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Geometric singularities, such as cusps and self-intersecting surfaces, are major obstacles to the
accuracy, convergence, and stability of the numerical solution of the Poisson-Boltzmann �PB�
equation. In earlier work, an interface technique based PB solver was developed using the matched
interface and boundary �MIB� method, which explicitly enforces the flux jump condition at the
solvent-solute interfaces and leads to highly accurate biomolecular electrostatics in continuum
electric environments. However, such a PB solver, denoted as MIBPB-I, cannot maintain the
designed second order convergence whenever there are geometric singularities, such as cusps and
self-intersecting surfaces. Moreover, the matrix of the MIBPB-I is not optimally symmetrical,
resulting in the convergence difficulty. The present work presents a new interface method based PB
solver, denoted as MIBPB-II, to address the aforementioned problems. The present MIBPB-II solver
is systematical and robust in treating geometric singularities and delivers second order convergence
for arbitrarily complex molecular surfaces of proteins. A new procedure is introduced to make the
MIBPB-II matrix optimally symmetrical and diagonally dominant. The MIBPB-II solver is
extensively validated by the molecular surfaces of few-atom systems and a set of 24 proteins.
Converged electrostatic potentials and solvation free energies are obtained at a coarse grid spacing
of 0.5 Å and are considerably more accurate than those obtained by the PBEQ and the APBS at finer
grid spacings. © 2007 American Institute of Physics. �DOI: 10.1063/1.2743020�

I. INTRODUCTION

The electrostatics of biomolecules plays an important
role in their structure, function, stability, and dynamics.1,2

Accurate evaluation of electrostatics has therefore always
been a major task in molecular/structural biology. The natu-
ral form of biomolecules mostly involves solvent. Explicit
electrostatic calculations of biomolecules in the solvent re-
main extremely expensive, despite the development of effi-
cient Ewald summation methods, and alternative approaches
based on reaction field theory, periodic images, and Euler
summations. The continuum dielectric implicit solvent
models,3,4 in which the explicit interactions between mol-
ecules and solvent are represented by a mean-field formula-
tion, have been very popular in structural biology and
biochemistry5–11 since the pioneering work by Warwicker
and Watson in the early 1980s �Ref. 12� and Honig and
Nichols in the 1990s.7 Recent efforts focus on free energy
estimation,13–15 pK� analysis,16–18 and applications in mo-
lecular dynamics.19,20 The implicit solvent theory retains a
microscopic treatment of biomolecules, while adopting a
macroscopic description of the solvent. In such an approach,
the Poisson-Boltzmann equation �PBE�, or Poisson equation
if no salt is present, needs to be rigorously solved. An alter-
native while much fast approach is the generalized Born

�GB� formalism. Nevertheless, the GB approach relies on the
PBE solution as a calibration or reference standard21 and has
an unknown validity when it is applied to new problems.

Implicit solvent models require a biomolecular surface
definition and a prescription of dielectric functions both in-
side and outside the biomolecule. The solution of the PBE is
very sensitive to the discontinuous dielectric function. Ear-
lier biomolecular surfaces, such as van der Waals surfaces
and solvent accessible surfaces,22 are not smooth and could
cause instability in numerical simulations. The molecular
surface �MS� as proposed by Lee and Richards22 is designed
to provide smoother interfaces. In fact, most PB calculations
have used the MS. However, in certain geometric situations,
the MS definition admits cusp and self-intersecting surface
singularities,23–26 which still cause numerical instability.
Smoothly varying functions were proposed to avoid this
problem.19,27,28 Nonetheless, Swanson et al.29 have shown
that some atomic centered dielectric functions may lead to
unphysical interstitial high dielectric regions in implicit sol-
vent models. The solvent exclusion property of the MS is
crucial to implicit solvent models.

Few analytical solutions of the PBE or Poisson equation
exist for realistic biomolecular geometries and charge distri-
butions. Therefore, these equations are usually solved nu-
merically by a variety of computational methods. The com-
putational tools available can be broadly categorized into �1�
finite difference �FD� methods,6,7,9,12,19,30,31 �2� finite element
methods,5,32–34 and �3� boundary integral methods.10,11,35–39
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All methods are subject to certain inherent advantages and
limitations, which are closely tied to the associated underly-
ing formulations. Finite element methods are optimal for ap-
plications that require the rapid adaptation of grid points to
account for structural variation of biomolecules. However,
generating unstructured grids for complex biomolecular in-
terfaces is time consuming, especially for large biomol-
ecules. Boundary integral methods enjoy several intrinsic ad-
vantages such as fewer unknowns, exact far-field treatment,
and accurate representation of surface geometry and charge
singularity. However, boundary integral methods are not very
efficient in dealing with the nonlinear term in the PB model.
Finite difference methods are the main workhorse for solving
the PBE in computational structural biology and computa-
tional genetic engineering for the following reasons. �1� Us-
ing three-dimensional �3D� Cartesian grids, finite difference
methods avoid the time-consuming grid generation step. �2�
3D Cartesian grids are a standard option in the most widely
used software packages in computational biology, such as
DELPHI,40,41

UHBD,42
MEAD,41

APBS,34,43,44 and CHARMM �Ref.
45� codes; therefore, finite difference based PB solvers natu-
rally fit into these simulation packages. �3� Finite difference
methods are relatively simple, particularly in conjunction
with multigrid linear algebraic solvers, and can offer the best
combination of speed, accuracy, and efficiency, making these
the most popular approaches.3 In the past decade, the main
developments with respect to the PB methodology have been
focused on acceleration of these numerical methods for the
PBE.

Molecular surfaces and discontinuous dielectric func-
tions are commonly employed in the solution of the PBE.
Mathematically, the electrostatic potential field becomes
nondifferentiable whenever the dielectric constant is discon-
tinuous, which causes numerical instability. In general, the
lack of smoothness leads to slow convergence in solving the
PBE. In the worst-case scenario, the standard numerical
methods do not converge at all for complex irregular solvent-
protein interfaces. Computationally, to improve the conver-
gence, the continuities of both electrostatic potential �−

=�+ and its flux �−���− /�n�=�+���+ /�n� should be explic-
itly enforced across the dielectric interface, where superscript
� indicates that the potential is inside the biomolecules �pro-
tein� and the � means that the potential is in the solvent. The
partial derivative is defined in the normal direction of the
interface as n is the unit outer normal vector. Among many
existing PB solvers, errors induced by discontinuous dielec-
tric functions at the solvent-molecular interface are alleviated
in the adaptive discretization of some finite element
methods5,46,47 and controlled in the posteriori error estimates
of other finite element methods.43 However, explicit enforce-
ment of the flux continuity condition in the context of geo-
metric singularities has not been considered in the literature.
Consequently, no PB solver of second order convergence,
which means that the error will be reduced by a factor of 4
when the grid is halved, has ever been reported in the context
of molecular surfaces of biomolecules. Irregular solvent-
solute interface and geometric singularities reduce the accu-
racy and slow down the convergence of most existing PB
solvers. Therefore, stability enhancement and convergence

acceleration are pressing practical issues in developing the
next generation PB solvers.

In the mathematical context, Peskin48 pioneered the
treatment of elliptic equations with discontinuous coeffi-
cients and singular sources. Recently, a number of other el-
egant methods have been proposed. Among them, the im-
mersed interface method, proposed by LeVeque and Li,49 is a
remarkable second order sharp interface scheme. The ghost
fluid method50 was proposed as a relatively simple and easy
to use approach. For irregular interfaces, it is natural to con-
struct a solution in the finite element formulation.51 A rel-
evant while quite distinct approach is the integral equation
method for complex geometry.52 Recently, we have proposed
the matched interface and boundary �MIB� method53 as a
systematic higher-order method for electromagnetic wave
propagation and scattering in dielectric media. More re-
cently, we have generalized the MIB for solving elliptic
equations with curved interfaces with fourth and sixth order
convergences.54,55 The MIB approach makes use of fictitious
domains so that the standard high-order central FD method
can be applied across the interface without the loss of accu-
racy. The fictitious values on fictitious domains are deter-
mined from enforcing the flux continuity conditions at the
exact position of the interface. Nevertheless, none of the
aforementioned interface techniques is able to maintain its
designed order of convergence and accuracy in the presence
of geometric singularities. Indeed, technically, achieving
higher-order convergence at geometric singularities is ex-
tremely challenging, despite great desire for doing so in
practical applications. The best result in the literature is of
0.8th order convergence reported by Hou and Liu,56 achieved
with a finite element formulation in two dimensional �2D�.
Very recently, we have developed the first second order con-
vergent MIB scheme in 2D for solving elliptic equations
with geometric singularities.57.

Most recently, we have addressed the interface problem
in the PBE by proposing a MIB based Poisson-Boltzmann
�MIBPB-I� solver to explicitly consider the flux continuity
condition in the finite difference framework.58 The MIBPB-I
solver is of second order convergence in conjunction with
smooth molecular surface and discontinuous dielectric func-
tions. It has been validated with the exact Kirkwood
solution59 and tested by solvation energies of 24 proteins.
Comparison with other existing methods indicates the poten-
tial of the MIBPB-I method. However, our earlier MIBPB-I
solver does not maintain the second order convergence when
the molecular surface includes cusps, sharp edges, sharp
wedges, or self-intersecting surfaces. Moreover, due to the
asymmetric matrix of the interface method, the MIBPB-I re-
quires a large number of iterations in solving linear equa-
tions. In fact, its matrix does not converge for large proteins
or small proteins with dense grids. The objective of the
present work is to overcome these difficulties. The present
approach, called MIBPB-II, is a generalization of our new
2D MIB method developed for handling sharp-edged
interfaces.57,60 Apart from its ability to maintain the second
order convergence under the presence of geometric singulari-
ties, the MIBPB-II has an optimally symmetrical matrix,
which dramatically reduces the number of iterations.
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In the next two sections, the theoretical formulation and
the computational algorithm are given for the MIBPB-II
solver. The treatment of molecular singularities and the op-
timization of the MIB matrix structure are developed. Then,
the validation and application of the proposed MIBPB-II
solver are presented. The accuracy and the order of conver-
gence of the proposed MIB II method are validated by cusp
singularity in a diatomic system and by the cusp and self-
intersecting surface singularities in a four-atom system. The
molecular surfaces of 24 proteins generated by the MSMS

�Ref. 26� are employed to further test the convergence of the
proposed Poisson solver. Detailed comparison on the accu-
racy and speed of convergence of the present method is
given to our previous MIBPB-I and two other established
methods. This article ends with a brief conclusion summa-
rizing the main points.

II. THEORY AND ALGORITHM

A. Poisson-Boltzmann equation

Consider an open bounder domain ��R3. Let � be the
interface which divides � into disjoint open subdomains, the
biomolecular domain �−, and the solvent domain �+, i.e.,
�=�−��+��. The Poisson-Boltzmann equation arises un-
der the assumption of the Boltzmann distribution for the sol-
vent ions and leads to a hyperbolic sine term �sinh�u�� for
salt effect. Such a nonlinear term can be approximated by u
under the weak potential approximation, and the linearized
PBE can be given as

− � · ���r� � u�r�� + �2�r�u�r� = f�r� , �1�

where � is the dielectric coefficient, u=ec� /KBT is the di-
mensionless electrostatic potential, � is the electrostatic po-
tential, and ��r� is the Debye-Hückel screening function de-
scribing ion strength. The source term represents the charge
contribution f =4	e2 /kBT�i=1

N zi
�r−ri�, with kB the Boltz-
mann constant, ec the electron charge, and zi the charge frac-
tion at position ri. The PBE satisfies the far-field boundary
condition lim�r�→�u�r�=0, although the Dirichlet boundary
condition is often used in a finite domain. With discontinu-
ous dielectric coefficient at the solute-solvent interface, the
PBE should be solved with the following interface jump con-
ditions:

�u� = u+�r� − u−�r� , �2�

��vn� = �+�r� � u+�r� · n − �−�r� � u−�r� · n , �3�

where n= �nx ,ny ,nz� is the normal direction of the molecular
surface, and �u�= ��un�=0. These conditions are to be rigor-
ously enforced at each intersecting point of the molecular
surface and the Cartesian mesh line.

B. Matched interface and boundary method

To solve the linearized PBE with appropriate jump con-
ditions in the finite difference framework, we first classify all
the grid points into the regular ones and irregular ones. An
irregular grid point is the one where the standard finite dif-
ference scheme involves grid points from both inside and
outside the interface. To determine fictitious values at irregu-

lar grid points, it is convenient to define a local coordinate
�� , ,�� at a specific intersecting point of the interface and a
grid mesh line such that � is along the normal direction and
 is in the x-y plane. The coordinate transformation can be
given as

��



�
� = p · �x

y

z
� , �4�

where p is the transformation matrix

p = � sin � cos � sin � sin � cos �

− sin � cos � 0

− cos � cos � − cos � sin � sin �
� . �5�

Here � and � are the azimuth and zenith angles with respect
to the normal direction n, respectively. In the new coordi-
nates, the jump condition �3� can be written as

��u�� = �+�sin � cos �ux
+ + sin � sin �uy

+ + cos �uz
+�

− �−�sin � cos �ux
− + sin � sin �uy

− + cos �uz
−� .

�6�

Obviously, two other jump conditions can be generated by
differentiating Eq. �2� with respect to the tangential direction
 and the binormal direction �,

�u� = �− sin �ux
+ + cos �uy

+� − �− sin �ux
− + cos �uy

−� , �7�

�u�� = �− cos � cos �ux
+ − cos � sin �uy

+ + sin �uz
+�

− �− cos � cos �ux
− − cos � sin �uy

− + sin �uz
−� . �8�

In principle, it is possible to generate more jump conditions
by further differentiating these low-order jump conditions.
However, a by-product of such a procedure is the creation of
high-order derivatives, whose evaluation often involves more
grid points and is unfavorable. The MIB method makes use
of only lower-order jump conditions. Therefore, we end up
with four interface equations, i.e., Eqs. �2� and �6�–�8�,
which can be used to determine four desired unknown quan-
tities related to the intersecting point of the molecular surface
and the mesh line. In the MIB method, we extend the com-
putational domains with fictitious values on both sides of the
interface so that the standard finite difference scheme can be
applied on a smooth domain near the interface without the
loss of designed convergence. Fictitious values can be deter-
mined by the aforementioned jump conditions. However, in
association with four jump conditions there are six deriva-
tives, ux

+, ux
−, uy

+, uy
−, uz

+, and uz
−, which need to be calculated

in appropriate subdomains near the interface. For complex
geometric constraints, it is often very difficult to compute all
of these derivatives. Therefore, in the MIB method, we
eliminate two most difficult derivatives by using three rel-
evant jump conditions.

From Eq. �4�, we have
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�u�

u

u�

� = p · �ux

uy

uz
� . �9�

Therefore, Eqs. �6�–�8� can be rewritten as follows:

���u��
�u�
�u��

� = C · �
ux

+

ux
−

uy
+

uy
−

uz
+

uz
−

� , �10�

where

C = �C1

C2

C3
�

= �p11�
+ − p11�

− p12�
+ − p12�

− p13�
+ − p13�

−

p21 − p21 p22 − p22 p23 − p23

p31 − p31 p32 − p32 p33 − p33
� ,

�11�

where pi,j is the i, jth component of the transformation ma-
trix p and Ci represents the ith row of C. After the elimina-
tion of the lth and mth elements of �ux

+ ,ux
− ,uy

+ ,uy
− ,uz

+ ,uz
−�, Eq.

�10� becomes

a��u�� + b�u� + c�u�� = �aC1 + bC2 + cC3� · �
ux

+

ux
−

uy
+

uy
−

uz
+

uz
−

� ,

�12�

where

a = C2lC3m − C3lC2m,

b = C3lC1m − C1lC3m,

c = C1lC2m − C2lC1m. �13�

We therefore use Eqs. �2� and �12� to determine two fictitious
values near the interface along a specific mesh line at a time.
This procedure is systematically repeated to determine ficti-
tious values along other two mesh lines and at other interface
locations. In this manner, we have effectively reduced a 3D
interface problem into a one-dimensional-like one.

Figure 1�a� shows a situation where fictitious values at
two irregular points �i , j ,k� and �i , j+1,k� are to be deter-
mined by jump conditions �2� and �12�. Assume that ux

− and
uz

− are difficult to determine and are eliminated from two
jump conditions. Four remaining derivatives, uy

+, uy
−, ux

+, and
uz

+, will be calculated at the intersecting point �x0 ,y0 ,z0�.
Unfortunately, there is no mesh line in the z direction passing

through the interface point �x0 ,y0 ,z0�. Thus, interpolation
schemes are required to calculate ux

+ and uz
+. For example, to

calculate uz
+, interpolation is carried out with auxiliary points.

There are different ways to choose auxiliary points. The se-
lection of auxiliary points is optimized in the present MIB II
scheme as follows. Because of the presence of other singu-
larities, such as singular charge distribution, it is important to
avoid possible accuracy reduction due to the interference of
two kinds of singular terms at the same set of grid points.
Therefore, auxiliary points are selected away from those grid
points that carry part singular charges in an interpolation
scheme. Nevertheless, this problem can be completely
avoided by using Green’s formulation to convert the charge
singularity into an interface problem.61 Another important
criterion is to select auxiliary points as close to the intersect-
ing point �x0 ,y0 ,z0� as possible. For instance, under the same
geometric situation depicted in Fig. 1, the MIB I normally
selects auxiliary points as shown in Fig. 1�a�, while MIB II
would select those as shown in Fig. 1�b�. As such, the MIB II
matrix is optimally symmetrical and much more diagonally
dominant than that of the MIB I. Consequently, the MIB II
matrix requires much fewer number of iterations than that of
the MIB I and leads to a significant reduction in CPU time.

FIG. 1. �Color online� �a� Typical selection of auxiliary points � in MIB I.
�b� Typical selection of auxiliary points � in MIB II.
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The general ideas of the MIB method are as follows.
First, simple Cartesian grids are used even if the problem is
defined on irregular domains and/or irregular interfaces. Sec-
ond, the standard central FD schemes are utilized to dis-
cretize differential equation with the help of fictitious values
on the extended subdomains. Third, physical jump condi-
tions, including the flux jump condition, are explicitly en-
forced at the intersecting points between the mesh lines and
the interface, which, in turn, determines the fictitious values
and guarantees the convergence of the FD discretization.
Fourth, only lower-order jump conditions are used to avoid
the possible involvement of cross derivatives in the higher-
order jump conditions and higher dimensional polynomials.
Finally, to achieve desired convergence, the lower-order
jump conditions are utilized repeatedly. Some key ideas for
the treatment of 2D geometric singularities can be found in
Ref. 57. Nonetheless, technical details of the MIB II treat-
ment of 3D geometric singularities are significantly more
intricate due to vast topological variations of molecular sur-
faces of proteins. Their description is beyond the scope of
the present paper and will be presented elsewhere.50

III. RESULTS AND DISCUSSION

In this section, we examine the accuracy and test the
convergence order of the present MIB II or MIBPB-II when
electrostatic potentials are computed in the presence of geo-
metric singularities. The speed of convergence in terms of
the number of iterations NBiGG is also studied. Comparison is
made to our earlier MIB I technique58 and the standard sec-
ond order FD scheme. However, specific MIB I results pre-
sented in this article are generated from a new MIB I code.
Moreover, to test the matrix properties of the MIB I and the
MIB II, a common linear algebraic solver, the biconjugate
gradient �BiGG�, was used, and the number of iterations
NBiGG required by both methods is compared. Electrostatic
potential was solved with the MIBPB-II, and for comparison
also with MIBPB-I, PBEQ,28 a representative finite differ-
ence PB solver from CHARMM,45 and APBS,34,43,44 a multi-
grid finite element and finite difference PB solver recently
developed primarily for massively parallel computing. The
finite difference function of the APBS is utilized in our cal-
culations. Molecular surfaces are generated by using the
MSMS program26 at density 10. In all test cases, the dielectric
constant is taken as �−=1 and �+=80. The probe radius is set
to 1.4 Å unless specified. From the electrostatic potentials in
vacuum �vac and in the presence of the dielectric environ-

ment �dielec, the electrostatic free energy of solvation
�Gsolv,elec is calculated from the explicit charges qi at posi-
tions ri

�Gsolv,elec =
1

2�
i

qi��dielec�ri� − �vac�ri�� . �14�

To compare the computational performance, we use
three error measurements, the maximum absolute error L�,
the surface maximum absolute error E1, and the surface
maximum percentage error E2,

L� = max
�

�u�x,y,z� − uex�x,y,z�� ,

E1 = max
�

�u�x,y,z� − uex�x,y,z�� ,

E2 = 100 � max
�
	u�x,y,z� − uex�x,y,z�

uex�x,y,z�
	 , �15�

where u and uex are numerical and exact solutions, respec-
tively. Here E1 and E2 are computed over all irregular points
near the interface � where the modified difference schemes
are used. The tolerance of BiCG iterations is set to be 1.0
�10−6 in all the cases throughout the paper. The order of
convergence is calculated for the L� error.

A. Validation

1. Dielectric sphere with a unit charge

To establish the validity and performance of the present
MIBPB-II method, we consider a unit charge at the center of
a dielectric sphere of 2 Å radius, for which the PBE admits
analytical solutions due to Kirkwood.59 This case has been
used to examine the MIBPB-I in our previous studies.58 In
terms of accuracy, the MIBPB-I and MIBPB-II give essen-
tially identical results since there is no geometric singularity.
Table I lists the solvation energies and errors in the electro-
static potential of the MIBPB-II in comparison with those of
the PBEQ and the APBS. It is observed that in terms of the
solvation energy and E2 error, the MIBPB-II results at a
coarse mesh of 0.5 Å are more accurate than those of other
two methods at a fine mesh of 0.05 Å. Due to the explicit
enforcement of flux jump conditions at the interface, the
MIBPB-II is of second order convergence, which is indicated
by about fourfold decrease in all three errors as the grid
spacing is halved. In contrast, convergence orders of PBEQ
and APBS are about 0.3.

TABLE I. Electrostatic solvation energy �G in kcal/mol and the error in the surface potential for a sphere with a centered unit charge. The exact solvation
energy is −81.98 kcal/mol.

Mesh �Å�

Errors in surface potential

�G MIBPB-II PBEQ APBS

MIBPB-II PBEQ APBS E1 E2 E1 E2 E1 E2

0.50 −81.99 −85.78 −85.85 2.60 6.68 17.05 84.26 17.06 84.26
0.20 −81.97 −82.84 −82.58 0.30 1.57 7.51 74.44 7.50 74.43
0.10 −81.98 −82.49 −82.27 0.04 0.38 3.84 62.30 3.83 62.30
0.05 −81.98 −82.20 −82.03 0.01 0.09 1.94 46.95 1.89 46.18
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2. Molecular surface singularities of few-atom
systems

Having established the MIB II method for solving PBE
with the molecular surface interface, we test its performance
on molecular surface singularities. In the diatomic system,
cusps occur in the molecular surface when the atomic dis-
tance is enlarged, as shown in Fig. 2�a�. Both cusps and
self-intersecting surfaces occur in a four-atom system, see
Fig. 2�b�. These singularities pose challenges to numerical
methods and break down the designed second order conver-
gence of our previous MIB I. Note that for the geometries
shown in Fig. 2, there is no analytical solution that satisfies
PBE �1� with the interface conditions �2� and �3�. In order to
test the convergence of the present MIB II method, we con-
sider the Poisson equation given by Eq. �1� with �=0. A

standard method to construct an analytically solvable system
of the Poisson equation is to allow the source term to vary
with the prescribed exact solution. Thus, we set the exact
solution to be

u− = 10 cos x cos y cos z + 20, u+ = 10�x + y + z� + 1.

�16�

The source term f�x ,y� and interface conditions �u�, ��un�
can be easily derived from the exact solution. Note that the
solutions admit a jump at the interface. To illustrate the per-
formance of the optimized matrix in MIB II, we include a
spherical geometry, case I, for which both MIB I and MIB II
have similar accuracy but different speeds of convergence.

The numerical errors are computed at three mesh sizes,
h=0.5, 0.25, and 0.125 Å, by using MIB I, MIB II, and FD
methods. It can be seen from Table II that the second order
convergence is achieved by MIB II in all three cases, while
MIB I has second order convergence only for case I. MIB I
converges slowly and irregularly in cases II and III due to
molecular surface singularities. Furthermore, the numerical
errors of MIB II are very similar in all cases, which indicates
that the geometric singularities have little effect on the accu-
racy and convergence order of the present MIB II scheme. In
contrast, the accuracy of MIB I strongly depends on the lo-
cation and shape of molecular surface singularities. In case I,
MIB I and MIB II produce almost identical results because
both methods have the same interface treatment for this case.
In cases II and III, L� and E1 are always the same in MIB I,
which indicates that the maximum errors originated from the
irregular points near the interface due to the lack of the treat-
ment of geometric singularities. In contrast, L� and E1 errors
are quite different in MIB II in all cases because the largest
errors of MIB II occur at the largest value of the solution. At
a fine grid, the MIB I errors are about three orders larger than
those of the MIB II. The standard FD scheme does not con-
verge at all due to the discontinuous nature of the solution at
the interface. Nevertheless, its L� errors and E1 errors are

FIG. 2. �Color online� Molecular surface singularities. The radius of carbon
atoms is 1.5 Å in both cases. �a� Centers of atoms are �−3.62,0 ,0� and
�3.62, 0, 0�, and the probe radius is 5.1 Å. �b� Centers of atoms are �0, 4.2,
0�, �0,−4.2,0�, �5, 0, 0�, and �−5,0 ,0� and the probe radius is 4.9 Å.

TABLE II. Numerical errors of three methods for the Poisson equation. Case I: Sphere of radius 2.0 Å. Case II: Diatomic molecular surface with cusp
singularities. Case III: Four-atom molecular surface with cusp and self-intersecting surface singularities.

h �Å�

Case I Case II Case III

MIB II MIB I FD MIB II MIB I FD MIB II MIB I FD

0.5 L� 2.1E−1 2.1E−1 6.5E+1 1.4E−1 2.7E+0 1.1E+2 1.4E−1 7.1E+0 1.1E+2
E1 3.6E−2 3.5E−2 6.5E+1 5.4E−2 2.7E+0 1.1E+2 8.3E−2 7.1E+0 1.1E+2
E2 1.7E−1 1.7E−1 3.2E+2 2.0E−1 3.5E+1 5.1E+2 3.4E+0 6.8E+2 1.2E+3

NBiCG 91 114 116 98 167 136 130 598 166

0.25 L� 5.5E−2 5.5E−2 6.8E+1 3.7E−2 1.7E+0 1.1E+2 3.6E−2 9.1E+2 1.1E+2
E1 3.3E−3 3.3E−3 6.8E+1 9.1E−3 1.7E+0 1.1E+2 1.4E−2 9.1E+0 1.1E+2
E2 2.4E−2 2.4E−2 3.3E+2 5.5E−2 2.5E+1 5.1E+2 5.7E−1 4.9E+2 1.2E+3

Order 1.94 1.94 −0.05 1.93 0.69 0.02 1.97 −0.36 −0.07
NBiCG 120 145 156 128 165 171 153 1125 268

0.125 L� 1.4E−2 1.4E−2 6.7E+1 9.4E−3 1.1E+0 1.1E+2 9.1E−3 3.9E+0 1.1E+2
E1 4.8E−4 4.8E−4 6.7E+1 1.2E−3 1.1E+0 1.1E+2 1.8E−3 3.9E+0 1.1E+2
E2 1.6E−2 1.4E−2 3.2E+2 8.2E−3 1.9E+1 5.1E+2 2.7E−1 1.2E+3 4.7E+3

Order 1.97 1.97 0.02 1.96 0.63 0.01 1.98 1.23 0.02
NBiCG 151 475 239 214 313 378 224 6421 323
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identical and its errors in cases II and III are larger than its
errors in case I. Indeed, the interface and geometric singu-
larities are the main source of errors in conventional Poisson
equation solvers.

The number of iterations, NBiCG, increases in all three
methods both as the mesh is refined and as interfaces get
more complex. Case III requires the largest number of itera-
tions because it has the largest computational domain among
these three cases. When the grid spacing is repeatedly
halved, which enlarges the matrix size by a factor of 8 each
time, NBiGG of MIB II increases slightly from 130 to 153 and
224, while NBiGG of MIB I increases from 598 to 1125 and
6421. The CPU time required for a single iteration of BiGG
scheme is roughly the same for the matrices generated by
MIB I, MIB II, and FD methods in a given case. It is seen
that the NBiGG and thus the CPU time are significantly re-
duced in the MIB II compared to those of the MIB I, attrib-
uting to the new matrix optimization procedure. The FD
method requires slightly larger NBiGG than the MIB II
method, partially because of the bad condition number of the
FD scheme for the discontinuous solution and because of
optimally symmetrical matrix of the MIB II method. It is
worth mentioning that a common BiGG linear equation
solver is used here to test the matrix properties of three meth-
ods. In the original MIB I method, the incomplete LU de-
composition scheme is utilized to accelerate the speed of
solving the linear system,58 which gives competitive CPU
time for matrices of size up to 106�106, but is infeasible for
larger matrices generated by either a larger computational
domain or a smaller mesh spacing for a given domain.

Figure 3 plots the difference between the exact solutions
and the numerical ones computed by MIB I and MIB II
methods at h=0.5 Å. As expected, the MIB I errors are dis-
tributed mainly around the geometric singularities. Whereas,
the MIB II errors are distributed around the local maximum
of the solution. The different scales in the plot indicate the
different error magnitudes in two methods. In fact, even
larger differences can be observed when the mesh is refined,
as shown in Table II.

3. Molecular surface singularities of proteins

The geometric singularities of few-atom systems illus-
trated in the last subsection are relatively simple. The ulti-
mate computational challenges come from large proteins,
which exhibit sophisticated topologies and geometric varia-
tions. Their molecular surfaces possess a variety of unnamed
geometric singularities, particularly in low resolution protein
structures. Therefore, it is important to examine the conver-
gent properties of the present MIB II method for solving the
Poisson equation with the molecular surfaces of proteins. To
this end, we employ a set of 24 proteins used in previous
studies.21,58 For all structures, extra water molecules are ex-
cluded and hydrogen atoms are added to obtain full all-atom
models. Their molecular surfaces are computed by using the
MSMS program26 and used as the dielectric interface. We
again set the exact solution to that prescribed by Eq. �16�.
The source terms and the jump conditions of the Poisson
equation are derived accordingly for each molecular surface
of the 24 proteins.

The numerical errors and the number of iterations NBiGG

at h=0.5 Å and h=0.25 Å are listed in Table III for both the
MIB I and MIB II methods. Although proteins are ordered
according to their gyration radii, their numbers of atoms Na

are also listed in the table. In order to compare the perfor-
mance of these methods, the numerical results of MIB I at
h=0.25 Å are needed. However, the original MIB I method

FIG. 3. �Color� The surface projections of numerical errors in MIB I and
MIB II. �a� Numerical errors obtained by MIB II for the diatomic system.
�b� Numerical errors obtained by MIB I for the diatomic system. �c� Nu-
merical errors obtained by MIB II for the four-atom system. �d� Numerical
errors obtained by MIB I for the four-atom system.
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TABLE III. Accuracy and convergent tests on the molecular surfaces of 24 proteins.

PDB
ID Na MIB

h=0.5 Å h=0.25 Å

L� E1 E2 NBiCG L� �Order� E1 E2 NBiCG

1ajj 519 II 2.4E−1 1.1E−1 9.3E−1 278 6.0E−2�1.98� 1.7E−2 1.6E−1 486
I 2.5E−1 2.5E−1 1.4E+0 3 809 8.6E−2�153� 8.6E−2 3.3E−1

2pde 667 II 2.3E−1 1.2E−1 8.9E−1 306 5.9E−2�1.97� 1.9E−2 2.3E−1 498
I 4.7E+0 4.7E+0 2.3E+1 4 444 1.7E+0�1.47� 1.7E+0 9.4E+0

1vii 596 II 2.4E−1 1.4E−1 1.4E+0 273 6.0E−2�199� 1.9E−2 2.0E−1 488
I 3.2E+0 3.2E+0 6.3E+1 4 560 1.5E+0�1.14� 1.5E+0 7.4E+0

2erl 573 II 2.3E−1 1.1E−1 4.2E+0 265 5.8E−2�1.98� 1.8E−2 2.0E−1 491
I 2.3E−1 1.1E−1 4.2E+0 1 888 6.2E−2�1.89� 6.2E−2 2.3E−1

1cbn 648 II 2.3E−1 1.4E−1 9.0E−1 295 6.0E−2�1.95� 1.8E−2 1.5E−1 497
I 2.3E−1 1.4E−1 9.0E−1 5 682 8.6E−2�1.43� 8.6E−2 3.7E−1

1bor 832 II 2.3E−1 1.3E−1 6.3E+0 319 5.9E−2�1.98� 1.9E−2 1.8E−1 538
I 2.3E−1 2.2E−1 6.3E+0 17 307 1.1E+0�−2.27� 1.1E+0 4.1E+0

1bbl 576 II 2.4E−1 1.1E−1 9.3E−1 322 6.0E−2�2.01� 1.8E−2 2.4E−1 492
I 3.4E+0 3.4E+0 8.1E+1 17 307 2.3E−1�3.89� 2.3E−1 1.2E−0

1fca 729 II 2.4E−1 1.2E−1 1.2E+0 249 6.0E−2�1.99� 2.2E−2 2.0E−1 423
I 2.4E−1 1.2E−1 1.1E+0 4 145 6.2E−2�1.96� 4.1E−2 2.1E−1

1uxc 809 II 2.4E−1 1.3E−1 1.5E+0 281 6.0E−2�2.00� 1.9E−2 1.7E−1 516
I 2.4E−1 1.3E−1 1.5E+0 4 031 6.0E−2�2.00� 1.9E−2 1.7E−1

1sh1 702 II 2.4E−1 1.2E−1 9.0E−1 289 6.0E−2�2.00� 1.7E−2 1.5E−1 525
I 3.6E+0 3.6E+0 1.1E+2 10 366 3.9E+0�−0.13� 3.9E+0 2.5E+1

1mbg 903 II 2.3E−1 1.1E−1 1.8E+0 290 5.8E−2�1.97� 1.7E−2 1.7E−1 487
I 6.7E+0 6.7E+0 2.3E+0 4 604 7.7E−1�3.12� 7.7E−1 3.3E+0

1ptq 795 II 2.4E−1 1.2E−1 1.1E+0 289 5.9E−2�2.00� 1.8E−2 1.7E−1 525
I 2.4E−1 1.2E−1 1.1E+0 6 291 6.9E−2�1.77� 6.9E−2 3.7E−1

1vjw 828 II 2.3E−1 1.2E−1 1.1E+0 283 5.9E−2�1.95� 1.9E−2 1.8E−1 443
I 2.3E−1 1.2E−1 1.1E+0 4 490 5.9E−2�1.95� 3.2E−2 1.8E−1

1fxd 824 II 2.3E−1 1.2E−1 1.7E+0 286 5.9E−2�1.99� 1.9E−2 1.7E−1 510
I 2.3E−1 2.3E−1 1.7E+0 3 852 1.5E−1�0.63� 1.5E−1 9.1E−1

1r69 997 II 2.3E−1 1.2E−1 2.9E+0 303 5.9E−2�1.99� 1.9E−2 1.8E−1 514
I 2.3E−1 1.2E−1 2.9E+0 4 912 5.9E−2�1.99� 2.8E−2 2.2E−1

1hpt 858 II 2.4E−1 1.1E−1 1.1E+0 292 6.1E−2�1.97� 1.9E−2 1.6E−1 502
I 2.3E−1 1.7E−1 1.1E+0 11 346 1.0E+0�−5.47� 1.0E+0 4.4E+0

1bpi 898 II 2.4E−1 1.3E−1 1.1E+0 302 6.1E−2�1.97� 1.9E−2 1.6E−1 517
I 6.5E+0 6.5E+0 3.0E+1 10 396 4.1E+0�0.66� 4.1E+0 2.1E+1

451c 1216 II 2.4E−1 1.5E−1 6.0E+0 342 6.0E−2�2.02� 1.9E−2 2.3E−1 563
I 6.6E+0 6.6E+0 3.3E+1 10 049 3.9E+0�0.75� 3.9E+0 2.1E+1

1a2s 1272 II 2.3E−1 1.3E−1 2.4E+0 379 5.8E−2�1.98� 1.9E−2 4.0E−1 651
I 2.3E−1 2.1E−1 2.5E+0 41 290 2.7E−1�−0.25� 2.7E−1 1.6E+0

1frd 1478 II 2.4E−1 1.2E−1 3.1E+0 298 6.0E−2�2.03� 1.9E−2 6.6E−1 503
I 1.6E+0 1.6E+0 4.4E+0 17 263 1.5E−1�3.45� 1.5E−1 8.9E−1

1svr 1435 II 2.4E−1 1.2E−1 1.5E+0 391 2.9E−2�2.01� 2.0E−2 2.0E−1 678
I 2.7E+0 2.7E+0 9.4E+0 77 080 1.2E+0�1.12� 1.2E+0 5.4E+0

1neq 1187 II 2.4E−1 1.3E−1 1.2E+0 369 5.9E−2�2.00� 1.9E−2 1.6E−1 688
I 1.4E+0 1.4E+0 3.2E+0 17 894 1.5E+0�−0.13� 1.5E+0 6.4E+0
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does not converge at such a grid resolution.58 We therefore
have applied the matrix optimization procedure to the MIB I
and refer to such a scheme as “accelerated MIB I.” The
difference between the MIB II and the accelerated MIB I is
that the latter does not have the present treatment of geomet-
ric singularities. The MIB II results show great consistency
on all 24 molecular surfaces. With the same mesh size, the
numerical errors are almost the same, which indicates the
robustness of MIB II. Comparing the L� and the E1 in the
table, one may notice that the L� error is always greater than
the E1 error for MIB II in all cases, indicating that the mo-
lecular surface singularities are not the source of the maxi-
mal error. In contrast, the L� error is the same as the E1 error
for MIB I in most cases. At the grid resolution h=0.5 Å, the
MIB I has the largest E2 error for 1svr, indicating some spe-
cial geometric singularity in the molecular surface of 1svr.
Furthermore, the NBiCG required by the original MIB I at h
=0.5 Å is also provided in Table III for a comparison of
convergence speed. As it can be seen, the NBiCG of MIB I can
be orders of magnitude larger than that of MIB II. As the
number of atoms Na increases, the NBiCG of MIB II increases
slightly. For example, the number of interactions NBiCG only
increases less than twice when the matrix size is eight times
larger due to halving the mesh. This confirms the excellent
matrix properties of the present MIB II method.

Figure 4 shows the convergence patterns of MIB I and
MIB II over molecular surfaces of 24 proteins, which are
sorted in the same order as that in Table III. The second order
convergence of the MIB II on the molecular surfaces of 24
proteins is depicted in Fig. 4�a�. The numerical errors of the
MIB II method obtained at h=0.25 Å and h=0.5 Å are de-
noted by dots and stars, respectively. The figure indicates the
uniform second order convergence of MIB II. Figure 4�b�
shows the numerical errors of the MIB I obtained at h
=0.5 Å and accelerated MIB I obtained at h=0.25 Å. The
convergence pattern of the MIB I is irregular and depends on
the occurrence of molecular surface singularities. It is worth
noting that at the coarse grid, h=0.5 Å, the MIB I has similar
accuracy as MIB II for 12 protein molecular surfaces. When
the mesh is refined to h=0.25 Å, the accelerated MIB I has
similar accuracy as MIB II has only in five cases �1fca, 1r69,
1uxr, 1vjw, and 2erl�. It implies that there are very few mo-
lecular surface singularities in the molecular surfaces of
these five proteins. However, geometric singularities com-
monly occur in the molecular surfaces of most proteins.

B. Applications

1. Solvation free energy

After the confirmation of the second order convergence
of the proposed MIB II scheme, we now explore the impact
of this new algorithm to the numerical solution of the PB
equation for the electrostatic analysis of proteins. The MIB II
based PB solver is denoted as MIBPB-II and its results are
compared with those of our earlier MIBPB-I,58 the PBEQ,28

and the APBS.34,43,44 The same set of proteins21,58 used in the
last subsection is employed for the present study. For all

TABLE III. �Continued.�

PDB
ID Na MIB

h=0.5 Å h=0.25 Å

L� E1 E2 NBiCG L� �Order� E1 E2 NBiCG

1a63 2065 II 2.4E−1 1.3E−1 2.2E+0 434 6.0E−2�1.99� 2.0E−2 2.4E−1 665
I 4.6E+0 4.6E+0 4.0E+1 83 477 1.1E−1�5.33� 1.1E−1 5.9E−1

1a7m 2890 II 2.5E−1 1.3E−1 4.0E+0 419 6.7E−2�1.90� 2.2E−2 6.3E−1 726
I 8.4E+0 8.4E+0 4.1E+2 414 908 5.0E+0�0.73� 5.0E+0 2.3E+2

FIG. 4. �Color online� Accuracy test on molecular surface of 24 proteins. �a�
L� errors obtained by MIB II. �b� L� errors obtained by the accelerated
MIB I.
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structures hydrogen atoms were added to obtain full all-atom
models. Partial charges at atomic sites and atomic van der
Waals radii defining the dielectric boundary were taken from
the CHARMM22 force field.62 The solvation free energies are
calculated by MIBPB-II at the grid spacings of 0.5 and
0.25 Å and by PBEQ at 0.5, 0.25, and 0.15 Å. The APBS
results are reported at a coarse grid spacing of about 0.4 Å
and a fine grid spacing of about 0.2 Å; however, it allows
grid adjustments from 0.33 to 0.48 Å for the coarse grid and
from 0.19 to 0.21 Å for the fine grid. The results of
MIBPB-I were calculated at the grid spacing of 0.5 Å.58 Due
to its unfavorable matrix, no result at a refined grid could be
produced. These results are listed in Table IV in the order of
gyration radii for proteins. The same order is used in all
figures in the following analysis.

Figure 5�a� gives a bird’s-eye view of the performance
of these methods. It is seen that at a coarse scale of thou-
sands kcal/mol, the results of three methods are in good
agreement with each other. Note that results from finer grids
are selected for APBS and PBEQ to achieve this effect.

From Table IV, it is seen that MIBPB-II results at a
coarse grid, h=0.5 Å, are very similar to those at the refined
grid h=0.25 Å. Indeed, this is true as shown in Fig. 5�b�,
where differences of these two types of solutions are plotted.
Except for one case, 1bbl, the MIBPI-II differences between
two grids are all within 5 kcal/mol, disregarding the size of
and the radius of gyration of the protein. This means that the
MIBPB-II is well converged at a coarse grid of h=0.5 Å.
However, this is not the case for APBS and PBEQ, as shown

in Fig. 5�b�. Their differences between two grids vary dra-
matically, in the magnitude of 10–80 kcal/mol, implying
that their results at the coarse grid are not converged yet. In
particular, their differences are apparently larger for proteins
of larger radii of gyration, indicating that their convergence
and reliability depend on the radius of gyration or, loosely,
on the size of the system. From Table IV, it is seen that
APBS and PBEQ results are generally more negative than
those of MIBPB-II. An interesting observation is that, as the
grid is refined, the results of both APBS and PBEQ converge
toward those of the MIBPB-II.

Since the results of APBS and PBEQ converge to those
of MIBPB-II, which are well converged at h=0.25 Å, we
choose the solvation free energies of the MIBPB-II as refer-
ences to show the convergence property of other methods. In
Fig. 5�c�, the differences in the solvation free energies are
plotted between PBEQ and MIBPB-II, APBS and MIBPB-II,
and MIBPB-I and MIBPB-II. The results of MIBPB-I calcu-
lated from a coarse grid of h=0.5 Å are essentially con-
verged, confirming our earlier claim.58 The PBEQ method at
the grid resolution of h=0.25 Å produces the largest differ-
ences in solvation free energies, as shown in Fig. 5�c�. The
magnitudes of such differences range from a few kcal/mol to
43 kcal/mol and exhibit a growing trend in the increase of
the radius of gyration. This indicates the lack of reliability of
the PBEQ method at the grid resolution of h=0.25 Å in prac-
tical applications. Only when the grid is refined to h
=0.15 Å could PBEQ further reduce its differences to less
than 20 kcal/mol, as indicated in Table IV. However, such a

TABLE IV. Electrostatic solvation energies �G in kcal/mol calculated by using the MIBPB-I, MIBPB-II, APBS, and PBEQ. CPU times used by MIBPB-II
at h=0.5 Å and by APBS at h
0.2 Å are given.

h �Å�

MIBPB-II

MIBPB-I
0.5

APBS PBEQ CPU time �s�

0.5 0.25 0.4 0.2 0.5 0.25 0.15 MIBPB-II APBS

1ajj −1136.9 −1136.6 −1139.5 −1158.0 −1138.6 −1170.7 −1145.7 −1138.8 51 77
2pde −819.5 −820.9 −820.6 −829.7 −819.6 −849.3 −832.2 −824.0 66 97
1vii −902.5 −901.6 −901.5 −924.1 −904.4 −936.8 −914.1 −905.0 51 83
2erl −950.2 −948.8 −949.6 −970.9 −951.8 −980.5 −959.1 −953.0 48 77
1cbn −305.4 −303.8 −304.4 −315.4 −305.4 −327.6 −310.8 −307.0 63 97
1bor −854.1 −854.6 −853.4 −870.3 −855.3 −890.7 −865.7 −857.0 86 119
1bbl −994.2 −987.5 −986.6 −1007.1 −991.1 −1028.4 −1000.5 −993.0 70 108
1fca −1201.3 −1199.9 −1202.5 −1222.1 −1208.6 −1244.3 −1220.4 −1213.0 59 102
1uxc −1141.6 −1138.8 −1146.5 −1163.7 −1142.4 −1192.6 −1154.1 −1144.0 76 112
1shl −754.6 −753.4 −753.4 −778.3 −763.3 −803.2 −772.2 −764.0 63 84
1mbg −1350.9 −1349.9 −1353.5 −1372.3 −1353.2 −1398.3 −1362.5 −1355.0 86 109
1ptq −871.7 −872.4 −871.8 −898.1 −875.1 −915.0 −886.4 −877.0 77 112
1vjw −1237.9 −1237.9 −1243.9 −1265.4 −1246.9 −1291.5 −1256.9 −1247.0 75 98
1fxd −3299.8 −3300.2 −3302.8 −3330.2 −3309.4 −3348.7 −3323.5 −3313.0 86 123
1r69 −1088.9 −1087.7 −1088.1 −1114.7 −1093.8 −1142.7 −1103.3 −1093.0 93 115
1hpt −811.6 −813.1 −811.2 −837.4 −818.5 −867.0 −830.9 −820.0 104 112
1bpi −1304.0 −1302.0 −1302.5 −1339.8 −1311.2 −1356.6 −1318.9 −1307.0 95 167
451c −1025.0 −1024.7 −1026.3 −1058.8 −1030.5 −1084.2 −1045.0 −1033.0 128 163
1a2s −1912.8 −1913.6 −1911.6 −1948.6 −1921.1 −1968.5 −1933.0 −1920.0 165 173
1frd −2852.2 −2851.5 −2852.4 −2904.4 −2865.4 −2941.9 −2884.0 −2867.0 183 ¯

1svr −1713.5 −1711.5 −1709.3 −1753.7 −1720.6 −1784.9 −1740.0 −1712.0 195 ¯

1neq −1730.7 −1729.7 −1728.8 −1777.7 −1735.5 −1800.7 −1752.0 −1738.0 189 ¯

1a63 −2375.5 −2373.7 −2372.0 −2428.6 −2389.5 −2496.1 −2416.0 −2394.0 383 ¯

1a7m −2158.0 −2157.3 −2156.5 −2211.5 −2166.4 −2260.1 −2193.0 −2169.0 541 ¯
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grid resolution may not be very practical in most electrostatic
analysis due to large computational costs. The results of
APBS obtained at h
0.2 Å generally show much smaller
differences and a weak dependence on the radius of gyration,
partly due to its ability of adaptation to the interface. How-
ever, MIBPB-II is more accurate at the grid resolution h
=0.5 Å than the APBS at finer grid of h
0.2 Å.

It is interesting to compare the CPU cost of the
MIBPB-II with that of APBS at a similar level of accuracy
for computing the solvation free energy. Figure 5�d� depicts
the CPU time of MIBPB-II and APBS at the grid resolutions
of h=0.5 Å and h
0.2 Å, respectively. A dedicated personal
computer of 2.8 GHz Pentium D CPU with 2 Gbyte RAM
was used for the CPU time comparison. However, the CPU
time of the APBS for the last six largest proteins, 1neq, 1a2s,
1svr, 1frd, 1a63, and 1a7m, is inaccessible because their
memory requirements are either extremely close to or exceed
the 2 Gbyte limit of the dedicated WIN32 system. The com-
putation of these six proteins is therefore completed in a high
performance computer where the precise CPU time cannot
be recorded because of disturbance from other users. It is to
be noted that at the same grid resolution, the present

MIBPB-II solver with a biconjugate gradient linear solver
requires more CPU time than the APBS solver. However, at
a given accuracy as shown in Fig. 5�c�, the MIBPB-II re-
quires less CPU time than APBS.

2. Electrostatic potentials

Finally, we consider the surface electrostatic potential of
a heme-binding protein, Fe�II� cytochrome C551 from the
organism Pseudomonas aeruginosa �PDB ID: 451c�. The
electrostatics distribution near the heme-bonding site and in-
side the binding cavity is very important for the electrostatic
steering effect during the protein-heme docking process. The
potential is computed with MIBPB-II, MIBPB-I, and PBEQ
at the grid resolution of h=0.5 Å. Figure 6 illustrates the
surface electrostatic potential obtained with MIBPB-II, and
for a comparison, the differences between the surface elec-
trostatic potentials of MIBPB-II and MIBPB-I, and between
MIBPB-II and PBEQ. It is seen that the inner surface of the
cavity is mostly positively charged except of middle section
there the Fe�II� ion would locate, which is consistent with the
fact that the heme surface is mostly negatively charged be-

FIG. 5. �Color online� Comparison of solvation free energies of proteins, which are listed in the order of gyration radii, as shown in Table IV. �a� Solvation
free energies of �GMIBPB-II�h=0.5 Å�, �GMIBPB-I�h=0.5 Å�, �GAPBS�h
0.2 Å�, and �GPBEQ�h=0.25 Å�. �b� Differences of solvation free energies between
coarse mesh and fine mesh, i.e., �GMIBPB-II�h=0.5 Å�−�GMIBPB-II�h=0.25 Å�, �GMIBPB-I�h=0.5 Å�−�GMIBPB-I�h=0.25 Å�, �GPBEQ�h=0.5 Å�−�GPBEQ�h
=0.25 Å�, and �GAPBS�h
0.4 Å�−�GAPBS�h
0.2 Å�. �c� Differences of solvation free energies between MIBPB-II and other methods, i.e., �GMIBPB-II�h
=0.5 Å�−�GMIBPB-II�h=0.25 Å�, �GMIBPB-I�h=0.5 Å�−�GMIBPB-II�h=0.25 Å�, �GPBEQ�h=0.25 Å�−�GMIBPB-II�h=0.25 Å�, and �GAPBS�h
0.2 Å�
−�GMIBPB-II�h=0.25 Å�. �d� CPU time used by APBS at about 0.2 Å and MIBPB-II at 0.5 Å for 18 proteins.
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cause it has a positively charged Fe�II� core. From the dif-
ference plots, we found that MIBPB-I differs from MIBPB-II
only for a few isolated spots due to the molecular surface
singularities. The light color in these spots indicates small
differences. However, the discrepancies between MIBPB-II
and PBEQ are more intensive and mostly distributed around
convex surfaces where there are more untreated irregular
grid points. We expect that these discrepancies of about
5 kcal/mol e would have a significant consequence in a
quantitative analysis of the interaction between cytochrome
C and heme.

IV. CONCLUSION

This article reports a new generation of interface based
Poisson-Boltzmann �PB� equation solvers that take explicit
care of geometric singularities, such as cusps and self-
intersecting surfaces in the molecular surface definition.22

Our previous matched interface and boundary �MIB� method
based PB solver, denoted as MIBPB-I, was the first PB
solver to explicitly enforce the flux jump conditions at
solvent-solute interfaces and could consequently provide
highly accurate biomolecular electrostatics in continuum di-
electric environments.58 However, the MIBPB-I cannot
maintain its designed second order convergence whenever
there are geometric singularities. Moreover, the MIBPB-I
matrix is not optimally symmetrical and diagonally domi-
nant, resulting in a severe convergence problem. The present
method, denoted as MIBPB-II, is designed to overcome the
aforementioned difficulties. A new MIB scheme is proposed
to rigorously treat arbitrarily complex interfaces in the Car-
tesian representation.57,60 The MIB matrix is made optimally
symmetrical and diagonally dominant. The proposed
MIBPB-II is extensively validated by the molecular surfaces
of few-atom systems and a set of 24 proteins. Uniform sec-
ond order convergence of MIBPB-II is confirmed for singu-
lar molecular surface interfaces of proteins, disregarding the
radius of gyration. The MIBPB-II matrix is optimally sym-
metrical, which leads to a significant reduction in the number
of interactions required by a linear equation solver.

The MIBPB-II is applied to electrostatic potential calcu-
lations of a dielectric sphere with a unit charge, which admits
an analytical solution,59 and a set of 24 proteins. As a com-
parison, the finite difference based PBEQ and APBS are em-
ployed for the same electrostatic calculations. For the ana-
lytical case, the MIBPB-II at a coarse grid of h=0.5 Å was
found to be more accurate than the PBEQ and APBS at a fine
grid of h=0.05 Å in terms of both surface electrostatic po-
tential and solvation energy. For 24 proteins, we found that
the solvation free energies computed by the MIBPB-II have
essentially converged at the grid resolution of h=0.5 Å. The
results of APBS and PBEQ converge toward those of the
MIBPB-II when their grids are refined. The discrepancies
between converged MIBPB-II solvation free energies, which
are obtained at the grid of h=0.5 Å, and those of PBEQ
obtained at h=0.15 Å are nearly 20 kcal/mol for proteins
with a large radius of gyration. Slightly smaller discrepancies
are found between converged MIBPB-II solvation free ener-
gies and those of APBS obtained at about h
0.2 Å. The
accuracy of both PBEQ and APBS shows a dependence on
the radius of gyration. The present MIBPB-II requires more
CPU time than APBS and PBEQ at a given grid resolution
but less CPU time at a given accuracy.

As the interface flux jump conditions are rigorously en-
forced at complex solvent-solute interfaces and convergence
order is systematically restored at geometric singularities, the
proposed MIBPB-II solver ought to deliver more reliable
surface electrostatic potentials. Indeed, converged surface
electrostatic potentials are obtained at the resolution of h
=0.5 Å. The discrepancies between converged MIBPB-II
surface electrostatic potentials and those of PBEQ at the

FIG. 6. �Color� Comparison of surface electrostatic potentials � in
kcal/mol e of cytochrome C551 at h=0.5 Å. �a� �MIBPB-II, �b� �MIBPB-II

−�MIBPB-I, and �c� �MIBPB-II−�PBEQ.
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same grid resolution are about 5 kcal/mol e. Such discrep-
ancies would induce a consequence in a quantitative analy-
sis. A rigorous Green’s function treatment of singular charge
distributions is under our consideration.61
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