Multiple Choice Problems.

1. Suppose $f(x)$ is a continuous and differentiable function with values given by the table below.

x	-2	-1	0	1
$f(x)$	0	3	0	-3

Which of the following statements are correct?
I $f(x)=2$ must have a root $c \in(-1,0)$.
True. $f(-1)=3$ and $f(0)=0 . N=2$ is between 3 and 0 . Therefore, by IVT, there must be a solution in $(-1,0)$ to the equation $f(x)=2$.
II $f(x)=2$ must have a root $c \in(0,1)$.
False. $f(0)=0$ and $f(1)=-3 . N=2$ is NOT between 3 and 0 . IVT does not apply.
III $f^{\prime}(x)=3$ must have a root $c \in(-1,0)$.
False. Given interval $(-1,0)$, by MVT, there is a $c \in(-1,0)$ which solves $f^{\prime}(x)=\frac{f(0)-f(-1)}{0-(-1)}=$ $\frac{0-3}{1}=-3$.
IV $f^{\prime}(x)=0$ must have a root $c \in(-2,0)$.
True. Given interval $(-2,0)$, by MVT, there is a $c \in(-2,0)$ which solves $f^{\prime}(x)=\frac{f(0)-f(-2)}{0-(-2)}=$ $\frac{0-0}{2}=0$.
A. Only II; B. Only IV; C. Only I and IV ; D. Only II and III; E. None of the above.
2. Suppose you are estimating the root of $x^{3}=5 x-1$ using Newton's method. If you use $x_{1}=2$, find the exact value of x_{2}.
Rewrite $x^{3}=5 x-1$ as $x^{3}-5 x+1=0$ and let $f(x)=x^{3}-5 x+1$. Then $f^{\prime}(x)=3 x^{2}-5$. Given $x_{1}=2$, by Newton's method, we have that $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=2-\frac{f(2)}{f^{\prime}(2)}=2-\frac{2^{3}-5 \cdot 2+1}{3 \cdot 2^{2}-5}=2-\frac{-1}{7}=2+\frac{1}{7}$.
A $x_{2}=2-\frac{1}{7}$.
B $x_{2}=2+\frac{1}{7}$
C $x_{2}=8-\frac{8}{9}$. D $x_{2}=8+\frac{8}{9}$. $\mathbf{E} x_{2}=5+\frac{1}{7}$.
3. Consider the function

$$
f(x)=\frac{2-x^{2}}{x(x-3)}
$$

Which of the following statements are correct?
I $f(x)$ has vertical asymptotes $y=3$ and $y=0$. False.
II $f(x)$ has vertical asymptotes $x=0$ and $x=3$. True. Vertical asymptotes: let $x(x-3)=0$ and solve that $x=0, x=3$.
III $f(x)$ has a horizontal asymptote $y=-1$. True. Horizontal asymptotes: $f(x)=\frac{2-x^{2}}{x^{2}-3 x}$. Then $\lim _{x \rightarrow \pm \infty} \frac{2-x^{2}}{x^{2}-3 x}=\lim _{x \rightarrow \pm \infty} \frac{\ell-x^{2}}{x^{2}+\sqrt{3} x}=\lim _{x \rightarrow \pm \infty} \frac{-x^{2}}{x^{2}}=\lim _{x \rightarrow \pm \infty}-1=-1$. Therefore, $y=-1$ is the horizontal asymptote.
IV $f(x)$ has no horizontal asymptote. False by III.
V $f(x)$ has no slant asymptote. True by III. If $f(x)$ has horizontal asymptotes, then it has no slant asymptote.
A. Only II; B. Only II and IV; C. Only I,III and V; D. Only II,III and V ; E. None of the above.
4. Consider the function:

$$
f(x)=x^{3}+6 x
$$

Which of the following statements are correct?
I $f(x)$ is an odd function.
True. $f(x)$ only has odd powers. $f(-x)=(-x)^{3}+6(-x)=-\left(x^{3}+6 x\right)$.
II $f(x)$ is increasing for $x>0$ and is decreasing on for $x<0$.
False. $f^{\prime}(x)=3 x^{2}+6>0$ for all $x . f(x)$ is increasing for all x and is nowhere decreasing.
III $f(x)$ is increasing on for all x. True.
IV $f(x)$ is concave up on $(0, \infty)$ and concave down on $(-\infty, 0)$.
True. Concave $\mathrm{Up}=f^{\prime \prime}(x)$ is positive and Concave Down $=f^{\prime \prime}(x)$ is negative.
$f^{\prime \prime}(x)=6 x . f^{\prime \prime}(x)>0$ for $x>0, f^{\prime \prime}(x)<0$ for $x<0$ and $f^{\prime \prime}(0)=0$.
V $f(x)$ has no critical point and no inflection point.
False. $f(x)$ has no critical point by II. $f(x)$ has an inflection point at $x=0$ by IV.
A. Only I, III, V; B. Only I,II, IV; C. Only I,III, IV ; D. Only III, IV; E. None of the above.
5. Compute the limit:

$$
\lim _{x \rightarrow 5} \frac{\sqrt[3]{x}-\sqrt[3]{5}}{x-5}
$$

Let $f(x)=\sqrt[3]{x}=x^{\frac{1}{3}}$. Then $f^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}}$. By the limit-definition of the derivative at $x=a$,

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{\sqrt[3]{x}-\sqrt[3]{a}}{x-a}
$$

Therefore, the given limit

$$
\lim _{x \rightarrow 5} \frac{\sqrt[3]{x}-\sqrt[3]{5}}{x-5}=f^{\prime}(5)=\frac{1}{3} 5^{-\frac{2}{3}}
$$

A $+\infty$
B 0
C $\frac{1}{3} \sqrt[3]{5}$
D $\frac{1}{3} 5^{-\frac{2}{3}}$
E Does not exist
6. Find the limit:

$$
\lim _{x \rightarrow 0} 3 x \cdot \sin \left(\frac{1}{2 x}\right)
$$

$|\sin (\bullet)| \leq 1$, no matter what \bullet it is inside. $3 x \longrightarrow 0$ as $x \rightarrow 0$. Therefore, $3 x \cdot \sin (\bullet) \longrightarrow 0$.
A $\frac{2}{3}$
B $\frac{3}{2}$
C 0
D ∞
E Does not exist.
7. For what value of k will $f(x)$ be continuous for all values of x ?

$$
f(x)= \begin{cases}\frac{x^{2}-3 k}{x-3} & \text { if } x \leq 2 \\ 8 x-k & \text { if } x>2\end{cases}
$$

Plug $x=2$ into the two expressions of $f(x)$ and set them equal. Then solve for k.

$$
\frac{2^{2}-3 k}{2-3}=8 \cdot 2-k \Longrightarrow 3 k-4=16-k \Longrightarrow 4 k=20 \Longrightarrow k=5
$$

A. $k=2$.
B. $k=3$.
C. $k=4$.
D. $k=5$.
E. None of the above.
8. Evaluate

$$
\int_{-\pi}^{\pi} \sin x \cdot \sqrt{\cos x+2} d x
$$

Method I. $f(x)=\sin x \cdot \sqrt{\cos x+2}$ is an ODD function and is integrated on the interval $[-\pi, \pi]$ symmetric at the origin. Then $\int_{-\pi}^{\pi} \sin x \cdot \sqrt{\cos x+2} d x=0$.
Method II. U-sub. $u=\cos x+2, d u=-\sin x d x$. Then

$$
\begin{aligned}
\int_{-\pi}^{\pi} \sin x \cdot \sqrt{\cos x+2} d x=\int \sqrt{u} \cdot(-d u) & =-\frac{2}{3} u^{\frac{3}{2}}=-\left.\frac{2}{3}(\cos x+2)^{\frac{3}{2}}\right|_{-\pi} ^{\pi} \\
(\text { Notice that } \cos \pi=\cos (-\pi)=-1) & =-\frac{2}{3}(\cos \pi+2)^{\frac{3}{2}}+\frac{2}{3}(\cos (-\pi)+2)^{\frac{3}{2}} \\
& =-\frac{2}{3}(-1+2)^{\frac{3}{2}}+\frac{2}{3}(-1+2)^{\frac{3}{2}}=0
\end{aligned}
$$

A. $\frac{4}{3}$.
B. 0 .
C. $-\frac{4}{3}$.
D. $-\frac{2}{3}$. E 2 .
9. Estimate the area under the graph of $f(x)=-x^{2}+4 x+5$ from $x=0$ to $x=4$ using the areas of 4 . rectangles of equal width.

A The upper sum (overestimate) is 34 and the lower sum (underestimate) is 30 .
B The upper sum (overestimate) is 34 and the lower sum (underestimate) is 26.
C The upper sum (overestimate) is 30 and the lower sum (underestimate) is 26 .
D The upper sum (overestimate) is 17 and the lower sum (underestimate) is 13 .
E None of the above.
10. A car is moving according to $s(t)=-t^{2}+4 t+5$. Which of the following statements are correct?

Velocity at time $t, v(t)=s^{\prime}(t)=-2 t+4$. So $v(2)=-2 \cdot 2+4=0$.
The average velocity from $t=a$ to $t=b$,

$$
v_{\mathrm{ave}}=\frac{s(b)-s(a)}{b-a}
$$

So

$$
v_{\text {ave }}=\frac{s(2)-s(0)}{2-0}=\frac{-2^{2}+4 \cdot 2+5-(0+0+5)}{2}=4
$$

I The velocity at $t=2$ is 4 .
II The velocity at $t=2$ is 0 .
III The average velocity from $t=0$ to $t=2$ is 4.5 .
IV The average velocity from $t=0$ to $t=2$ is 5 .
A. Only II;
B. Only III;
C. Only I and IV;
D. Only II and III;
E. None of the above.
11. A car is moving according to $s(t)=-t^{2}+4 t+5$. Which of the following statements are correct? Slowing down means $|v|$ is decreasing; Speeding up means $|v|$ is increasing. Moving in positive direction means $v>0$; Moving in negative direction means $v<0$.

I The car is slowing down from $t=0$ to $t=2$.
II The car is speeding up from $t=2$ to $t=4$.
III The car is moving in positive direction from $t=0$ to $t=5$.
IV The car is moving in negative direction from $t=2$ to $t=5$.
A. Only I;
B. Only III; C. Only I,II and IV;
D. Only I and II; E. None of the above.
12. Find y if $y^{\prime}=2 x \sin \left(x^{2}\right), \quad y(0)=4$.
y is the integral (anti-derivative) of $y^{\prime}: y=\int 2 x \sin \left(x^{2}\right) d x$.
U-sub, $u=x^{2}, d u=2 x d x . y=\int 2 x \sin \left(x^{2}\right) d x=\int \sin u d u=-\cos u+C=-\cos \left(x^{2}\right)+C$.
Plug $x=0, y=4$ in and solve for $C .4=-\cos 0+C \Longrightarrow C=5 \Longrightarrow y=-\cos \left(x^{2}\right)+5$.
A $y=-2 \cos (x)+6$
B $y=-\cos \left(x^{2}\right)+5$
C $y=\cos \left(x^{2}\right)+3$
D $y=x^{2} \cos \left(\frac{x^{3}}{3}\right)+4$
E $y=x^{2} \sin \left(\frac{x^{3}}{3}\right)+4$

Standard Response Problems.

1. Find $\frac{d y}{d x}$ if
(a) $y=x \tan \left(x^{2}\right)$ Direct computation by product rule and chain rule:

$$
\begin{aligned}
\frac{d y}{d x} & =(x)^{\prime} \tan x^{2}+x \cdot\left(\tan \left(x^{2}\right)\right)^{\prime} \\
& =1 \cdot \tan x^{2}+x \cdot \sec \left(x^{2}\right) \cdot\left(x^{2}\right)^{\prime} \\
& =\tan x^{2}+x \cdot \sec \left(x^{2}\right) \cdot(2 x) \\
& =\tan x^{2}+2 x^{2} \cdot \sec \left(x^{2}\right)
\end{aligned}
$$

(b) $x^{2}=3 y+\cos (y)$ Implicit differential rule:

$$
\begin{aligned}
\left(x^{2}\right)^{\prime}=(3 y+\cos (y))^{\prime} & \Longrightarrow 2 x=3 y^{\prime}+(\cos (y))^{\prime} \\
& \left.\Longrightarrow 2 x=3 y^{\prime}-\sin (y) y^{\prime}, \quad \text { (then solve for } y^{\prime}\right) \\
& \Longrightarrow 2 x=(3-\sin y) \cdot y^{\prime} \\
& \Longrightarrow \frac{d y}{d x}=y^{\prime}=\frac{2 x}{3-\sin y}
\end{aligned}
$$

2. If the radius of a circular ink blot is growing at a rate of $3 \mathrm{~cm} / \mathrm{min}$. How fast ($\mathrm{in} \mathrm{cm}^{2} / \mathrm{min}$) is the area of the blot growing when the radius is 10 cm ?

Related Rates: Area: $A(t)$; Radius: $r(t)$. $A=\pi r^{2}$. Take derivative with respect to t both sides of the equation:

$$
A^{\prime}=\left(\pi r^{2}\right)^{\prime}=\pi 2 r \cdot r^{\prime}, \quad \text { (Caution: Do not forget the } r^{\prime} \text { since } r=r(t) \text { is a function of } t \text {) }
$$

Then plug $r=10$ and $r^{\prime}=3$ in

$$
A=\pi 2 r \cdot r^{\prime}=\pi \cdot 2 \cdot 10 \cdot 3=60 \pi,\left(\mathrm{~cm}^{2} / \mathrm{min}\right)
$$

3. Let

$$
f(x)=\frac{1}{2 x-x^{2}} \quad \text { for } \quad x \in(0,2)
$$

Let $f(0)=f(2)=3$.
(a) Is $f(x)$ continuous on $[0,2]$?

No. $f(x)$ is not continuous at $x=0$ and $x=2$, since

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{2 x-x^{2}}=\lim _{x \rightarrow 0^{+}} \frac{1}{x(2-x)}=\frac{1}{0^{+} \cdot 2}=+\infty \neq f(0), \quad \lim _{x \rightarrow 2^{-}} \frac{1}{x(2-x)}=\frac{1}{2 \cdot 0^{+}}+\infty \neq f(2) .
$$

(b) Find the critical point and the local minimum of $f(x)$ in $(0,2)$.

Use Chain Rule or Quotient Rule to compute

$$
f^{\prime}(x)=\left(\left(2 x-x^{2}\right)^{-1}\right)^{\prime}=(-1)\left(2 x-x^{2}\right)^{-2} \cdot\left(2 x-x^{2}\right)^{\prime}=\frac{-1}{\left(2 x-x^{2}\right)^{2}} \cdot(2-2 x)=\frac{2 x-2}{\left(2 x-x^{2}\right)^{2}}
$$

Set $f^{\prime}(x)=0$ and solve for $x \cdot \frac{2 x-2}{\left(2 x-x^{2}\right)^{2}}=0 \Longrightarrow 2 x-2=0 \Longrightarrow x=1$ (Critical Point). It is also easy to check that $f^{\prime}(x)>0$ for $x \in(0,1)$ and $f^{\prime}(x)<0$ for $x \in(1,2)$ since

$$
f^{\prime}(0.5)=\frac{2 \cdot 0.5-2}{\left(2 \cdot 0.5-0.5^{2}\right)^{2}}<0, \quad \text { and } \quad f^{\prime}(1.5)=\frac{2 \cdot 1.5-2}{\left(2 \cdot 1.5-1.5^{2}\right)^{2}}>0
$$

$f(x)$ attains its local minimum at $x=1$, the local minimum is $f(1)=\frac{1}{2 \cdot 1-1^{2}}=1$.
(c) Does $f(x)$ have absolute maximum or minimum in $[0,2]$.
$f(x)$ has the absolute minimum at at $x=1$, which is $f(1)=\frac{1}{2 \cdot 1-1^{2}}=1 . f(x)$ DOES NOT have the absolute maximum at in $[0,2]$ since

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 2^{-}} f(x)=+\infty
$$

There is NO $x \in[0,2]$ such that $f(x)$ is greater than all the other values of $f(x)$.

4. Evaluate

$$
\int \frac{x^{2}}{\sqrt{3+x^{3}}} d x
$$

U-sub: Let $u=3+x^{3}$. Then $d u=3 x^{2} d x \Longrightarrow x^{2} d x=\frac{1}{3} d u$.

$$
\begin{aligned}
\int \frac{x^{2}}{\sqrt{3+x^{3}}} d x=\int \frac{1}{\sqrt{3+x^{3}}} x^{2} d x & =\int \frac{1}{\sqrt{u}} \frac{1}{3} d u \\
& =\frac{1}{3} \int u^{-\frac{1}{2}} d u \\
& =\frac{1}{3} \cdot \frac{1}{\frac{1}{2}} u^{\frac{1}{2}} \\
& =\frac{1}{3} \cdot 2\left(3+x^{3}\right)^{\frac{1}{2}}+C
\end{aligned}
$$

5. Suppose $f(x)=x^{4}-6 x^{2}-3$.
(a) Identify the intervals over which $f(x)$ is increasing and decreasing, and all values of x where $f(x)$ attains its local maximum or minimum.
$f^{\prime}(x)=4 x^{3}-12 x=4 x\left(x^{2}-3\right)=4 x(x-\sqrt{3})(x+\sqrt{3})$. Solving $f^{\prime}(x)=0$ gives us all the critical numbers of f, which are $x=0, x=\sqrt{3}$ and $x=-\sqrt{3}$.
$x=0, x=\sqrt{3}, x=-\sqrt{3}$ break the whole interval into four sub-intervals: $(-\infty,-\sqrt{3}),(-\sqrt{3}, 0),(0, \sqrt{3})$, and $(\sqrt{3}, \infty)$. We need to check whether f^{\prime} is positive or negative on each interval by plugging numbers into $f^{\prime}(x)$.
$f^{\prime}(-2)<0 \Longrightarrow f^{\prime}(x)<0$ for $x \in(-\infty,-\sqrt{3})$.
$f^{\prime}(-1)>0 \Longrightarrow f^{\prime}(x)>0$ for $x \in(-\sqrt{3}, 0)$.
$f^{\prime}(1)<0 \Longrightarrow f^{\prime}(x)<0$ for $x \in(0, \sqrt{3})$.
$f^{\prime}(2)>0 \Longrightarrow f^{\prime}(x)>0$ for $x \in(\sqrt{3}, \infty)$.
$f(x)$ is increasing on $(-\sqrt{3}, 0) \bigcup(\sqrt{3}, \infty) . \quad f(x)$ is decreasing on $(-\infty,-\sqrt{3}) \bigcup(0, \sqrt{3})$. $f(x)$ attains local minimum at $x=-\sqrt{3}$ and $x=\sqrt{3} . f(x)$ attains local maximum at $x=0$.
(b) Identify the intervals over which $f(x)$ is concave up and down, and all values of x where $f(x)$ has an inflection point.
$f^{\prime \prime}(x)=12 x^{2}-12=12\left(x^{2}-1\right)=12(x-1)(x+1)$. Solving $f^{\prime \prime}(x)=0$ gives us all the possible inflection points of f, which are $x=1$, and $x=-1$.
$x=1$, and $x=-1$ break the whole interval into three sub-intervals: $(-\infty,-1),(-1,1),(1, \infty)$.
We need to check whether $f^{\prime \prime}$ is positive or negative on each interval by plugging numbers into $f^{\prime \prime}(x)$.
$f^{\prime}(-2)>0 \Longrightarrow f^{\prime \prime}(x)>0$ for $x \in(-\infty,-1)$.
$f^{\prime}(0)<0 \Longrightarrow f^{\prime \prime}(x)<0$ for $x \in(-1,1)$.
$f^{\prime}(2)>0 \Longrightarrow f^{\prime \prime}(x)>0$ for $x \in(1, \infty)$.
$f(x)$ is concave up on $(-\infty,-1) \bigcup(1, \infty) . f(x)$ is concave down on $(-1,1) . f(x)$ has inflection points at both $x=-1$ and $x=1$.
(c) Sketch the graph of $y=f(x)$.

6. A box with square base and open top is to have a volume of $32 \mathrm{in}^{3}$. Find the dimensions of the box that minimizes the amount of material used.

Volume $=x^{2} \cdot h=32 \Longrightarrow h=\frac{32}{x^{2}}$. We want to minimize the the amount of material used, i.e., the total surface area.

$$
\begin{aligned}
& \text { Area }=x^{2}+4 x h=x^{2}+4 x \frac{32}{x^{2}}=x^{2}+\frac{128}{x}, x>0 \\
& \frac{d A}{d x}=\left(x^{2}+\frac{128}{x}\right)^{\prime}=2 x-\frac{128}{x^{2}}=\frac{2 x^{3}-128}{x^{2}}
\end{aligned}
$$

Let $\frac{d A}{d x}=0$ and solve for x. We have that $2 x^{3}-128=0 \Longrightarrow x^{3}=64 \Longrightarrow x=4$.
Notice that

$$
\frac{d A}{d x}=\frac{2\left(x^{3}-64\right)}{x^{2}}
$$

Plug in $x=1$ and $x=5$ to determine the signs of $\frac{d A}{d x}$. We have that $\frac{d A}{d x}<0$ for $0<x<4$ and $\frac{d A}{d x}>0$ for $x>4$. Therefore, A attains its absolute minimum at $x=4$.
The dimensions are $x=4$ in and $h=\frac{32}{x^{2}}=32 / 16=2 \mathrm{in}$. The minimum material to be used is $A(4)=4^{2}+\frac{128}{4} \mathrm{in}^{2}$.
7. Find the average of the function

$$
f(x)=\frac{\cos x}{\sin ^{2} x}
$$

over the interval $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.
First, compute the definite integral of the function over the interval:

$$
\begin{aligned}
& \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos x}{\sin ^{2} x} d x=\int \frac{1}{\sin ^{2} x} \cos x d x \quad u=\sin x, d u=\cos x d x \\
&=\int \frac{1}{u^{2}} d u=\int u^{-2} d u=-u^{-1} \\
&=-\left.\frac{1}{\sin x}\right|_{\frac{\pi}{4}} ^{\frac{\pi}{2}}=-\frac{1}{\sin \frac{\pi}{2}}+\frac{1}{\sin \frac{\pi}{4}}=-1+\frac{1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2} \\
& f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x=\frac{1}{\frac{\pi}{2}-\frac{\pi}{4}} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos x}{\sin ^{2} x} d x=\frac{1}{\frac{\pi}{4}}(-1+\sqrt{2})
\end{aligned}
$$

8. Find the area of the region enclosed by the graphs of the equations $y=-x-4$ and $y=-x^{2}+x+4$. Plot the two curves first:

Set $-x-4=-x^{2}+x+4$ and solve for the intersections:

$$
0=x^{2}-2 x-8=(x-4)(x+2)=0 \Longrightarrow x=4, x=-2
$$

Then the area of region equals:

$$
\begin{aligned}
\int_{-2}^{4} \operatorname{Top}-\operatorname{Bot} d x & =\int_{-2}^{4}\left(-x^{2}+x+4-(-x-4)\right) d x \\
& =\int_{-2}^{4}-x^{2}+2 x+8 d x \\
& =-\frac{1}{3} x^{3}+x^{2}+\left.8 x\right|_{-2} ^{4} \\
& =-\frac{1}{3} 4^{3}+4^{2}+8 \cdot 4-\left(-\frac{1}{3}(-2)^{3}+(-2)^{2}+8 \cdot(-2)\right) \\
& =-\frac{64}{3}+16+32-\left(\frac{8}{3}+4-16\right) \\
& =36
\end{aligned}
$$

