Multiple Life Models

Lecture: Weeks 9-10

broken heart syndrome

\((T_x, T_y)\)
Chapter summary

- Approaches to studying multiple life models:
 - define multiple states
 - traditional approach (use joint random variables)

- Statuses:
 - joint life status
 - last-survivor status

- Insurances and annuities involving multiple lives
 - evaluation using special mortality laws

- Simple reversionary annuities

- Contingent probability functions

- Dependent lifetime models

- Chapter 9 (Dickson et al.)
Approaches multiple states

States in a joint life and last survivor model

\[
\begin{align*}
\mu_{x+t:y+t}^0 & : x \text{ alive} \\
\mu_{x+t:y+t}^1 & : x \text{ alive, } y \text{ dead} \\
\mu_{x+t:y+t}^2 & : x \text{ dead, } y \text{ alive} \\
\mu_{y+t}^3 & : x \text{ dead, } y \text{ dead}
\end{align*}
\]
Joint distribution of future lifetimes

Consider the case of two lives currently ages x and y with respective future lifetimes T_x and T_y.

- Joint cumulative dist. function: $F_{T_x T_y}(s, t) = \Pr[T_x \leq s, T_y \leq t]$
 - independence: $F_{T_x T_y}(s, t) = \Pr[T_x \leq s] \times \Pr[T_y \leq t] = F_x(s) \times F_y(t)$

- Joint density function: $f_{T_x T_y}(s, t) = \frac{\partial^2 F_{T_x T_y}(s,t)}{\partial s \partial t}$
 - independence: $f_{T_x T_y}(s, t) = f_x(s) \times f_y(t)$

- Joint survival dist. function: $S_{T_x T_y}(s, t) = \Pr[T_x > s, T_y > t]$
 - independence: $S_{T_x T_y}(s, t) = \Pr[T_x > s] \times \Pr[T_y > t] = S_x(s) \times S_y(t)$
Illustrative example 1

Consider the joint density expressed by

\[f_{T_x T_y}(s, t) = \frac{1}{64}(s + t), \quad \text{for } 0 < s < 4, \ 0 < t < 4. \]

1. Prove that \(T_x\) and \(T_y\) are not independent.

2. Calculate the covariance of \(T_x\) and \(T_y\).

3. Evaluate the probability \((x)\) outlives \((y)\) by at least one year.

Solution to be discussed in lecture.
\(f_x(s) = \int_0^4 \frac{1}{64} (s+t) \, dt = \frac{1}{16} (s+2), \quad 0 < s < 4 \)

\(f_y(t) = \int_0^4 \frac{1}{64} (s+t) \, ds = \frac{1}{16} (t+2), \quad 0 < t < 4 \)

\[
\frac{1}{16} (s+2) \cdot \frac{1}{16} (t+2) \neq \frac{1}{64} (s+t) \quad \text{not indep!}
\]

(b) \(\text{Cov}(T_x, T_y) = E(T_x T_y) - E(T_x) E(T_y) = \frac{-1}{9} \)

\[E(T_x T_y) = \int_0^4 \int_0^4 s \cdot t \cdot \frac{1}{64} (s+t) \, ds \, dt = \frac{16}{3} \]

\[E(T_x) = E(T_y) = \int_0^4 s \cdot \frac{1}{16} (s+2) \, ds = \frac{7}{3} \]
(a) \(P_r(T_x \geq T_y + 1) = \int_{0}^{3} \int_{t+1}^{4} \frac{1}{64} (s+t) \, ds \, dt \)

\[\left[\frac{1}{64} \left(\frac{s^2}{2} + st \right) \right]_{t+1}^{4} = \frac{28125}{5} = 5625 \]

This is probability \((x) \) within \((y)\) by at least 1
\[(x) \sim T_y\]

\[(T_x, T_y) \sim \{f, F, S\}\]

status

joint life

\[\text{last survivor} \quad \frac{\min(T_x, T_y) + \max(T_x, T_y)}{T_x + T_y}\]

April 27-29 out of town

no class

April 30 5-8 pm

Thursday

Room C 304
The joint life status

This is a status that survives so long as all members are alive, and therefore fails upon the first death.

- Notation: \((xy)\) for two lives \((x)\) and \((y)\)

- For two lives: \(T_{xy} = \min(T_x, T_y)\)

- Cumulative distribution function:

\[
F_{T_{xy}}(t) = \Pr[\min(T_x, T_y) \leq t] = 1 - \Pr[\min(T_x, T_y) > t] = 1 - \Pr[T_x > t, T_y > t] = 1 - S_{T_xT_y}(t, t) = 1 - tP_{xy}
\]

where \(tP_{xy} = \Pr[T_x > t, T_y > t] = S_{T_{xy}}(t)\) is the probability that both lives \((x)\) and \((y)\) survive after \(t\) years.
The case of independence

- Alternative expression for the distribution function:

\[F_{T_{xy}}(t) = F_x(t) + F_y(t) - F_{T_x,T_y}(t,t) \]

- In the case where \(T_x \) and \(T_y \) are independent:

\[t p_{xy} = \Pr[T_x > t, T_y > t] \]
\[= \Pr[T_x > t] \times \Pr[T_y > t] \]
\[= t p_x \times t p_y \]

and

\[t q_{xy} = t q_x + t q_y - t q_x \times t q_y \]

- Remember this (even in the case of independence):

\[t q_{xy} \neq t q_x \times t q_y \]
\[t_{q \times y} = t_{q \times} \times t_{q y} \]

\[\text{independent} \]

\[t_{p \times y} = t_{p \times} \cdot t_{p y} \]

\[t_{q \times y} = t_{q \times} \cdot t_{q y} \]

\[t_{q \times y} = \left(t_{q x} \right) + \left(t_{q y} \right) - \left(t_{q x} \cdot t_{q y} \right) \]

\[\frac{1}{a} \rightarrow t \]
The last-survivor status

This is a status that survives so long as there is at least one member alive, and therefore fails upon the last death.

- Notation: \((xy)\)
- For two lives: \(T_{xy} = \max(T_x, T_y)\)
- General relationship among \(T_{xy}, T_{xy}, T_x, \text{ and } T_y:\)

\[
T_{xy} + T_{xy} = T_x + T_y \\
T_{xy} \cdot T_{xy} = T_x \cdot T_y \\
aT_{xy} + aT_{xy} = aT_x + aT_y
\]

for any constant \(a > 0\).

- For each outcome, note that \(T_{xy}\) is equal either \(T_x\) or \(T_y\), and therefore, \(T_{xy}\) equals the other.
\[
\begin{align*}
\Pr_{x,y} = & \Pr(\max(T_x, T_y) > t) \\
= & \Pr(T_x > t) \Pr(T_y > t) = S(t, t)_{T_x, T_y}
\end{align*}
\]

Prob that \((x,y)\) survives to time \(t\)

\[
1 - t \Pr_{x,y} = t \Phi_{x,y}
\]
Distribution of T_{xy}

Recall method of inclusion-exclusion of probability:
\[\Pr[A \cup B] + \Pr[A \cap B] = \Pr[A] + \Pr[B]. \]

- Choose events $A = \{T_x \leq t\}$ and $B = \{T_y \leq t\}$ so that
 \[A \cup B = \{T_{xy} \leq t\} \quad \text{and} \quad A \cap B = \{T_{xy} \leq t\}. \]

- This leads us to the following useful relationships:
 \[
 \begin{align*}
 F_{T_{xy}}(t) + F_{T_{xy}}(t) &= F_x(t) + F_y(t) \\
 S_{T_{xy}}(t) + S_{T_{xy}}(t) &= S_x(t) + S_y(t) \\
 tP_{xy} + tP_{xy} &= tP_x + tP_y \\
 f_{T_{xy}}(t) + f_{T_{xy}}(t) &= f_x(t) + f_y(t)
 \end{align*}
 \]

- These relationships lead us to finding distributions of T_{xy}, e.g.
 \[F_{T_{xy}}(t) = F_x(t) + F_y(t) - F_{T_{xy}}(t) = F_{T_{xy}}(t, t) \]
 which is obvious from $F_{T_{xy}}(t) = \Pr[T_x \leq t \cap T_y \leq t]$.
\[F_{T_{x,y}}(t) = \Pr(\max(T_x, T_y) \leq t) = \Pr(T_x \leq t, T_y \leq t) \]

\[F_{T_{x,y}}(t, t) \]

\[q_{x,y} = q_x + q_y - q_{x,y} \]

independence

\[= q_x q_y + q_x q_y + q_x q_y \]

\[0 \quad t \]
Interpretation of probabilities

- Note that:
 - \(tP_{xy} \) is the probability that both lives \((x)\) and \((y)\) will be alive after \(t\) years.
 - \(tp_{xy} \) is the probability that at least one of lives \((x)\) and \((y)\) will be alive after \(t\) years.

- In contrast:
 - \(tq_{xy} \) is the probability that at least one of lives \((x)\) and \((y)\) will be dead within \(t\) years.
 - \(tq_{xy} \) is the probability that both lives \((x)\) and \((y)\) will be dead within \(t\) years.
Illustrative example 2

For independent lives \((x)\) and \((y)\), you are given:

\[
q_x = 0.05 \quad \text{and} \quad q_y = 0.10,
\]

and

\[
q_{x+1} = 0.06 \quad \text{and} \quad q_{y+1} = 0.12.
\]

Deaths are assumed to be uniformly distributed over each year of age. Calculate and interpret the following probabilities:

1. \(0.75q_{xy}\)
 \[1 - 0.75p_{xy} = 1 - 0.75p_x \cdot 0.75p_y\]
 \[= 1 - (1 - 0.75(0.05))(1 - 0.75(0.1)) = 0.1096875\]

2. \(1.5q_{xy}\)
 \[1.5q_x \cdot 1.5q_y = (1 - 0.5p_x \cdot 0.5p_{x+1})(1 - 0.5p_y \cdot 0.5p_{y+1})\]

Solution to be discussed in lecture.
\[
= \left(1 - 0.95(1 - 0.5(0.06))\right) \left(1 - 0.90(1 - 0.5(0.12))\right)
\]

\[
= \frac{\ln 0.9879}{0.9879} = 0.018
\]

\[
M_{x+t} = -\frac{d}{dt} \ln p_x = \left. \frac{-1}{tp_x} \frac{1}{t} \right|_{p_x} = \frac{f_{Tx}(t)}{S_{Tx}(t)}
\]

\[
M_{x+t:y+t} = \frac{f_{Txy}(t)}{S_{Txy}(t)}
\]
Force of mortality of T_{xy}

Define the force of mortality (similar manner to any random variable):

$$
\mu_{x+t:y+t} = \frac{f_{T_{xy}}(t)}{1 - F_{T_{xy}}(t)} = \frac{f_{T_{xy}}(t)}{S_{T_{xy}}(t)} = \frac{f_{T_{xy}}(t)}{tP_{xy}}.
$$

- We can then write the density of T_{xy} as

$$
f_{T_{xy}}(t) = tP_{xy} \cdot \mu_{x+t:y+t}.
$$

- In the case of independence, we have:

$$
\mu_{x+t:y+t} = \frac{tP_x \cdot tP_y (\mu_{x+t} + \mu_{y+t})}{tP_x \cdot tP_y} = \mu_{x+t} + \mu_{y+t}.
$$

- The force of mortality of the joint life status is the sum of the individuals’ force of mortality, when lives are independent.
The force of mortality for T_{xy} is defined as

$$
\mu_{x+t:y+t} = \frac{f_{T_{xy}}(t)}{1 - F_{T_{xy}}(t)} = \frac{f_{T_{xy}}(t)}{S_{T_{xy}}(t)} = \frac{f_{T_{xy}}(t)}{f_x(t) + f_y(t) - f_{T_{xy}}(t)}
$$

Indeed we have the density of T_{xy} expressed as

$$
T_{xy} + T_{xy} = T_x + T_y
$$

Check what this formula gives in the case of independence.
Consider an insurance under which the benefit of $1 is paid at the EOY of ending (failure) of status u.

Status u could be any joint life or last survivor status e.g. xy, \overline{xy}. Then

- the time at which the benefit is paid: $K_u + 1$
- the present value (at issue) of the benefit: $Z = v^{K_u+1}$
- APV of benefits: $E[Z] = A_u = \sum_{k=0}^{\infty} v^{k+1} \cdot \Pr[K_u = k]$
- variance: $\text{Var}[Z] = 2A_u - (A_u)^2$
Insurance benefits - continuous

- Consider an insurance under which the benefit of $1 is paid immediately of ending (failure) of status u.
- Status u could be any joint life or last survivor status e.g. xy, \overline{xy}. Then:
 - the time at which the benefit is paid: T_u
 - the present value (at issue) of the benefit: $Z = v^{T_u}$
 - APV of benefits: $E[Z] = \overline{A}_u = \int_0^\infty v^t \cdot t p_u \cdot \mu_{u+t} dt$
 - variance: $\text{Var}[Z] = 2 \overline{A}_u - (\overline{A}_u)^2$
Some illustrations

- For a **joint life status** \((xy)\), consider whole life insurance providing benefits at the first death:

\[
A_{xy} = \sum_{k=0}^{\infty} v^{k+1} \cdot k|q_{xy} = \sum_{k=0}^{\infty} v^{k+1} \cdot kP_{xy} \cdot q_{x+k:y+k}
\]

\[
\bar{A}_{xy} = \int_{0}^{\infty} v^t \cdot tP_{xy} \cdot \mu_{x+t:y+t} dt
\]

- For a **last-survivor status** \((\overline{xy})\), consider whole life insurance providing benefits upon the last death:

\[
A_{\overline{xy}} = \sum_{k=0}^{\infty} v^{k+1} \cdot k|q_{\overline{xy}} = \sum_{k=0}^{\infty} v^{k+1} \cdot (k|q_{x} + k|q_{y} - k|q_{xy})
\]

\[
\bar{A}_{\overline{xy}} = \bar{A}_{x} + \bar{A}_{y} - \bar{A}_{xy}
\]

\[
\bar{A}_{xy} = \int_{0}^{\infty} v^t \left(tP_{x} \cdot \mu_{x+t} + tP_{y} \cdot \mu_{y+t} - tP_{xy} \cdot \mu_{x+t:y+t} \right) dt
\]
\[A_{xy} = \sum_{k=0}^{\infty} v^{k+1} \cdot P_r(K_{xy} = k+1) \]

\[k! q_x = k! q_x k \]

\[k! q_{xy} = k! p_{xy} q_{x+k:y+k} \]

\[k! q_{xy} = k! p_{xy} q_{x+k:y+k} \]

\[A_{xy} = A_x + A_y - A_{xy} \]

\[A_{xy} = A_x + A_y - A_{xy} \]
Useful relationships:

\[A_{xy} + \bar{A}_{xy} = A_x + A_y \]

\[\bar{A}_{xy} + \bar{A}_{xy} = \bar{A}_x + \bar{A}_y \]
Annuity benefits - discrete

Consider an n-year temporary life annuity-due on status u. Then

- the present value (at issue) of the benefit: $Y = \begin{cases} \ddot{a}_{K_u+1}, & K_u < n \\ \ddot{a}_{\infty}, & K_u \geq n \end{cases}$

- APV of benefits: $E[Y] = \ddot{a}_{u: \infty} = \sum_{k=0}^{n-1} \ddot{a}_{k+1} \cdot k \cdot q_u + \ddot{a}_{\infty} \cdot n \cdot p_u$

- variance: $\text{Var}[Y] = \frac{1}{d^2} \left[2A_{u: \infty} - (A_{u: \infty})^2 \right]$

- Other ways to write APV:

$$\ddot{a}_{u: \infty} = \sum_{k=0}^{n-1} v^k \cdot k \cdot p_u = \frac{1}{d} \left(1 - A_{u: \infty} \right).$$
Consider an annuity for which the benefit of $1 is paid each year continuously for ∞ years so long as a status u continues.

- Then

 - the present value (at issue) of the benefit: $Y = \bar{a}_{T_u}$

 - APV of benefits: $E[Y] = \bar{a}_u = \int_0^\infty \bar{a}_t \cdot i p_u \cdot \mu_{u+t} dt = \int_0^\infty v^t p_u dt$

 - variance: $\text{Var}[Y] = \frac{1}{\delta^2} \left[2 \bar{A}_u - (\bar{A}_u)^2 \right]$

- Note that the identity $\delta \bar{a}_{T_u} + v^{T_u} = 1$ provides the connection between insurances and annuities.
Some illustrations

- For joint life status \((xy)\), consider a whole life annuity providing benefits until the first death:

\[
\ddot{a}_{xy} = \sum_{k=0}^{\infty} v^k \cdot kP_{xy} \quad \text{and} \quad \ddot{a}_{xy} = \int_{0}^{\infty} v^t \cdot tP_{xy} dt
\]

- For last survivor status \((\overline{xy})\), consider a whole life insurance providing benefits upon the last death:

\[
\ddot{a}_{xy} = \sum_{k=0}^{\infty} v^k \cdot kP_{xy} \quad \text{and} \quad \ddot{a}_{xy} = \int_{0}^{\infty} v^t \cdot tP_{xy} dt
\]

- Useful relationships:

\[
\ddot{a}_{xy} + \ddot{a}_{\overline{xy}} = \ddot{a}_x + \ddot{a}_y
\]

\[
\ddot{a}_{xy} + \ddot{a}_{\overline{xy}} = \ddot{a}_x + \ddot{a}_y
\]
Comparing benefits - annuities

<table>
<thead>
<tr>
<th>Type of life annuity</th>
<th>Single life x</th>
<th>Joint life status xy</th>
<th>Last survivor status \overline{xy}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole life a-due</td>
<td>\ddot{a}_x</td>
<td>\ddot{a}_{xy}</td>
<td>$\ddot{a}_{\overline{xy}}$</td>
</tr>
<tr>
<td>Whole life a-immediate</td>
<td>a_x</td>
<td>a_{xy}</td>
<td>$a_{\overline{xy}}$</td>
</tr>
<tr>
<td>Temporary life a-due</td>
<td>$\ddot{a}_{x:n}$</td>
<td>$\ddot{a}_{xy:n}$</td>
<td>$\ddot{a}_{\overline{xy}:n}$</td>
</tr>
<tr>
<td>Temporary life a-immediate</td>
<td>$a_{x:n}$</td>
<td>$a_{xy:n}$</td>
<td>$a_{\overline{xy}:n}$</td>
</tr>
<tr>
<td>Whole life a-continuous</td>
<td>\overline{a}_x</td>
<td>\overline{a}_{xy}</td>
<td>$\overline{a}_{\overline{xy}}$</td>
</tr>
<tr>
<td>Temporary life a-continuous</td>
<td>$\overline{a}_{x:n}$</td>
<td>$\overline{a}_{xy:n}$</td>
<td>$\overline{a}_{\overline{xy}:n}$</td>
</tr>
</tbody>
</table>
Comparing benefits - insurances

<table>
<thead>
<tr>
<th>Type of life insurance</th>
<th>Single life x</th>
<th>Joint life status xy</th>
<th>Last survivor status \overline{xy}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole life - discrete</td>
<td>A_x</td>
<td>A_{xy}</td>
<td>$A_{x\overline{y}}$</td>
</tr>
<tr>
<td>Whole life - continuous</td>
<td>\overline{A}_x</td>
<td>\overline{A}_{xy}</td>
<td>$\overline{A}_{x\overline{y}}$</td>
</tr>
<tr>
<td>Term - discrete</td>
<td>$A_{1:x:n}$</td>
<td>$A_{1:xy:n}^{-}$</td>
<td>$A_{1:xy:n}^{-}$</td>
</tr>
<tr>
<td>Term - continuous</td>
<td>$\overline{A}_{1:x:n}^{-}$</td>
<td>$\overline{A}_{1:xy:n}^{-}$</td>
<td>$\overline{A}_{1:xy:n}^{-}$</td>
</tr>
<tr>
<td>Endowment - discrete</td>
<td>$A_{x:n}$</td>
<td>$A_{xy:n}$</td>
<td>$A_{xy:n}$</td>
</tr>
<tr>
<td>Endowment - continuous</td>
<td>$\overline{A}_{x:n}$</td>
<td>$\overline{A}_{xy:n}$</td>
<td>$\overline{A}_{xy:n}$</td>
</tr>
<tr>
<td>Pure endowment</td>
<td>$A_{x:1:n}$ or nE_x</td>
<td>$A_{xy:1:n}$ or nE_{xy}</td>
<td>$A_{xy:1:n}$ or nE_{xy}</td>
</tr>
</tbody>
</table>
\((x, y, (T_x, T_y) \sim f_{T_x, T_y} \) \\

Recall: joint life status: \((xy)\) \(T_{xy} = \min(T_x, T_y)\) \\
last survivor status: \((\overline{xy})\) \(\overline{T}_{xy} = \max(\overline{T}_x, \overline{T}_y)\)

\[
P(T_{xy} > t) = P(T_x > t, T_y > t) = S_x(t, t)
\]

\[
\overline{t}P_{xy}
\]

\[
P(T_{\overline{xy}} \leq t) = P(T_x \leq t, T_y \leq t) = F_x(t, t)
\]

independence

\[
tP_{xy} = tP_x \cdot tP_y \quad tQ_{xy} = 1 - tP_{xy} = 1 - tP_x \cdot tP_y
\]

\[
= tQ_x tP_y + tP_x tQ_y + tQ_x tQ_y
\]
\[
T_x + T_y = T_{xy} + T_{xy}
\]
\[
t P_{xy} = t P_x + t P_y - t P_{xy}
\]
\[
t Q_{xy} = t Q_x + t Q_y - t Q_{xy}
\]
\[
\frac{f_{T_{xy}}}{f_{T_x}} (t) = t P_{xy} \frac{M_{x+t} \cdot y+t}{M_{x+t} \cdot y+t}
\]

If \(T_x, T_y \) are independent,
\[
\frac{f_{T_{x}, T_y}}{f_{T_x}} (t, s) = \frac{f_{T_x}}{f_{T_x}} (t) \cdot \frac{f_{T_y}}{f_{T_y}} (s)
\]
\[F_{T_{xy}}(t) = P(T_{xy} \leq t) = 1 - P(T_x > t, T_y > t) \]

\[= 1 - \frac{P(T_x > t) P(T_y > t)}{tP_x tP_y} \]

\[2F_{T_{xy}}(t) = \frac{1}{2t} \frac{\partial}{\partial t} \left(\frac{1}{tP_x tP_y} \right) = -tP_x \frac{\partial}{\partial t} tP_y - tP_y \frac{\partial}{\partial t} tP_x \]

\[= -tP_x tP_y M_{xy} + tP_x tP_y \]

\[= tP_x tP_y (M_{x+t} + M_{y+t}) \]

\[= tP_{xy} (M_{x+t} + M_{y+t}) \]

\[= tP_{xy} M_{x+t, y+t} \]
\begin{align*}
\bar{u} &= \text{status} \\
\vec{A}_u &= \mathbb{E}[U^{T_u}] \implies \int_0^\infty v \cdot f_{T_u}(t) \, dt \\
A_u &= \mathbb{E}[V^{K_u+1}] \implies \sum_{k=0}^{\infty} v^{K_u} q_u \\
\overline{A}_{xy} &= \mathbb{E}[V^{T_{xy}}] = \int_0^\infty v^t \cdot t \cdot p_{xy} (x+t,y+t) \, dt \\
\overline{A}_{xy} &= \overline{A}_x + \overline{A}_y - \overline{A}_{xy}
\end{align*}
Illustrative example 3

You are given:

- \((45) \) and \((65) \) have independent future lifetimes.
- Mortality for either life follows deMoivre’s law with \(\omega = 105 \).
- \(\delta = 5\% \)

Calculate \(\overline{A}_{45:65} \).
\[f_{\frac{T_{45:65}}{t}}(t) = \frac{dF(t)}{dt}, \quad f(t) = \frac{1}{60} \]

\[F_{\frac{T_{45:65}}{t}}(t) = \frac{1}{60} \left(\Pr(T_{45} \leq t) \Pr(T_{65} \leq t) \right) \]

\[= \begin{cases}
\frac{t}{60} \frac{t}{40}, & 0 \leq t \leq 40 \\
\frac{t}{40}, & 40 \leq t \leq 60 \\
0, & \text{else}
\end{cases} \]
\[f_{T_{45:65}}(t) = \begin{cases} \frac{t}{1200}, & 0 \leq t \leq 40 \\ \frac{1}{60}, & 40 < t \leq 60 \\ 0, & \text{else} \end{cases} \]

\[E[T_{45:65}] = \int_0^{40} v^t \frac{t}{1200} \, dt + \int_{40}^{60} v^t \frac{1}{60} \, dt + \varphi \]

\[v^t = e^{-0.05t} \]

\[\int t \, dv^t = \int t \, e^{-0.05t} \, dt = \frac{T_{45:65}^t}{2} \left(e^{-0.05} - 1 \right) + C \]

\[\bar{A}_{45:65} = \frac{1}{1200} \frac{T_{45:65}^t}{237.5477} + \frac{1}{60} \frac{T_{45:65}^t}{1.765964} \]

\[= 0.2265141 \]
the A.P.V. of an insurance that pays $1 upon the last death.

\[\bar{A}_{45:65} = \text{the A.P.V. of an insurance that pays $1 upon the first death} \]

\[\bar{A}_{45} + \bar{A}_{65} - \bar{A}_{45:65} \approx 0.2265141 \]

\[\int_{0}^{60} \frac{1}{60} v^t dt + \int_{0}^{40} \frac{1}{40} v^t dt > 0.2265741 \]
It also works for annuities, e.g. whole life annuity-due on status (u)

\[PV = \ddot{A}_{u+1} \]

\[E[PV] = \ddot{A}_u = \sum_{k=0}^{\infty} \ddot{a}_{k+1} \cdot k! q_u \]

Current payment technique

\[\ddot{a}_{xy} = \sum_{k=0}^{\infty} v^k k p_{xy} \]

Last survivor \[\ddot{a}_{xy} = \sum_{k=0}^{\infty} v^k k \overline{p}_{xy} = \ddot{a}_x + \ddot{a}_y - \ddot{a}_{xy} \]
\[\ddot{a} \rightarrow A \]

\[
E\left[\ddot{A}_{k_{n+1}} \right] = E\left[\frac{1 - V}{d} \right] \\
= 1 - E\left[\frac{V^{k_{n+1}}}{d} \right]
\]

e.g.

\[
\ddot{A}_{x_{xy}} = \frac{1 - A_{x_{xy}}}{d} \Rightarrow A_{x_{xy}} = 1 - d \ddot{A}_{x_{xy}}
\]

\[
\ddot{A}_{\overline{x_{xy}}} = \frac{1 - A_{\overline{x_{xy}}}}{d} \Rightarrow A_{\overline{x_{xy}}} = 1 - d \ddot{A}_{\overline{x_{xy}}}
\]

Continuum also works:

\[\ddot{A}_{x_{xy}} \neq \ddot{A}_{x} \ddot{A}_{y} \]

\[
A_{x_{xy}} = A_{x} + A_{y} - A_{\overline{x_{xy}}} \\
\ddot{A}_{x_{xy}} = \ddot{A}_{x} + \ddot{A}_{y} - \ddot{A}_{\overline{x_{xy}}}
\]
\(\bar{A}_{xy} = \) the APV of an annuity that pays $1 at the beginning of each year that both \((x)\) and \((y)\) are alive

\(\bar{\bar{A}}_{xy} = \) the APV of an annuity that pays $2 at the beginning of each year that at least one of \((x)\) or \((y)\) is alive
Pure endowment:

\[nE_x = v^n p_x \]
\[nE_y = v^n p_y \]
\[nE_{xy} = v^n p_{xy} \neq nE_x \cdot nE_y \]
\[(1+i)^n nE_x \cdot nE_y \]

\[nE_{\overline{xy}} = nE_x + nE_y - nE_{xy} \] if independent.
Contingent functions

- It is possible to compute probabilities, insurances and annuities based on the failure of the status that is contingent on the order of the deaths of the members in the group, e.g. (x) dies before (y).

- These are called contingent functions.

- Consider the probability that (x) fails before (y) - assuming independence:

$$
\Pr[T_x < T_y] = \int_0^\infty t \cdot p_x \mu_{x+t} \cdot p_y dt
$$

- The actuarial symbol for this is $q_{1\infty}^{xy}$. It should be obvious this is the same as ∞q_{xy}^2.
\(f_{xy}^2 = f_{xy} \quad \rightarrow \quad b + n f_{xy}^2 \neq n f_{xy}^2 \)

\(f_{xy} = f_{xy} \quad \rightarrow \quad \int_0^\infty p_{xy} m_{y+t} \, dt \)

\(\int_0^\infty q_{xy} t \, p_x \, m_{x+t} \, dt \)

\(n f_{xy}^2 + n \dot{f}_{xy} = \dot{n} p_{xy} - n \dot{f}_{xy} \) independent
In summary, we continue to

\[\int_{\gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{\partial \Omega} \mathbf{F} \cdot d\mathbf{S} \]

So if \(\mathbf{F} = p \mathbf{x} + q \mathbf{y} \)

\[\int_{\gamma} p \mathbf{x} + q \mathbf{y} \cdot d\mathbf{r} + \int_{\partial \Omega} p x d\mathbf{S} + q y d\mathbf{S} \]

\[
\begin{align*}
\int_{\gamma} & p x d\mathbf{S} + \int_{\partial \Omega} q y d\mathbf{S} \\
= & \int_{\gamma} p x d\mathbf{S} + \int_{\partial \Omega} q y d\mathbf{S} \\
\end{align*}
\]

- Remember
 - April 18, 2018
 - February 15,
- continued

- The probability that \((x) \) dies before \((y) \) and within \(n \) years is given by

\[
nq_{1}^{nxy} = \int_{0}^{n} t p_{xy} \mu_{x+t} dt.
\]

- Similarly, we have the probability that \((y) \) dies before \((x) \) and within \(n \) years:

\[
nq_{2}^{nxy} = \int_{0}^{n} t p_{xy} \mu_{y+t} dt.
\]

- It is easy to show that \(nq_{xy}^{1} + nq_{xy}^{1} = nq_{xy} \).

- One can similarly define and interpret the following: \(nq_{xy}^{2} \) and \(nq_{xy}^{2} \), and show that

\[
nq_{xy}^{2} + nq_{xy}^{2} = nq_{\overline{xy}}.
\]
\[n \overrightarrow{Q}_1 = \frac{\int_0^t \overrightarrow{F} \times \overrightarrow{M} x \ dt}{\int_0^t f y + p x \ \overrightarrow{M} x + x \ dt} \]

\[n \overrightarrow{Q}_2 = \frac{\int_0^t \overrightarrow{F} \times \overrightarrow{M} y \ dt}{\int_0^t f x + p y \ \overrightarrow{M} y + y \ dt} \]

\[n \overrightarrow{Q}_3 = \frac{\int_0^t \overrightarrow{F} \times \overrightarrow{M} z \ dt}{\int_0^t f z + p z \ \overrightarrow{M} z + z \ dt} \]

\[n \overrightarrow{Q}_4 = \frac{n q_x + n q_y - n q_{xy}}{n q_{xyz}} \]
\[n^q_{x y z} = \int_0^t \int_0^n p_{x y z} M_{y+t} \, dt \]

\[n^q_{x y z} = \int_0^n \int_0^t q_x t p_y t p_z M_{z+t} \, dt \]
\[\overline{A}_{x \overline{y}} \]

Insurance pays at the moment \((y)\) dies provided \((y)\) is predeceased by \((x)\), predeceased \((y)\) dies after \((x)\) + 1

\[\int_0^{\infty} e^{-t \lambda x} \cdot q_{x+t} p_y \cdot M_{y+t} \, dt \]

\[\overline{A}_{x \overline{y}} = \overline{A}_y - \overline{A}_{x \overline{y}} \Rightarrow \overline{A}_{x \overline{y}} + \overline{A}_{x \overline{y}}^2 = \overline{A}_y \]
\[PV = \begin{cases} \sqrt{T_y}, & T_y \geq T_x \\ 0, & T_y < T_x \end{cases} \]

\[= \sqrt{T_y} \cdot I(T_y \geq T_x) \]

\[E[PV] = E[\sqrt{T_y} \cdot I(T_y \geq T_x)] \rightarrow A_{xy}^2 \]

\[+ E[\sqrt{T_y} \cdot I(T_y \leq T_x)] \rightarrow A_{xy}^2 \text{ or } A_{xy}' \]

\[E[\sqrt{T_y} \cdot 1] = A_y \]
Illustrative example 4

An insurance of $1 is payable at the moment of death of \((y)\) if predeceased by \((x)\), i.e. if \((y)\) dies after \((x)\). The actuarial present value (APV) of this insurance is denoted by \(\overline{A}_{xy}^2\). Assume \((x)\) and \((y)\) are independent.

1. Give an expression for the present value random variable for this insurance.

2. Show that

\[
\overline{A}_{xy}^2 = \overline{A}_y - \overline{A}_{xy}^1.
\]

3. Prove that

\[
\overline{A}_{xy}^2 = \int_0^\infty v^t \overline{A}_{y+t} \overline{iP}_{xy} \mu_x + t dt,
\]

and interpret this result.
Take the case of constant free _{Stop here}:

\[T_x \sim \text{exponential with } \mu_x = 0.2 \]

\[T_y \sim \text{with } \mu_y = 0.1 \]

\[\bar{A}_x = \frac{\mu_x}{\mu_x + \delta} \]

Derive, \[\bar{A}_{xy}, \bar{a}_{xy}, \bar{A}_{xy}, \bar{a}_{xy} \]

\[\bar{A}_{xy} = \bar{A}_x + \bar{A}_y - \bar{A}_{xy} \]

\[\bar{A}_{xy} = 1 - \delta \bar{a}_{xy} \]
Singh life / discrete given constant force.

\[A_x = \sum_{k=0}^{\infty} \nu (V_{x+k})^{k+1} q_x \]

\[\ddot{a}_x = \sum_{k=0}^{\infty} \nu k p_x \]

\[\dddot{a}_x = \sum_{k=0}^{\infty} \nu k^2 p_x \]

\[A_{xy} = \sum_{k=0}^{\infty} e^{-\delta k} (1-e^{-M_x k}) \]

\[A_{\bar{xy}} = \sum_{k=0}^{\infty} e^{-\delta k} \]

\[A_x = 1 - d \ddot{a}_x \]

Exam 2: STOP HERE
Reversionary annuity
pay commences upon death of the other.

\(\bar{A}_{y|\delta x} = \int_0^\infty v^t p_{xy} \mu_{yt+t} \bar{A}_{x+t} \, dt \)

\(\text{CPT} \quad \quad = \int_0^\infty v^t p_x (1-t p_y) \, dt = \bar{A}_x - \bar{A}_{xy} \)
Reversionary annuities

A reversionary annuity is an annuity which commences upon the failure of a given status \((u)\) if a second status \((v)\) is then alive, and continues thereafter so long as status \((v)\) remains alive.

- Consider the simplest form: an annuity of $1 per year payable continuously to a life now aged \(x\), commencing at the moment of death of \((y)\) - briefly annuity to \((x)\) after \((y)\).

- APV for this reversionary annuity:

\[
\bar{a}_{y|x} = \int_{0}^{\infty} v^t t p_{xy} \mu_y + t \bar{a}_{x+t} dt.
\]

- One can show the more intuitive formula (using current payment technique):

\[
\bar{a}_{y|x} = \int_{0}^{\infty} v^t t p_{x} (1 - t p_y) dt = \bar{a}_{x} - \bar{a}_{xy}.
\]
Reversionary annuities

Present value random variable

- For the reversionary annuity considered in the previous slides, one can also write the present-value random variable at issue as:

$$Z = \begin{cases} T_y \bar{a}_{T_x-T_y}, & T_y \leq T_x \\ 0, & T_y > T_x \end{cases}$$

- By taking the expectation of Z, we clearly have $\bar{a}_{y\mid x} = \bar{a}_x - \bar{a}_{xy}$.

Can you explain the last line?
Reversionary annuities - discrete

- In general, an annuity to any status \((u)\) after status \((v)\) is

\[a_{v\mid u} = a_u - a_{uv} \]

where \(a\) is any annuity which takes discrete, continuous, or payable \(m\) times a year.

- Consider the discrete form of reversionary annuity: $1 per year payable to a life now aged \(x\), commencing at the EOY of death of \((y)\).

- APV for this reversionary annuity:

\[a_{y\mid x} = \sum_{k=1}^{\infty} v^k k p_x (1 - k p_y) = a_x - a_{xy}. \]

- If \((v)\) is the term-certain \((\overline{n})\) and \((u)\) is the single life \((x)\), then

\[a_{\overline{n}\mid x} = a_x - a_{x: \overline{n}} \]

which is indeed a single-life deferred annuity.
\[a_{y|xz} = a_{xz} - a_{xyz} \]

You pay annually starting upon death of \((y)\) until the first death of \((x), (z)\).

\[a_{y|xz} = a_{xz} - a_{y:xz} \]

Rewritten:

\[tP_{xy} = tP_{xy}^{00} \]

\[tP_{xy} = 1 - tP_{xy}^{03} = tP_{xy}^{01} + tP_{xy}^{02} + tP_{xy}^{00} \]
Back to multiple state framework

Translating the probabilities/forces earlier defined, the following should now be straightforward to verify:

- \(tP_{xy} = tP_{xy}^{00} \)
- \(tQ_{xy} = tP_{xy}^{01} + tP_{xy}^{02} + tP_{xy}^{03} \)
- \(tQ_{x\overline{y}} = tP_{xy}^{00} + tP_{xy}^{01} + tP_{xy}^{02} \)
- \(tQ_{\overline{x}y} = tP_{xy}^{03} \)
- \(tQ_{\overline{x}\overline{y}} = tP_{xy}^{03} \)
- \(tQ_{xy}^1 = \int_0^t sP_{xy} \mu_{x+s:y+s} ds \)
- \(tQ_{xy}^2 = \int_0^t sP_{xy} \mu_{x+s} ds \)
Annuities

In terms of the annuity functions, the following should also be straightforward to verify:

- $\bar{a}_{xy} = \bar{a}_{xy} = \int_0^\infty e^{-\delta t} tP_{xy}^{00} dt$

- $\bar{a}_{xy} = \bar{a}_{xy}^{00} + \bar{a}_{xy}^{01} + \bar{a}_{xy}^{02} = \int_0^\infty e^{-\delta t} (tP_{xy}^{00} + tP_{xy}^{01} + tP_{xy}^{02}) dt$

- $\bar{a}_{x|y} = \bar{a}_{xy}^{02} = \int_0^\infty e^{-\delta t} tP_{xy}^{02} dt$

The following also holds true (easy to verify):

- $\bar{a}_{xy} = \bar{a}_x + \bar{a}_y - \bar{a}_{xy}$

- $\bar{a}_{x|y} = \bar{a}_y - \bar{a}_{xy}$
In terms of insurance functions, the following should also be straightforward to verify:

\[\overline{A}_{xy} = \int_0^\infty e^{-\delta t} tP_{xy}^{00} (\mu_x + t: y + t) dt \]

\[\overline{A}_{xy} = \int_0^\infty e^{-\delta t} (tP_{xy}^{13} \mu_x + tP_{xy}^{23} \mu_y) dt \]

\[\overline{A}_{xy}^1 = \int_0^\infty e^{-\delta t} tP_{xy}^{00} \mu_x + tP_{xy}^{02} \mu_y + t dt \]

\[\overline{A}_{xy}^2 = \int_0^\infty e^{-\delta t} tP_{xy}^{01} \mu_x + tP_{xy}^{13} \mu_y + t dt \]

The following also holds true (easy to verify):

\[\overline{A}_{xy} = \overline{A}_x + \overline{A}_y - \overline{A}_{xy} \quad \text{and} \quad \overline{a}_{xy} = \frac{1}{\delta} (1 - \overline{A}_{xy}) \]

\[\overline{A}_{xy}^1 + \overline{A}_{xy}^2 = \overline{A}_x \]
The case of independence

\[\begin{align*}
 \mu_m x + t &+ t \\
 \mu_f y + t &+ t \\
 x \text{ alive} &\quad y \text{ alive} \\
 (0) &\quad (1)
\end{align*} \]

\[\begin{align*}
 \mu_m x + t &
 \mu_f y + t \\
 x \text{ dead} &\quad y \text{ alive} \\
 (2) &\quad (3)
\end{align*} \]
Illustrative example 5

Suppose that the future lifetimes, T_x and T_y, of a husband and wife, respectively are independent and each is uniformly distributed on $[0, 50]$. Assume $\delta = 5\%$.

1. A special insurance pays $1 upon the death of the husband, provided that he dies first. Calculate the actuarial present value for this insurance and the variance of the present value.

2. An insurance pays $1 at the moment of the husband’s death if he dies first and $2 if he dies after his wife. Calculate the APV of the benefit for this insurance.

3. An insurance pays $1 at the moment of the husband’s death if he dies first and $2 at the moment of the wife’s death if she dies after her husband. Calculate the APV of the benefit for this insurance.
1. \[\text{APV} = \int_0^{50} v^t \cdot \bar{P}_x M_{xt} \cdot \bar{P}_y \, dt \]
 \[= \int_0^{50} e^{-0.05t} \cdot \frac{1}{50} \cdot (1 - \frac{t}{50}) \, dt \]
 \[= 1.253133 \]

 Variance = APV \cdot 28 - (\text{APV})^2

 \[= \int_0^{50} e^{-0.10t} \cdot \frac{1}{50} \cdot (1 - \frac{t}{50}) \, dt - (1.253133)^2 \]
 \[= 0.961928 \]

2. \[\text{APV} = 1 - \int_0^{50} v^t \cdot \bar{P}_x M_{xt} \cdot \bar{P}_y \, dt + 2 \int_0^{50} v^t \cdot \bar{P}_x M_{xt} \cdot \bar{P}_y \, dt \]
 \[= 2 \int_0^{50} v^t \cdot \bar{P}_x M_{xt} \cdot \bar{P}_y \, dt - \text{APV}(\text{@}1) \]
\[T_x \sim U(0, 50) \]
\[T_y \sim U(0, 50) \]

\[e^{-\delta t} \frac{1}{50} \]

\[= 0.04811984 \]

\[\text{APV} = \overbrace{\text{APV}(\theta, t)} + 2 \int_{0}^{\infty} v^+ t y_{\theta} \mu_{y+i+t} + \bar{y} \text{d}t}^{\text{APV}(\theta, t)} \]

\[= 3 \times (0.2531536) = 0.7594008 \]
Illustrative example 6

For a husband and wife with ages x and y, respectively, you are given:

- $\mu_{x+t} = 0.02$ for all $t > 0$
- $\mu_{y+t} = 0.01$ for all $t > 0$
- $\delta = 0.04$

1. Calculate $\bar{a}_{xy:20}$ and $\bar{a}_{xy:20}$.

2. Rewrite this problem in a multiple state framework and solve (1) within this framework.
\[\mathbf{A}_{xy: 20} = \int_0^{20} v^t + p_{xy} \, dt \]

\[e^{-0.04t} + p_x + p_y = -\mu_x t - \mu_y t \]

\[e^{-0.02t} - \mu_x t - \mu_y t \]

\[= (10.7629) \]

\[\mathbf{a}_{xy: 20} = \mathbf{a}_{x: 20} + \mathbf{a}_{y: 20} - \mathbf{A}_{xy: 20} \]

\[\int_0^{20} e^{-0.04t} + p_x \, dt \]

\[\int_0^{20} e^{-0.02t} + p_y \, dt \]

\[\int_0^{20} e^{-0.01t} \]

\[= 13.52627 \]
For (x) and (y) with independent future lifetimes, you are given:

- $\bar{a}_x = 10.06$
- $\bar{a}_y = 11.95$
- $\bar{a}_{xy} = 12.59$
- $\bar{A}_{1}^{xy} = 0.09$
- $\delta = 0.07$

Calculate \bar{A}_{xy}^{1}.

SOA
dom in practice on #9

similar on 12 test #9
The model with a common shock

\[\mu_{02} x + t : y + t = y + t \mu_{13} x + t : y + t = y + t \mu_{03} x + t : y + t = y + t \mu_{01} x + t : y + t = y + t \mu_{23} y + t = y + t \]

\(x \) alive
\(y \) alive
(0)

\(x \) dead
\(y \) alive
(2)

\(x \) alive
\(y \) dead
(1)

\(x \) dead
\(y \) dead
(3)

\(\sigma = 0.05 \)
Illustrative example 8: SOA Spring 2014 Question # 7

The joint mortality of two lines \((x)\) and \((y)\) is being modeled as a multiple state model with a common shock (see diagram in the previous page).

You are given:

- \(\mu^{01} = 0.010\)
- \(\mu^{02} = 0.030\)
- \(\mu^{03} = 0.005\)
- \(\delta = 0.05\)

A special joint whole life insurance pays \(1000\) at the moment of simultaneous death, if that occurs, and zero otherwise.

Calculate actuarial present value of this insurance.
\[1000 \times \int_0^{\infty} e^{-0.05t} \cdot 0.03 \cdot dt \\
= 1000 \cdot \left(\frac{0.005}{0.095} \right) = \frac{52.63158}{0.005} \]