Multiple Choice Problems.

1. Suppose f(x) is a continuous function with values given by the table below.

Х	-2	-1	0	1
f(x)	0	3	0	-3

Which of the following statement is correct?

A f(x) = 2 has a root $c \in (-1, 0)$.

B f(x) = 2 has a root $c \in (0, 1)$.

C f(x) = 4 has a root $c \in (-1, 0)$.

- **D** f(x) = 4 has a root $c \in (-2, 1)$.
- ${\bf E}\,$ None of the above
- 2. Suppose you are estimating the root of $x^3 = 5x 1$ using Newton's method. If you use $x_1 = 2$, find the exact value of x_2

A $x_2 = 2 - \frac{1}{7}$ **B** $x_2 = 2 + \frac{1}{7}$ **C** $x_2 = 8 - \frac{8}{9}$ **D** $x_2 = 8 + \frac{8}{9}$ **E** $x_2 = 5 + \frac{1}{7}$

3. Evaluate the limit:

$$\lim_{x \to 3} \frac{x+2}{x(x-3)}$$

A $+\infty$ B $-\infty$ C $\frac{5}{3}$ D $-\frac{5}{3}$ E The limit does not exist.

4. Find the horizontal aysmptote(s) of the following function:

$$f(x) = \frac{x-2}{3x+5}$$

A $x = \frac{1}{3}$ **B** $y = \frac{1}{3}$ **C** $x = -\frac{5}{3}$ **D** y = 2**E** $y = -\frac{2}{5}$ 5. Compute the limit:

$$\lim_{h \to 0} \frac{\frac{1}{h+2} - \frac{1}{2}}{h}$$

A $+\infty$ **B** $\frac{1}{2}$ **C** $\frac{1}{4}$ **D** $-\frac{1}{4}$ **E** 0

6. Find the limit:

$$\lim_{x \to 0} \frac{\sin(2x)}{3x}$$

- A $\frac{2}{3}$
- $\mathbf{B} \frac{3}{2}$
- \mathbf{C} 0
- $D \propto$
- ${\bf E}\,$ Does not exist.

7. Suppose $\int_0^2 f(x) \, dx = -4$, $\int_0^5 f(x) \, dx = 6$. Find $\int_2^5 f(x) \, dx$ and the average of f(x) over [2, 5]

- **A** $\int_{2}^{5} f(x)dx = 2$, average of f is $\frac{2}{3}$ **B** $\int_{2}^{5} f(x)dx = 10$, average of f is $\frac{10}{3}$ **C** $\int_{2}^{5} f(x)dx = -10$, average of f is $-\frac{10}{3}$ **D** $\int_{2}^{5} f(x)dx = -2$, average of f is $-\frac{2}{3}$ **E** $\int_{2}^{5} f(x)dx = 10$, average of f is $\frac{10}{5}$
- 8. Evaluate

$$\int_{-\pi}^{\pi} \sin x \cdot \sqrt{\cos x + 2} \, dx$$

A $\frac{4}{3}$ **B** 0 **C** $-\frac{4}{3}$ **D** $-\frac{2}{3}$ **E** 2 9. Evaluate the sum

$$\sum_{i=1}^{20} \frac{4-i}{2}$$

 $\begin{array}{ll} {\bf A} & 40 - \frac{20 \times 21}{2} \\ {\bf B} & 40 - \frac{20 \times 21}{4} \\ {\bf C} & 20 - \frac{20 \times 21}{2} \\ {\bf D} & 20 - \frac{20 \times 21}{4} \\ {\bf E} & \frac{20 \times 21}{2} \end{array}$

10. Evaluate the integral

$$\int \sqrt[3]{2x-8} \, \mathrm{d}x$$

 $\begin{array}{l} \mathbf{A} \quad \frac{3}{4}x^{\frac{4}{3}} + C \\ \mathbf{B} \quad \frac{3}{8}(2x-8)^{\frac{4}{3}} + C \\ \mathbf{C} \quad \frac{3}{4}(2x-8)^{\frac{4}{3}} + C \\ \mathbf{D} \quad \frac{3}{8}x^{\frac{4}{3}} + C \\ \mathbf{E} \quad \frac{1}{3}(2x-8)^{\frac{3}{2}} + C \end{array}$

11. Find the average value of f(x) = 2x + 3 on [-1, 2];

A 4 **B** 12 **C** $\frac{8}{3}$ **D** -4 **E** 8

12. Sovle the initial value problem if

$$y' = \sin(\frac{x}{3}), \ y(0) = 4$$

A $-3\cos(\frac{x}{3}) + 1$ **B** $-\cos(\frac{x}{3}) + 7$ **C** $-3\cos(\frac{x}{3}) + 7$ **D** $-\frac{1}{3}\cos(\frac{x}{3}) + 1$ **E** $-3\sin(\frac{x}{3}) + 4$ Standard Response Problems.

1. Calculate the first and second order derivatives of $f(x) = x \sin x$. And find the equation of the tangent line to the curve y = f(x) at x = 0

2. Find the derivatives of

$$f(x) = \frac{\cos(x^2)}{\sqrt{x}}$$

3. Suppose that y and x satisfy the implicit equation

$$xy^3 + xy = 20$$

(a) Find $\frac{dy}{dx}$

(b) Use your answer in part (a) to find the equation of the tangent line to the curve $xy^3 + xy = 20$ at the point (10, 1).

4. If the radius of a circular ink blot is growing at a rate of 3 cm/min. How fast (in cm^2/min) is the area of the blot growing when the radius is 10 cm?

5. Car A is traveling west at 50 mi/h and car B is traveling north at 60mi/h. Both are headed for the intersection of the two roads. At what rate are the cars approaching each other when car A is 0.3 mi and car B is 0.4 mi from the intersection?

6. Find the absolute maximum and minimum of $f(x) = -x^3 + 3x$ on [-1, 2].

7. A particle moves with velocity $v(t) = -t^2 + 6t - 8$, $0 \le t \le 6$. Sketch the graph of v(t) on [2, 4]. USE FOUR RECTANGLES OF EQUAL WIDTH to find the overestimate of the displacement of the particle traveled from t = 2 to t = 4.

- 8. (S16) Suppose $f(x) = x^4 6x^2 3$.
 - (a) Identify the intervals over which f(x) is increasing and decreasing, and all values of x where f(x) attains its local maximum or minimum.

(b) Identify the intervals over which f(x) is concave up and down, and all values of x where f(x) has an inflection point.

9. Calculate the integral

$$\int \frac{x^2}{\sqrt{3+x^3}} \, dx$$

10. Calculate the integral $\int_0^{\pi/4} \tan x \cdot \sec x + 2x \ dx$

11. Find the area of the region enclosed by the graphs of the equations y = x + 4 and $y = x^2 - x + 1$.