy prediction. The performance

of the leave-one-out test is measured by both the RMSE and

mean error (ME), respectively, defined by

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i51 DGPred

i 2DGExpl
i

� �2

N

vuut
(16)

and

ME5

PN
i51 DGPred

i 2DGExpl
i

� �
N

(17)

where N is the total number of molecules in our dataset, D
GExpl

i and DGPred
i stand for the experimental and predicted sol-

vation free energies for the ith molecule, respectively.

The RMSE measures the accuracy of the prediction. A small

RMSE indicates the predictions for the whole dataset are uni-

formly accurate. ME is used to determine whether the predic-

tion is biased or not. If the ME is close to zero, it means that

the prediction is unbiased.

Selection of nearest neighbors. In applying our model, one

has to determine how many nearest neighbors need to be

involved for the solvation free energy prediction. In general,

this number depends on the training dataset and parametriza-

tion. Numerically, one can use either leave-one-out or fivefold

crossvalidation to determine the optimal number of nearest

neighbors. Tables 2 and 3 list RMSE and ME of our leave-one-

out prediction calculated by a total of nine different combina-

tions of atomic radii and charge force fields with selected fea-

tures and all polar-nonpolar features. The use of different

numbers of nearest neighbors is examined as well. We note

that, judging by RMSEs, our method is not sensitive to the

number of nearest neighbors. All of the top 10 recommenda-

tions have the same level of accuracy. However, when MEs are

also taken into consideration, it is found that a large number

of nearest neighbors typically contributes to a large ME. We

propose to select the number of nearest neighbors based on

the following criteria:

Table 2. The RMSEs and MEs of the solvation free energy prediction of 668 molecules with different parametrizations and different numbers of nearest

neighbors involved using selected polar features.

Parametrization Error 1 2 3 4 5 6 7 8 9 10

BCC1Amber6 RMSE 1.155 1.188 1.201 1.186 1.184 1.185 1.189 1.197 1.201 1.201

ME 20.026 20.029 20.024 20.015 20.005 0.005 0.011 0.016 0.023 0.031

BCC1Amber Bondi RMSE 1.278 1.286 1.242 1.237 1.258 1.269 1.255 1.256 1.268 1.271

ME 20.034 20.036 20.024 20.020 20.008 0.008 0.029 0.039 0.053 0.065

BCC1Amber MBondi2 RMSE 1.230 1.229 1.186 1.179 1.208 1.222 1.203 1.201 1.207 1.211

ME 20.024 20.017 20.006 20.002 0.006 0.023 0.040 0.052 0.065 0.078

GAS1Amber6 RMSE 1.412 1.419 1.430 1.421 1.417 1.424 1.439 1.449 1.462 1.474

ME 20.035 20.035 20.035 20.032 20.015 20.000 0.014 0.025 0.031 0.036

GAS1Amber Bondi RMSE 1.334 1.331 1.349 1.354 1.339 1.364 1.380 1.396 1.422 1.433

ME 20.018 20.018 20.018 20.021 20.003 0.010 0.026 0.035 0.044 0.053

GAS1Amber MBondi2 RMSE 1.292 1.298 1.299 1.326 1.331 1.335 1.357 1.380 1.400 1.411

ME 20.002 20.002 0.003 0.001 0.019 0.035 0.047 0.060 0.070 0.080

MUL1Amber6 RMSE 1.513 1.504 1.528 1.522 1.554 1.579 1.532 1.523 1.536 1.542

ME 20.029 20.029 20.015 20.008 20.002 0.011 0.033 0.047 0.064 0.071

MUL1Amber Bondi RMSE 1.475 1.465 1.495 1.519 1.540 1.540 1.489 1.478 1.493 1.509

ME 20.017 20.011 20.008 20.003 0.012 0.030 0.046 0.056 0.071 0.085

MUL1Amber MBondi2 RMSE 1.490 1.481 1.509 1.537 1.562 1.570 1.517 1.504 1.521 1.543

ME 20.004 0.004 0.009 0.014 0.030 0.044 0.059 0.070 0.088 0.096

All errors are in unit kcal/mol.
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� The RMSE should be as small as possible to give an accu-

rate prediction.

� The ME should be as close to zero as possible to give an

unbiased prediction.

� At the same level of RMSE and ME, it is preferred to

involve more molecules, which makes it easy to deter-

mine the solvation free energy functional.

Usually, there is a tradeoff among the aforementioned criteria

in selecting the number of molecules for solvation prediction. As

listed in Tables 2 and 3, we emphasize that the proposed

method is quite robust with respect to different choices.

Figure 4 illustrates the correlation between experimental sol-

vation free energies and leave-one-out FFT predictions for the

set of 668 molecules. The optimal RMSE of selected polar fea-

tures is 1.18 kcal/mol with four nearest neighbors, while the

optimal RMSE using all polar-nonpolar features can be

improved to 1.05 kcal/mol with 10 nearest neighbors. The

result is by far the lowest for such a large set of molecules, to

our best knowledge. For a comparison of FFT and HPK models,

we also plot the results for the leave-one-out prediction of the

set of 668 molecules. Clearly, the present FFT model outper-

forms our earlier HPK model with most charge and radius

combinations.

Accuracy and sensitivity analysis. A detailed comparison

between the present leave-one-out predictions and those of

our earlier HPK model[33] can be made under the same radius

Table 3. The RMSEs and MEs of the solvation free energy prediction of 668 molecules with different parametrizations and different numbers of nearest

neighbors involved using all polar and nonpolar features.

Parametrization Error 1 2 3 4 5 6 7 8 9 10

BCC1Amber6 RMSE 1.094 1.214 1.232 1.103 1.134 1.121 1.101 1.084 1.073 1.070

ME 20.012 20.026 20.027 20.004 20.014 20.012 20.011 20.011 20.004 0.005

BCC1Amber Bondi RMSE 1.133 1.138 1.263 1.259 1.290 1.304 1.123 1.110 1.101 1.085

ME 20.014 20.010 20.028 20.018 20.021 20.020 0.003 0.005 0.004 0.012

BCC1Amber MBondi2 RMSE 1.095 1.099 1.229 1.219 1.243 1.271 1.062 1.054 1.056 1.050

ME 20.020 20.014 20.033 20.025 20.024 20.026 0.007 0.009 0.011 0.026

GAS1Amber6 RMSE 1.259 1.250 1.262 1.260 1.246 1.241 1.266 1.312 1.305 1.323

ME 20.026 20.019 20.016 20.017 20.018 20.014 20.013 20.018 20.008 20.005

GAS1Amber Bondi RMSE 1.235 1.238 1.254 1.262 1.245 1.237 1.257 1.280 1.278 1.288

ME 20.022 20.017 20.016 20.010 0.006 0.003 20.000 0.009 0.021 0.019

GAS1Amber MBondi2 RMSE 1.235 1.238 1.239 1.243 1.244 1.228 1.248 1.256 1.249 1.259

ME 20.019 20.011 20.008 20.008 0.002 0.001 20.001 0.007 0.019 0.032

MUL1Amber6 RMSE 1.308 1.297 1.471 1.468 1.515 1.529 1.310 1.291 1.310 1.277

ME 20.024 20.025 20.025 20.024 20.024 20.027 20.010 20.010 20.008 0.003

MUL1Amber Bondi RMSE 1.335 1.330 1.450 1.435 1.444 1.460 1.307 1.310 1.333 1.329

ME 20.006 20.001 20.018 20.008 20.010 20.015 0.002 0.009 0.008 0.013

MUL1Amber MBondi2 RMSE 1.358 1.353 1.472 1.472 1.470 1.476 1.318 1.297 1.332 1.330

ME 0.003 0.008 20.014 20.005 20.006 20.002 0.010 0.010 0.014 0.022

All errors are in unit kcal/mol.

Figure 4. Illustration of leave-one-out predictions for the whole set of 668 molecules. Left chart: Correlation between experimental solvation free energies

and FFT predictions obtained by BCC charges and Amber MBondi2 using all polar-nonpolar features. Right chart: Comparison of prediction RMSEs obtained

by FFT models with polar features and all features against HPK models. In the plot, GAS and MUL are abbreviations for Gasteiger and Mulliken charges,

respectively. [Color figure can be viewed at wileyonlinelibrary.com]
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and charge parametrizations. Table 4 lists the RMSEs and MEs

of the current model predictions. For a comparison, corre-

sponding RMSEs obtained by our previous HPK model is also

listed in parentheses. From Table 4, we can conclude the

following:

� The FFT solvation models are much more accurate than

our previous HPK model for this set of 668 molecules.

The best prediction with selected polar features and all

polar-nonpolar features has an RMSE of 1.18 kcal/mol

and 1.05 kcal/mol, respectively, compared to the lowest

RMSE of 1.33 kcal/mol achieved by the previous model.

Note that the worst earlier result has an RMSE of 1.68

kcal/mol.[33] As a comparison, the worst RMSE of the pre-

sent prediction has been improved to 1.54 kcal/mol. For

a set of 643 molecules, which overlaps the present data-

set with 589 molecules, Mobley and Guthrie reported an

RMSE of 1.51 kcal/mol.[70] Therefore, the present FFT-SP

represents a major advance in solvation free energy

prediction.

� The FFT solvation models provide unbiased solvation pre-

dictions, as indicated from ME results. The predictions

with different molecular parametrizations all achieve near

zero MEs. The MEs of the previous model are almost ten

times larger than those of the FFT solvation models.

Additionally, we note that no matter what type of molec-

ular parametrization is applied, the previous predictions

are biased toward one direction, whereas the present

models have MEs of both signs.

� The FFT solvation models are less sensitive to the micro-

scopic feature parametrization compared to the HPK sol-

vation model. The ranges of the RMSEs for FFT calculated

with all polar and nonpolar features and HPK models

associated with nine different parametrizations are 1.05–

1.31 kcal/mol and 1.33–1.68 kcal/mol, respectively. Obvi-

ously, having a larger range in prediction RMSEs indicates

that the HPK model is more sensitive to microscopic fea-

ture parametrization.

Solvation energy prediction of SAMPLx challenges

In this part, we consider the prediction of solvation free

energy for the SAMPLx challenge sets. Our FFT solvation

model is applied to all of five SAMPL test sets, that is,

SAMPL0–SAMPL4. We adopt the same protocol used in our

previous leave-SAMPLx-out prediction.[33] Specifically, in each

SAMPL test prediction, we exclude all the molecules in the

given SAMPL in our FFT process, and use the remaining mole-

cules as our training set to find a set of the nearest neighbors

to each molecule in the SAMPL test set. Both RMSE and ME

measures are evaluated to assess the performance of the pro-

posed FFT model. The same nine sets of charge and radius

parametrizations are implemented in leave-SAMPLx-out tests.

SAMPL0 test. First, let us consider the solvation free energy

prediction for the SAMPL0 test set, which contains a total of

17 molecules. All structures of this test set are relatively sim-

ple. However, the molecule species of this set is quite diverse.

Many researchers have reported their solvation free energy

predictions for this challenge set.[71,72] Prior to our work, the

optimal prediction for this test set has an RMSE of 1.34 kcal/

mol for the whole set.[72] Figure 5 depicts the present FFT

results for a total of nine charge and radius combinations.

When the BCC charge is used, the RMSEs of our predictions

with three radius parametrizations are all smaller than 0.75

kcal/mol. Our optimal prediction has an RMSE of 0.61 kcal/

mol, obtained from Amber Bondi radius parametrization in

conjugation with the BCC charge assignment with polar fea-

tures only. When all polar and nonpolar features are used, the

results become slightly worse whereas performances over all

parametrizations turn out to be more stable especially when

the Mulliken charge assignment is used.

Table 4. The RMSE and ME of the leave-one-out test in the solvation free energy prediction of 668 molecules with polar features FFT (the first position),

all features FFT (the second position), and HPK model (the last position).[33]

Radius Charge BCC Mulliken Gasteiger

Amber 6 RMSE 1.19, 1.07, 1.47 1.52, 1.28, 1.49 1.42, 1.24, 1.65

ME 20.01, 0.01, 20.13 20.01, 0.00, 20.20 20.03, 20.01, 20.19

Amber Bondi RMSE 1.23, 1.09, 1.34 1.52, 1.31, 1.48 1.35, 1.24, 1.66

ME 20.02, 0.01, 20.14 20.01, 0.01, 20.21 20.02, 0.00, 20.13

Amber MBondi2 RMSE 1.18, 1.05, 1.33 1.54, 1.30, 1.49 1.33, 1.23, 1.68

ME 0.00, 0.03, 20.14 0.0, 0.01, 20.22 0.00, 0.00, 20.22

All errors are in unit kcal/mol.

Figure 5. Illustration of prediction RMSEs obtained with different molecular

parametrizations by the FFT model for SAMPL0 test set. In the plot, GAS

and MUL are abbreviations for Gasteiger and Mulliken charges, respectively.

[Color figure can be viewed at wileyonlinelibrary.com]
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SAMPL1 test. Having demonstrated the superiority of the pro-

posed FFT model for the prediction of the SAMPL0 challenge

set, we further consider the SAMPL1 test set, which is gener-

ally believed to be the most difficult one, due to the following

two reasons. First, the molecular structures of this test set are

extremely complex compared to other molecules with known

experimental solvation free energies. Second, the uncertainty

of SAMPL1 experimental data is very large. For some mole-

cules the uncertainty is as large as 2.0 kcal/mol.[9,49] Neverthe-

less, it is extremely desirable to develop an accurate modeling

paradigm for this test set because most molecules in this test

set are druggable. The best prediction for the whole set has

an RMSE of 2.45 kcal/mol.[72] On a subset of the SAMPL1 test

set that contains only 56 molecules, the best performance was

shown to give an RMSE of 2.4 kcal/mol.[9] Figure 6 illustrates

the results of the FFT approach for the whole SAMPL1 test set.

It is obvious to see that the FFT model is much more accurate.

The optimal prediction with only polar features has an RMSE

as small as 2.07 kcal/mol, and adding nonpolar features further

improves the RMSE to 1.86 kcal/mol, which is the best to our

best knowledge. Additionally, the present FFT model is very

robust with respect to the change in force fields. The maxi-

mum and minimum prediction RMSEs over nine sets of para-

metrizations and two feature combinations are 1.86 and 2.82

kcal/mol, respectively. The difference between the maximum

and minimum is 0.96 kcal/mol, which is much smaller than

experimental uncertainty of 2 kcal/mol for this set.[9,49]

SAMPL2 test. Another difficult test set is SAMPL2, which con-

tains a total of 30 molecules.[73] The experimental uncertainty

on these molecules is much less than that of the SAMPL1 test

set. Nevertheless, accurate solvation prediction for this set is

rare. Using all-atom molecular dynamics simulations and multi-

ple starting conformations for prediction, Klimovich and Mob-

ley reported an RMSE of 2.82 kcal/mol over the whole set and

1.86 kcal/mol over all the molecules except several hydroxyl-

rich compounds.[73] Some of the best reported predictions

have an RMSE of 1.59 kcal/mol.[72] In our previous test, the

molecule containing an I atom (5-iodouracil) is excluded in all

calculations due to the lack of appropriate charge force field.

In this work, we also ignore this molecule for the same reason.

The HPK model gives an optimal prediction with RMSE 1.96

kcal/mol. However, the RMSEs of the prediction vary over a

large range, from 1.96 to 4.86 kcal/mol, when different charge

and radius force fields are applied. A bar graph of the RMSEs

of FFT predictions is given in Figure 7. Parametrizations based

on AM1-BCC charge yield the best results among polar fea-

tures and adding nonpolar features offers a substantial

improvement over polar features, as the first three yellow bars

are lower than the first three blue bars. The optimal RMSE for

SAMPL2 molecules is 1.64 kcal/mol with AM1-BCC charge and

AMBER6 radius, when all features are used to train the models.

It is also worthy to note that the variation of RMSEs under dif-

ferent parametrizations is 1.42 kcal/mol (1.64 to 3.06 kcal/mol),

which indicates the robustness of the present FFT models

compared to HPK models.

SAMPL3 test. The SAMPL3 test set, which contains 36 mole-

cules, is relatively easy for prediction. The structures of

SAMPL3 molecules are relatively simple, and most molecules

in this set are chlorinated hydrocarbon molecules.[51] The best

prediction in the literature offers an RMSE of 1.29 kcal/mol.[72]

Figure 8 depicts the RMSEs of the predictions by only polar

features and all features. Although the optimal result (RMSe of

0.86 kcal/mol) is generated by polar features with Gasteiger

charges, all features combination turns out to be more stable

over all parametrizations as Figure 8 clearly shows. More spe-

cifically, the RMSEs using polar features span over a small

range of 0.48 kcal/mol (i.e., from 0.86 to 1.34 kcal/mol) across

all nine different parametrizations, while all features yield a

variation of 0.24 kcal/mol. This further verifies the robustness

of the FFT solvation model.

SAMPL4 test. Finally, we consider the SAMPL4 test set, which

is a very popular one. Many explicit, implicit, integral equation,

and hybrid QM/MM approaches[10] have been applied to this

set.[74] As shown in Figure 9, the overall performance enhances

when all features are used as the blue bars are consistently

higher than yellow bars, which indicates the predictive power

Figure 6. Illustration of prediction RMSEs obtained with different molecular

parametrizations by the FFT model for SAMPL1 test set. In the plot, GAS

and MUL are abbreviations for Gasteiger and Mulliken charges, respectively.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 7. Illustration of prediction RMSEs obtained with different molecular

parametrizations by the FFT model for SAMPL2 test set. In the plot, GAS

and MUL are abbreviations for Gasteiger and Mulliken charges, respectively.

[Color figure can be viewed at wileyonlinelibrary.com]
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of nonpolar features. Our FFT model gives an optimal RMSE of

1.14 kcal/mol. It is also easy to see that our FFT approach is

quite robust across different force field and charge

parametrizations.

Remark. Table 5 provides a summary of the RMSEs and

MEs for all SAMPL0-SAMPL4 test sets. Nevertheless, contrary to

the small MEs found in the leave-one-out tests, these errors

amplify much in the prediction of SAMPLx test sets, particularly

for SAMPL1 and SAMPL2 test sets. Possible explanations for this

phenomenon are the complexity of molecules and the lack of

physically and chemically similar molecules in our database. We

also point out that in the FFT predictions, large RMSEs and MEs

occur simultaneously, which indicates that large RMSEs might

come from biased predictions. This phenomenon is under our

further investigation.

Discussion

Comparison with a classic solvation model based on

weighted solvent accessible surface areas

We would like to further examine whether our FFT approach is

competitive with other solvation models on large datasets. To

this end, we apply our FFT methods to the prediction of the

solvation energy of molecules collected by Wang et al.[52]

These authors introduced models based on weighted solvent

accessible surface areas and performed both fitting and pre-

diction tasks. In their Model III, the authors further divided 387

molecules (which exclude ions) into a training set (293) and a

test set (94) and achieved unsigned average errors of 0.50 and

0.66 kcal/mol for the training set and the test set, respec-

tively,[52] and an unsigned average error of 0.538 kcal/mol for

the entire set. It is interesting to compare our results with

theirs since compounds used for training and testing are

essentially independent, which challenges the predictive

power of solvation models. Our FFT models were also trained

with scikit-learn package[75] and the average of 50 indepen-

dent runs yields unsigned average errors of 0.00 and 0.57 kcal/

mol, respectively, for the training set and the test set and an

unsigned average error of 0.441 kcal/mol for the entire set. In

fact, we used a slightly smaller training set of 289 molecules

because 4 molecules in the training set have ambiguous

chemical names in the PubChem database, while all molecules

in the test set are included in our prediction. This comparison

indicates that our FFT models have a competitive edge over

the classic solvation model based on weighted solvent accessi-

ble surface area (SASA).

Remark 2. It should be noted that there exist discrepancies

in experimental solvation free energies for some molecules in Ref.

[52] and the 668 set.[33] When such discrepancies occur, the

experimental values reported by Wang et al.[52] are used for

training and testing in the above comparison. We provide a list

of 177 molecules with inconsistent experimental values in Sup-

porting Information. However, it should be noted that most

experimental value differences are within a very small range.

Only 23 differences are greater than 0.2 kcal/mol and 5 out of

23 molecules are in the test set. These five compounds and their

experimental values corresponding to table 3 of Wang et al.[52]

are listed in Table 6.

Additionally, four molecules listed in the training set of Ref.

[52] while excluded in our training due to their absence of struc-

tures in PubChem have compound ID of 363, 364, 385, and

388 in table 3 of Ref. [52].

Moreover, we have also noticed that there are 11 duplicates in

the training set and the test set of Ref. 52. Their compound IDs and

duplicated IDs (Dup-IDs) in the table 3 of Ref. [52] are listed in

Table 7. Molecules that are in the test set are marked with a super-

script “b” to be consistent with the notation of Ref. [52]. When

these 11 duplicated molecules in the training set are excluded, the

FFT has an RMSE of 0.61 kcal/mol for the test set, which is still

smaller than that reported in Ref. [52] (i.e., 0.66 kcal/mol).

Feature importance analysis

Another importance concern for FFT modeling is features

importance. To analyze this issue, we rank all features by their

Figure 8. Illustration of prediction RMSEs obtained with different molecular

parametrizations by the FFT model for SAMPL3 test set. In the plot, GAS

and MUL are abbreviations for Gasteiger and Mulliken charges, respectively.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 9. Illustration of prediction RMSEs obtained with different molecular

parametrizations by the FFT model for SAMPL4 test set. In the plot, GAS

and MUL are abbreviations for Gasteiger and Mulliken charges, respectively.

a) SAMPL0, b) SAMPL1, c) SAMPL2, d) SAMPL3, e) SAMPL4. [Color figure

can be viewed at wileyonlinelibrary.com]
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feature importance and consequently generate 40 different

sets of feature combinations. Note that the feature importance

here refers to Gini importance,[76] weighted by the number of

trees in a forest calculated by our baseline methods. We train

models with different numbers of features to examine their

predictive performances on test sets. More specifically, the pro-

tocol to select features relies on a series of feature importance

cutoffs, equally spaced between 0 and 0.01, with features

whose importance is greater than the given cutoff value being

selected.

Figure 10 represents the RMSEs of predicted solvation

energy of SAMPL molecules against different feature impor-

tance cutoffs. When the feature importance cutoff value is

large, the number of features is small, and RMSE is typically

large too. The performance is getting better when the feature

importance cutoff value is relatively small. However, further

reduction in the cutoff value does not necessarily improve the

prediction accuracy and may result in worse performance.

Indeed, a suitable cutoff value can benefit overall performance.

Cutoff value of 2:531023 appears to be a good choice in our

case according to our feature importance analysis.

Concluding Remarks

Implicit solvent models intuitively split the total solvation free

energies into polar and nonplar contributions. While, in realis-

tic solvation processes, polar and nonpolar interactions are

coupled and interdependent. As a result, their energies are

nonadditive. We propose a FFT framework to break the polar-

nonpolar division used in implicit solvent models and treat

polar and nonpolar contributions on an equal footing. Our FFT

has three basic assumptions, namely, representability, feature-

Table 5. The RMSEs and MEs of the solvation free energy predictions with different parametrizations.

Test set Radius Error AM1-BCC Mulliken Gasteiger

SAMPL0 Amber 6 RMSE 0.74, 0.99 3.01, 1.32 0.85, 1.09

ME 20.05, 20.17 20.60, 0.16 20.14, 20.13

Amber Bondi RMSE 0.61, 1.12 3.13, 2.4 1.13, 1.21

ME 20.07, 20.10 20.43, 0.22 0.37, 20.14

Amber MBondi2 RMSE 0.66, 1.08 3.01, 2.36 1.16, 1.24

ME 0.04, 20.05 20.39, 0.31 0.33, 20.22

SAMPL1 Amber 6 RMSE 2.26, 1.96 2.46, 2.54 2.71, 2.27

ME 21.10, 0.62 20.09, 0.14 20.90, 0.32

Amber Bondi RMSE 2.09, 1.88 2.46, 2.82 2.59, 2.27

ME 20.90, 0.76 20.30, 0.35 20.71, 0.35

Amber MBondi2 RMSE 2.07, 1.86 2.39, 2.59 2.62, 2.42

ME 20.89, 0.49 20.23, 0.16 20.92, 0.17

SAMPL2 Amber 6 RMSE 2.12, 1.64 2.71, 2.42 2.01, 1.86

ME 0.52, 20.28 0.82, 21.59 0.89 21.23,

Amber Bondi RMSE 2.37, 1.83 2.03, 2.43 2.07, 3.06

ME 0.35, 20.81 0.81, 21.91 0.86, 22.21

Amber MBondi2 RMSE 2.48, 1.78 2.57, 2.50 2.07, 2.31

ME 0.54, 20.63 1.71, 22.07 1.14, 21.68

SAMPL3 Amber 6 RMSE 1.22, 0.90 1.34, 1.01 0.86, 0.91

ME 0.10, 0.05 0.22, 20.19 20.11, 20.02

Amber Bondi RMSE 1.19, 0.89 1.31, 1.00 0.91, 1.10

ME 0.11, 0.09 0.22, 20.19 20.06, 0.07

Amber MBondi2 RMSE 1.19, 0.89 1.31, 1.00 0.91, 1.10

ME 0.11, 0.09 20.22, 20.19 20.06, 0.07

SAMPL4 Amber 6 RMSE 1.44, 1.28 1.68, 1.63 1.81, 1.50

ME 0.26, 20.00 0.36, 20.06 0.47, 0.02

Amber Bondi RMSE 1.29, 1.18 1.75, 1.62 1.53, 1.52

ME 0.29, 0.07 0.43, 20.06 0.22, 0.03

Amber MBondi2 RMSE 1.31, 1.14 1.75, 1.64 1.58, 1.50

ME 0.14, 0.11 0.42, 0.03 0.33, 20.03

The numbers in the first and the second positions are the results obtained from FFT models with polar features and all features, respectively. All errors

are in unit kcal/mol.

Table 6. Molecules in the test sets with large discrepancies in their exper-

imental solvation free energies.

ID Exp1[52] Exp2[33]

46 0.29 0.01

67 23.15 23.4

97 20.78 21.73

103 20.64 21.4

352 24.71 25.22

Here, “ID” refers to the ID of table 3 of Ref. [52].

Table 7. Duplicated molecules in Ref. [52].

ID Dup-ID ID Dup-ID

104 119 333 335

334 336 384 389

161 202 82 84

140 142 184 194

97 116 58 59

196 203
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function relationship, and similarity hypotheses. Specifically, we

assume that there exists a microscopic feature vector that can

uniquely characterize and distinguish one molecule from

another. Additionally, the solvation free energy of a molecule

is a functional of microscopic feature vectors. Finally, mole-

cules with similar microscopic features have similar macro-

scopic properties, including solvation free energies.

The performance of the present FFT depends on quality of

feature vector construction. Our experience in developing our

earlier HPK model[33] enables us to select a set of microscopic

features, such as atomic charge, dipole, and reaction field

energy, to accurately characterize solvation free energies.

These microscopic features are evaluated by quantum

mechanics, polarization theory, and Poisson–Boltzmann theory.

Additionally, the quality of macroscopic features, namely, the

accuracy and reliability of physical measurements, affect the

FFT performance as well.

The present FFT method searches the nearest neighbors

based on their similarity in solvation free energies. In machine

learning terminology, our previous nearest neighbor search

method can be regarded as an unsupervised learned method.

The present nearest neighbor search is based on the assump-

tion of molecules with similar microscopic features having sim-

ilar solvation free energies. As such, the nearest neighbor

search problem is cast into a supervised learning problem. As

a result, the nearest neighbor quality can be improved dramat-

ically, which further improves the accuracy of solvation free

energy prediction. To implement our new supervised FFT

approach, we first partition molecules into several groups

according to their chemical compositions. Each group is

regarded as a query in the machine learning terminology. The

query construction is designed to constrain the ranking pro-

cess where similar solvation free energies might not imply sim-

ilar molecules or similar microscopic features. A state-of-the-art

list-wise LTR algorithm, gradient boosted decision trees

(GBDT), is adopted for training the FFT method. By using this

algorithm, the quality of the nearest neighbor search improves

significantly, which is supported from the fact that the differ-

ence between the solvation free energies of a target molecule

and its neighbors decreased dramatically.

Based on the assumption that molecular solvation free

energy is a functional of molecular features, we construct a

solvation free energy predictor using a regularized least

square-based local hyperplane learning algorithm. To validate

the proposed FFT method, we adopt a large dataset of 668

molecules collected in our earlier work.[33]

It is interesting to note that polar features are highly corre-

lated to solvation free energies of this dataset. Nonpolar fea-

tures, such as molecular area and volume, do not appear on

the list of top features. Nevertheless, the inclusion of nonpolar

features does improve the overall performance of the present

method. Highly accurate solvation free energy prediction is

confirmed by both the leave-one-out test over 668 molecules

and the prediction of five SAMPL test sets, namely, SAMPL0,

SAMPL1, SAMPL2, SAMPL3, and SAMPL4.Finally, we consider a

test set of 94 molecules and its associated training set[52] for a

comparison of the present method and a classic solvation

model based on weighted solvent accessible surface area.[52]

This work is our first attempt in developing an advanced

machine learning-based model for solvation free energy pre-

diction. The FFT model can be improved in a number of ways.

One improvement is about the current query construction

based on molecular element types. We believe that a more

sophisticated query construction can further improve the accu-

racy of the nearest neighbor search. Another potential

improvement is a better feature selection. For example, one

can select features according to their local correlations with

the solvation free energies in a given query. The other

improvement can be achieved through better microscopic fea-

ture design and more accurate feature evaluation. Many micro-

scopic features were computed via density functional theory

(DFT) in the present work. We believe that some other

Figure 10. Feature importance cutoff versus RMSE for all test sets with AM1-BCC charge and MBondi2 radius parametrization. The larger cutoff value is,

the smaller number of features is selected. [Color figure can be viewed at wileyonlinelibrary.com]
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advanced quantum methodologies for atomic charge, dipole,

and quadrupole calculations will significantly improve our pre-

diction. The advantage of the DFT-based polarizable Poisson

model has been noticed in our previous work.[33] Therefore,

some improvements in the reaction field energy calculation

can be valuable as well. Overall, we believe that with a better

set of molecular descriptors, molecular parametrization, and

molecular partition, the proposed FFT-based solvation free

energy prediction can be further improved. The application of

the proposed approach to protein–ligand binding affinity pre-

diction is reported elsewhere.[77]
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