1. Calculate the first derivative of the following functions.
(a) (4 points) $f(x)=\sqrt[3]{x}+\frac{1}{x^{2}}$
(b) (4 points) $g(x)=\frac{3 x^{4}}{\tan x}$
(c) (6 points) $h(x)=\cos ^{3} x$
2. Let $f(x)=-x(x-4)=-x^{2}+4 x$ to answer the following questions:
(a) (4 points) Calculate the average rate of change of f over the interval [1, 2].
(b) (6 points) Calculate $f^{\prime}(1)$ using the definition of the derivative. (other methods will receive Opts)
(c) (2 points) Write an equation of the tangent line through the point $(1, f(1))$.
(d) (2 points) Use the graph on the right to sketch:

- a secant line through $(1, f(1))$ and $(2, f(2))$
- a tangent line through the point $(1, f(1))$

Results from parts (a)-(c) might be helpful.

3. Use the graph of $f(x)$ shown below to answer the following questions.
(a) (4 points) Evaluate the limits:

$$
\begin{array}{ll}
\lim _{x \rightarrow 2^{+}} f(x)= & \lim _{x \rightarrow 2} f(x)= \\
\lim _{x \rightarrow 3} f(x)= & f(3)=
\end{array}
$$

(b) (4 points) Is $f(x)$ is continuous at $x=3$? Use the definition of continuity to explain your answer.
4. The height of a projectile (in feet) is given by the function $h(t)=-16 t^{2}+64 t+5$.
(a) (2 points) Is the projectile moving up or down at $t=1$? Show your work!
(b) (4 points) What is the maximum height of the projectile? Include units!
5. (7 points) Suppose that y and x satisfy the implicit equation

$$
2 x+2 y+x^{2} y^{3}=2 .
$$

Find the the derivative $\frac{d y}{d x}$ at the point $(-2,1)$.
6. (7 points) You are blowing air into a spherical balloon at a constant rate of $11 \mathrm{in}^{3} / \mathrm{sec}$. How fast is the radius of the balloon growing when the balloon has a radius of 4 inches?

