Multiple Choice Problems.

1. Suppose $f(x)$ is a continuous function with values given by the table below.

x	-2	-1	0	1
$\mathrm{f}(\mathrm{x})$	0	3	0	-3

Which of the following statement is correct?
A $f(x)=2$ has a root $c \in(-1,0)$.
B $f(x)=2$ has a root $c \in(0,1)$.
C $f(x)=4$ has a root $c \in(-1,0)$.
D $f(x)=4$ has a root $c \in(-2,1)$.
E None of the above
2. Suppose you are estimating the root of $x^{3}=5 x-1$ using Newton's method. If you use $x_{1}=2$, find the exact value of x_{2}

A $x_{2}=2-\frac{1}{7}$
B $x_{2}=2+\frac{1}{7}$
C $x_{2}=8-\frac{8}{9}$
D $x_{2}=8+\frac{8}{9}$
E $x_{2}=5+\frac{1}{7}$
3. Evaluate the limit:

$$
\lim _{x \rightarrow 3} \frac{x+2}{x(x-3)}
$$

A $+\infty$
B $-\infty$
C $\frac{5}{3}$
D $-\frac{5}{3}$
E The limit does not exist.
4. Find the horizontal aysmptote(s) of the following function:

$$
f(x)=\frac{x-2}{3 x+5}
$$

A $x=\frac{1}{3}$
B $y=\frac{1}{3}$
C $x=-\frac{5}{3}$
D $y=2$
E $y=-\frac{2}{5}$
5. Compute the limit:

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{h+2}-\frac{1}{2}}{h}
$$

A $+\infty$
B $\frac{1}{2}$
C $\frac{1}{4}$
D $-\frac{1}{4}$
E 0
6. Find the limit:

$$
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{3 x}
$$

A $\frac{2}{3}$
B $\frac{3}{2}$
C 0
D ∞
E Does not exist.
7. Suppose $\int_{0}^{2} f(x) d x=-4, \int_{0}^{5} f(x) d x=6$. Find $\int_{2}^{5} f(x) d x$ and the average of $f(x)$ over $[2,5]$

A $\int_{2}^{5} f(x) d x=2$, average of f is $\frac{2}{3}$
B $\int_{2}^{5} f(x) d x=10$, average of f is $\frac{10}{3}$
C $\int_{2}^{5} f(x) d x=-10$, average of f is $-\frac{10}{3}$
D $\int_{2}^{5} f(x) d x=-2$, average of f is $-\frac{2}{3}$
$\mathbf{E} \int_{2}^{5} f(x) d x=10$, average of f is $\frac{10}{5}$
8. Evaluate

$$
\int_{-\pi}^{\pi} \sin x \cdot \sqrt{\cos x+2} d x
$$

A $\frac{4}{3}$
B 0
C $-\frac{4}{3}$
D $-\frac{2}{3}$
E 2
9. Evaluate the sum

$$
\sum_{i=1}^{20} \frac{4-i}{2}
$$

A $40-\frac{20 \times 21}{2}$
B $40-\frac{20 \times 21}{4}$
C $20-\frac{20 \times 21}{2}$
D $20-\frac{20 \times 21}{4}$
E $\frac{20 \times 21}{2}$
10. Evaluate the integral

$$
\int \sqrt[3]{2 x-8} \mathrm{~d} x
$$

A $\frac{3}{4} x^{\frac{4}{3}}+C$
B $\frac{3}{8}(2 x-8)^{\frac{4}{3}}+C$
C $\frac{3}{4}(2 x-8)^{\frac{4}{3}}+C$
D $\frac{3}{8} x^{\frac{4}{3}}+C$
E $\frac{1}{3}(2 x-8)^{\frac{3}{2}}+C$
11. Find the average value of $f(x)=2 x+3$ on $[-1,2]$;

A 4
B 12
C $\frac{8}{3}$
D -4
E 8
12. Sovle the initial value problem if

$$
y^{\prime}=\sin \left(\frac{x}{3}\right), \quad y(0)=4
$$

A $-3 \cos \left(\frac{x}{3}\right)+1$
B $-\cos \left(\frac{x}{3}\right)+7$
C $-3 \cos \left(\frac{x}{3}\right)+7$
D $-\frac{1}{3} \cos \left(\frac{x}{3}\right)+1$
E $-3 \sin \left(\frac{x}{3}\right)+4$

Standard Response Problems.

1. Calculate the first and second order derivatives of $f(x)=x \sin x$. And find the equation of the tangent line to the curve $y=f(x)$ at $x=0$
2. Find the derivatives of

$$
f(x)=\frac{\cos \left(x^{2}\right)}{\sqrt{x}}
$$

3. Suppose that y and x satisfy the implicit equation

$$
x y^{3}+x y=20
$$

(a) Find $\frac{d y}{d x}$
(b) Use your answer in part (a) to find the equation of the tangent line to the curve $x y^{3}+x y=20$ at the point $(10,1)$.
4. If the radius of a circular ink blot is growing at a rate of $3 \mathrm{~cm} / \mathrm{min}$. How fast ($\mathrm{in} \mathrm{cm}^{2} / \mathrm{min}$) is the area of the blot growing when the radius is 10 cm ?
5. Car A is traveling west at $50 \mathrm{mi} / \mathrm{h}$ and car B is traveling north at $60 \mathrm{mi} / \mathrm{h}$. Both are headed for the intersection of the two roads. At what rate are the cars approaching each other when car A is 0.3 mi and car B is 0.4 mi from the intersection?
6. Find the absolute maximum and minimum of $f(x)=-x^{3}+3 x$ on $[-1,2]$.
7. A particle moves with velocity $v(t)=-t^{2}+6 t-8,0 \leq t \leq 6$. Sketch the graph of $v(t)$ on [2,4]. USE FOUR RECTANGLES OF EQUAL WIDTH to find the overestimate of the displacement of the particle traveled from $t=2$ to $t=4$.
8. (S16) Suppose $f(x)=x^{4}-6 x^{2}-3$.
(a) Identify the intervals over which $f(x)$ is increasing and decreasing, and all values of x where $f(x)$ attains its local maximum or minimum.
(b) Identify the intervals over which $f(x)$ is concave up and down, and all values of x where $f(x)$ has an inflection point.
9. Calculate the integral

$$
\int \frac{x^{2}}{\sqrt{3+x^{3}}} d x
$$

10. Calculate the integral $\int_{0}^{\pi / 4} \tan x \cdot \sec x+2 x d x$
11. Find the area of the region enclosed by the graphs of the equations $y=x+4$ and $y=x^{2}-x+1$.
