2.8 Distance Formula, Circles, Midpoint Formula

A. Distance Formula

We seek a formula for the distance between two points:

By the Pythagorean Theorem, \[d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2\]

Since distance is positive, we have:

Distance Formula: \[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\]
B. Example

Find the distance between \((-1, 2)\) and \((3, -4)\)

Solution

Use the distance formula:

\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]

\[
= \sqrt{(3 - (-1))^2 + (4 - 2)^2}
\]

\[
= \sqrt{4^2 + (-6)^2}
\]

\[
= \sqrt{16 + 36}
\]

\[
= \sqrt{52}
\]

Ans \(2\sqrt{13}\)

C. Circles

A circle is the set of points a fixed distance \(r\) from a center \((a, b)\):

![Diagram of a circle with center \((a, b)\) and radius \(r\)]

By the distance formula, \(r = \sqrt{(x - a)^2 + (y - b)^2}\)
Eliminating the radical, we get:

Equation of Circle in Standard Form:

\[(x - a)^2 + (y - b)^2 = r^2\]

Note: \(r\) is called the **radius** of the circle.

D. Examples

Example 1:
Find the equation of a circle with center \((2, -1)\) and radius 4.

Solution

The equation of a circle in standard form: \((x - a)^2 + (y - b)^2 = r^2\)

Thus, we have: \((x - 2)^2 + (y + 1)^2 = 4^2\)

Ans \((x - 2)^2 + (y + 1)^2 = 16\)

Example 2:
Given a circle \(x^2 + (y - 3)^2 = 5\), find the center and radius.

Solution

Since the equation of a circle in standard form is \((x - a)^2 + (y - b)^2 = r^2\), we have

Ans

- center: \((0, 3)\)
- radius: \(\sqrt{5}\)
E. Putting the Equation of a Circle in Standard Form

Sometimes the equation of a circle is not in standard form. To put it in standard form, we complete the square in both x and y. In standard form, it is easy to identify the center and radius of the circle.

Example 1: Put the equation of the circle $x^2 + y^2 - 6x + 2y = 15$ into standard form.

Solution

$$x^2 + y^2 - 6x + 2y = 15$$

$$(x^2 - 6x) + (y^2 + 2y) = 15$$

$$[(x^2 - 6x + 9) - 9] + [y^2 + 2y + 1] - 1 = 15$$

$$(x - 3)^2 - 9 + (y + 1)^2 - 1 = 15$$

Ans \[(x - 3)^2 + (y + 1)^2 = 25\]

Example 2: Put the equation of the circle $2x^2 + 2y^2 - 10x - 12y = 7$ into standard form.

Solution

$$2x^2 + 2y^2 - 10x - 12y = 7$$

$$(2x^2 - 10x) + (2y^2 - 12y) = 7$$

$$2(x^2 - 5x) + 2(y^2 - 6y) = 7$$

$$\left[2 \left(x^2 - 5x + \frac{25}{4} \right) - \frac{25}{2} \right] + \left[2(y^2 - 6y + 9) - 18 \right] = 7$$
\[2 \left(x - \frac{5}{2} \right)^2 + 2(y - 3)^2 = \frac{61}{2} + 7 \]

Ans \[\left(x - \frac{5}{2} \right)^2 + (y - 3)^2 = \frac{75}{4} \]

F. Graphing Circles

To graph a circle:

1. Put the equation in standard form.
2. Find the center and radius.
3. Find the \(x \) and \(y \) intercepts.
4. Plot the \(x \) and \(y \) intercepts.
 Going any direction from the center by a radius amount reaches the circle.
5. Connect the dots.
Example: Find the center, radius, x and y intercepts of the circle, where $x^2 + y^2 - 2x + 8y = -5$. Then graph the circle.

Solution

First, put the circle in standard form:

\[
x^2 + y^2 - 2x + 8y = -5
\]

\[
(x^2 - 2x) + (y^2 + 8y) = -5
\]

\[
(x^2 - 2x + 1) - 1 + (y^2 + 8y + 16) - 16 = -5
\]

\[
(x - 1)^2 + (y + 4)^2 - 17 = -5
\]

\[
(x - 1)^2 + (y + 4)^2 = 12
\]

center: \((1, -4)\)

radius: \(\sqrt{12} = 2\sqrt{3}\)

x-intercepts: set $y = 0$:

\[
(x - 1)^2 + (0 + 4)^2 = 12
\]

\[
(x - 1)^2 + 16 = 12
\]

\[
(x - 1)^2 = -4
\]

\[
x - 1 = \pm \sqrt{-4}
\]

Thus there are no x-intercepts.
y-intercepts: set $x = 0$:

\[
(0 - 1)^2 + (y + 4)^2 = 12 \\
1 + (y + 4)^2 = 12 \\
(y + 4)^2 = 11 \\
y + 4 = \pm \sqrt{11} \\
y = -4 \pm \sqrt{11}
\]

Thus the y-intercepts are $-4 \pm \sqrt{11}$.

Graph:
G. Midpoint Formula

The **midpoint** between two points is the point on the line halfway between them.

Midpoint Formula: \[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
\]

“average the \(x\)-coordinates and average the \(y\)-coordinates”

Example: Find the midpoint between \((-1, 2)\) and \((3, -4)\)

Solution

\[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) = \left(\frac{-1 + 3}{2}, \frac{2 + (-4)}{2} \right) = \left(\frac{2}{2}, \frac{-2}{2} \right)
\]

Ans \((1, -1)\)