Q1[Sec1.4, Average rate of change/Average velocity, see also $Q 9]$ Let $f(x)=\cos x+2$. Compute the average rate of change of $f(x)$ on the interval $\left[0, \frac{\pi}{2}\right]$?
Solution: Average rate of change:

$$
\begin{align*}
\text { A.R.o.C. }=\frac{f\left(\frac{\pi}{2}\right)-f(0)}{\frac{\pi}{2}-0} & =\frac{\left(\cos \left(\frac{\pi}{2}\right)+2\right)-(\cos 0+2)}{\frac{\pi}{2}-0} \tag{1}\\
& =\frac{(0+2)-(1+2)}{\frac{\pi}{2}}=\frac{-1}{\frac{\pi}{2}}=-\frac{2}{\pi} \tag{2}
\end{align*}
$$

Q2[Sec1.5/1.6, Limit and Limit Laws] Evaluate the following limits
(a)Direct plug in-type

$$
\lim _{x \rightarrow 0} \sqrt{\frac{x^{2}}{\cos x+2}}
$$

Solution:

$$
\lim _{x \rightarrow 0} \sqrt{\frac{x^{2}}{\cos x+2}}=\sqrt{\frac{0^{2}}{\cos 0+2}}=\sqrt{\frac{0}{1+2}}=\sqrt{0}=0
$$

(b) $\frac{1}{0}$-type/One-sided limits
$\lim _{x \rightarrow 0^{+}} \frac{x-3}{x(x+5)} \quad \lim _{x \rightarrow 0^{-}} \frac{x-3}{x(x+5)} \quad \lim _{x \rightarrow 0} \frac{x-3}{x(x+5)}$
Solution:

$$
\begin{aligned}
& \quad \lim _{x \rightarrow 0^{+}} \frac{x-3}{x(x+5)}=\frac{0-3}{0^{+}(0+5)}=\frac{-3}{0^{+}(5)}=-\infty, \quad \lim _{x \rightarrow 0^{+}} \frac{x-3}{x(x+5)}=\frac{0-3}{0^{-}(0+5)}=\frac{-3}{0^{-}(5)}=+\infty \\
& \lim _{x \rightarrow 0} \frac{x-3}{x(x+5)} \quad \text { D.N.E. }
\end{aligned}
$$

(c)Absolute value
$\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}$

$$
\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}
$$

$$
\lim _{x \rightarrow 0} \frac{x}{|x|}
$$

Solution:

$$
\begin{align*}
& \lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{-}} \frac{x}{-x}=\lim _{x \rightarrow 0^{-}}-1=-1, \quad \lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}}+1=+1 \tag{3}\\
& \lim _{x \rightarrow 0} \frac{x}{|x|} \quad \text { D.N.E. } \tag{4}
\end{align*}
$$

(d)Cancellation-type

$$
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}
$$

Solution:

$$
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}=\lim _{x \rightarrow-3} \frac{(x+3)(x-3)}{x+3}=\lim _{x \rightarrow-3} \frac{(x-3)}{1}=-3-3=-6
$$

(e) $\frac{\sin \mathrm{O}}{\mathrm{O}}$-type
$\lim _{x \rightarrow-3} \frac{\sin \left(x^{2}-9\right)}{x+3}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-3} \frac{\sin \left(x^{2}-9\right)}{x+3} & =\lim _{x \rightarrow-3} \frac{\sin \left(x^{2}-9\right)}{x^{2}-9} \cdot \frac{x^{2}-9}{x+3} \\
& =\left(\lim _{x \rightarrow-3} \frac{\sin \left(x^{2}-9\right)}{x^{2}-9}\right) \cdot\left(\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}\right) \\
& =1 \cdot\left(\lim _{x \rightarrow-3} \frac{x^{2}-9}{x+3}\right) \\
& =\lim _{x \rightarrow-3} \frac{(x+3)(x-3)}{x+3}=\lim _{x \rightarrow-3} \frac{(x-3)}{1}=-3-3=-6
\end{aligned}
$$

Q3[Sec1.6, Squeeze Theorem] Evaluate the following limits
(a)

$$
\lim _{x \rightarrow 1}(x-1) \cdot \cos \left(\frac{1}{1-x}\right) .
$$

Solution: $-1 \leq \cos \left(\frac{1}{1-x}\right) \leq 1$ and $\lim _{x \rightarrow 1}(x-1)=1-1=0$ imply that

$$
\lim _{x \rightarrow 1}(x-1) \cdot \cos \left(\frac{1}{1-x}\right)=0 .
$$

(b)

$$
\lim _{x \rightarrow 0} \sqrt{\frac{x^{2}}{\cos x+2}} \cdot \sin \left(\frac{1}{x^{2}}\right)
$$

Solution: $-1 \leq \sin \left(\frac{1}{x^{2}}\right) \leq 1$ and $\lim _{x \rightarrow 0} \sqrt{\frac{x^{2}}{\cos x+2}}=0$ imply that

$$
\lim _{x \rightarrow 0} \sqrt{\frac{x^{2}}{\cos x+2}} \cdot \sin \left(\frac{1}{x^{2}}\right)=0 .
$$

Q4[Sec1.8, Domain of continuity] Use interval notation to indicate where $f(x)$ is continuous.
(a)

$$
f(x)=\frac{x^{2}-3 x+1}{x-3} . \quad \text { Choose from below }
$$

A. $(-\infty,+\infty)$;
B. $(-\infty, 3) \cup(3,+\infty)$;
C. $(-\infty, 1) \cup(1,+\infty)$;
D. $(-\infty, 1) \cup(1,3) \cup(3,+\infty)$.

Solution: $f(x)$ is continuous everywhere in its domain. The domain of $f(x)$ is all those x such that $f(x)$ is computable(meaningful/finite number). The only point not in f 's domain is $x=3$, which makes the denominator zero. Therefore, $f(x)$ is continuous everywhere except $x=3$.
(b)

$$
f(x)=\sqrt{x+1} . \quad \text { Choose from below }
$$

A. $(-\infty,+\infty)$;
B. $(-\infty,-1]$;
C. $[-1,+\infty)$;
D. $(1,+\infty)$.

Solution: Similar to part (a), $f(x)$ is continuous everywhere in its domain. The expression under square root has to be nonnegative, i.e., $x+1 \geq 0 \Longrightarrow x \geq-1 \Longrightarrow x \in[-1,+\infty)$.
(c)

$$
f(x)=\frac{\left(x^{2}-3 x+1\right) \sqrt{x+1}}{x-3} . \quad \text { Use }(\mathrm{a}, \mathrm{~b}) \text { to indicate the intervals of continuous for }(\mathrm{c})
$$

Solution: The function contains both expression in (a) and (b). Therefore, the domain where $f(x)$ where it is continuous should satisfy both (a) and (b). Combine part (a) and part (b), we have the answer $[-1,3) \cup(3,+\infty)$.

Q5[Sec1.8, Piecewise function] For what value of k will $f(x)$ be continuous for all values of x ?

$$
f(x)= \begin{cases}\frac{x^{2}-3 k}{x-3}, & x \leq 2 \\ 8 x-k, & x>2\end{cases}
$$

Solution: $f(x)$ is a piecewise function which might have a break at the connecting point $x=2$. The strategy is simply to plug $x=2$ into the first and second expression of f. Then set them equal and solve for k.

Plug $x=2$ into $\frac{x^{2}-3 k}{x-3}$, we get $\frac{2^{2}-3 k}{2-3}=\frac{4-3 k}{-1}=-(4-3 k)=3 k-4$.
Plug $x=2$ into $8 x-k$, we get $8 x-k=8 \cdot 2-k=16-k$.
Set them equal: $3 k-4=16-k \Longrightarrow 4 k=20 \Longrightarrow k=5$.
The reason why these three steps give us the k such that f is continuous is as follows: $f(x)$ is continuous at $x=2$ if and only if

$$
(*) \quad f(2)=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)
$$

It graphically means that the left part of the curve and the right part of the curve are connected at $x=2$. In the piecewise expression of $f(x)$, it is \leq in the first part. Therefore,

$$
f(2)=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{x^{2}-3 k}{x-3}=\frac{4-3 k}{-1}=3 k-4
$$

Similarly, we have

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} 8 x-k=8 \cdot 2-k=16-k
$$

Now due to $(*)$, it is enough to let $3 k-4=16-k$ and solve for k.

Q6[Sec1.8, Intermediate Value Theorem(IVT)] Suppose function $h(x)$ is continuous on [0,4]. Suppose $h(0)=2, h(1)=0, h(2)=-3, h(3)=2, h(4)=5$. For what value of N, the must be a $c \in(3,4)$ such that $h(c)=N$?
A. $N=0.5$.
B. $N=0$.
C. $N=-2$.
D. $N=2.5$.

Options: A. $N=0.5 ; \quad$ B. $N=0 ; \quad$ C. $N=-2 ; \quad$ D. $N=2.5$.
Solution: Intermediate Value Theorem(IVT): If f is continuous on $[a, b], f(a) \neq f(b)$, and N is between $f(a)$ and $f(b)$ then there exists $c \in(a, b)$ that satisfies $f(c)=N$.

Q7[Sec1.8, Intermediate Value Theorem $(I V T)]$ Let $f(x)=2 x-\cos x$. Prove that there is a solution to the equation $f(x)=1$, i.e., there exists a number c such that $2 c-\cos c=1$.

Solution: (IVT) $f(x)=2 x-\cos x$ is continuous on $(-\infty, \infty)$ (for all x). It is easy to check that

$$
f(0)=2 \cdot 0-\cos 0=-\cos 0=1, \quad f\left(\frac{\pi}{2}\right)=2 \cdot \frac{\pi}{2}-\cos \frac{\pi}{2}=\pi-0=\pi \approx 3.14 \ldots
$$

We want to study the solution to the equation $f(x)=1$. Clearly, $f(0)=1<1, \quad f\left(\frac{\pi}{2}\right)=\pi>1$, i.e., 1 is between $f(0)$ and $f\left(\frac{\pi}{2}\right)$.

Therefore, according to IVT, there is a c in the interval $\left(0, \frac{\pi}{2}\right)$ such that $f(c)=1$, i.e., $2 c-\cos c=1$.

Q8[Sec2.1/2.2, derivative at given point $]$ Select all true statements about the function $f(x)=|2 x-4|$ I $\lim _{x \rightarrow 0} f(x)$ exists. Yes.

II $f(x)$ is continuous at $x=0$. Yes.
III $f(x)$ is differentiable at $x=0$. Yes.
IV $\lim _{x \rightarrow 2} f(x)$ exists. Yes.
$\mathbf{V} f(x)$ is continuous at $x=2$. Yes.
VI $f(x)$ is differentiable at $x=2$. No.

Q9[Sec2.1/2.2, geometric meaning of derivative] Suppose the graph of $y=f(x)$ is given as follows from $x=-2$ to $x=10$:

Answer the following questions based on the above graph:

1. Find the open interval(s) where $f^{\prime}(x)>0$ and $f^{\prime}(x)<0$.

Solution: $f^{\prime}(x)>0$ for x in $(0,2)$ and $f^{\prime}(x)<0$ for x in $(-2,0)$ and $(2,10)$.
2. Is $f(x)$ continuous at $x=2$? Is $f(x)$ differentiable at $x=2$?

Solution: It is continuous at $x=2$ but not differentiable at $x=2$. The curve has a "sharp turn" at $x=2$. (The left and right tangent lines are not the same.)
3. Find $f(0)$ and $f^{\prime}(0)$. Find the equation of the tangent line of $y=f(x)$ at $(0, f(0))$.

Solution: $f(0)=0$ and $f^{\prime}(0)=0$. The tangent line at $(0,0)$ is the horizontal axis, $y=0$.
4. Find $f(6)$ and $f^{\prime}(6)$. Find the equation of the tangent line of $y=f(x)$ at $(6, f(6))$.

Solution: From the graph, we can find that $f(6)=2$ and
$f^{\prime}(6)=$ the slope of the tangent line at $x=6=$ the slope of the straight line from $x=2$ to $x=10$

$$
=\frac{f(10)-f(2)}{10-2}=\frac{0-4}{10-2}=-\frac{1}{2} .
$$

(Point-slope formula) equation of the tangent line:

$$
\begin{align*}
y & =\text { slope }(x-6)+f(6) \tag{5}\\
\Longrightarrow y & =-\frac{1}{2}(x-6)+2 \Longleftrightarrow y=-\frac{1}{2} x+5 \tag{6}
\end{align*}
$$

Q10 $[$ Sec2.1/2.2, definition of derivative $]$ Let $y=\sqrt{x-3}$
(a)[Derivative as a limit] Use the definition of the derivative to find y^{\prime}. (Your calculation must include computing a limit.)

Solution:

$$
\begin{aligned}
y^{\prime}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h-3}-\sqrt{x-3}}{h} & =\lim _{h \rightarrow 0} \frac{(\sqrt{x+h-3}-\sqrt{x-3})}{h} \cdot \frac{\sqrt{x+h-3}+\sqrt{x-3}}{\sqrt{x+h-3}+\sqrt{x-3}} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{x+h-3}-\sqrt{x-3})(\sqrt{x+h-3}+\sqrt{x-3})}{h(\sqrt{x+h-3}+\sqrt{x-3})} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{x+h-3})^{2}-(\sqrt{x-3})^{2}}{h(\sqrt{x+h-3}+\sqrt{x-3})} \\
& =\lim _{h \rightarrow 0} \frac{x+h-3-(x-3)}{h(\sqrt{x+h-3}+(x-3))} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h-3}+(x-3))} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h-3}+\sqrt{x-3}} \\
& =\frac{1}{\sqrt{x+0-3}+\sqrt{x-3}}=\frac{1}{2 \sqrt{x-3}}
\end{aligned}
$$

(b) [Point-slope formula for the tangent line] Find the equation of the tangent line of $y=\sqrt{x-3}$ at $x=4$.
Solution: At $x=4, y=\left.\sqrt{x-3}\right|_{x=4}=\sqrt{4-3}=1$ and

$$
y^{\prime}=\left.\frac{1}{2 \sqrt{x-3}}\right|_{x=4}=\frac{1}{2 \sqrt{4-3}}=\frac{1}{2} .
$$

Point: $(4,1)$; slope: $\frac{1}{2}$. (Point-slope formula) equation of the tangent line:

$$
y=\frac{1}{2}(x-4)+1 \Longleftrightarrow y=\frac{1}{2} x-1 .
$$

Q11[Sec2.3/2.4/2.5, Differentiation Formulas/Laws] Find the derivatives of the following functions. Do not need to simplify.
(a) [Linear Rule + Power functions
$T(x)=2 \sqrt{x}-\frac{1}{2 \sqrt{x}}$

Solution:

$$
T^{\prime}(x)=\left(2 \sqrt{x}-\frac{1}{2 \sqrt{x}}\right)^{\prime}=\left(2 x^{\frac{1}{2}}\right)^{\prime}-\left(\frac{1}{2} x^{-\frac{1}{2}}\right)^{\prime}=2 \cdot \frac{1}{2} x^{\frac{1}{2}-1}-\frac{1}{2} \cdot\left(-\frac{1}{2}\right) x^{-\frac{1}{2}-1}=x^{-\frac{1}{2}}+\frac{1}{4} x^{-3 / 2}
$$

(b) [Product Rule + Power functions $]$

$$
g(t)=(-1+2 t)(\sin t+2)
$$

Solution:

$$
\begin{aligned}
g^{\prime}(t) & =(-1+2 t)^{\prime}(\sin t+2)+(-1+2 t)(\sin t+2)^{\prime} \\
& =(0+2)(\sin t+2)+(-1+2 t)(\cos t+0)=2(\sin t+2)+(-1+2 t) \cos t
\end{aligned}
$$

(c) [Trig functions+Chain Rule]

$$
y=\sin \left(x^{2}+1\right)
$$

Solution: Outer function: $\sin (■),(\sin (■))^{\prime}=\cos (■)$; Inner function: $x^{2}+1$, inner ${ }^{\prime}=\left(x^{2}+1\right)^{\prime}=2 x$.

$$
y^{\prime}=\left(\sin \left(x^{2}+1\right)\right)^{\prime}=\text { outer }^{\prime}(\text { inner }) \cdot \text { inner }^{\prime}=\cos \left(x^{2}+1\right) \cdot(2 x)
$$

(d)[Quotient Rule+Trig functions+Chain Rule]
$f(t)=\frac{3 t}{\tan \left(t^{2}-1\right)}$
Solution: (quotient rule first):

$$
f^{\prime}(t)=\left(\frac{3 t}{\tan \left(t^{2}-1\right)}\right)^{\prime}=\frac{(3 t)^{\prime} \cdot \tan \left(t^{2}-1\right)-3 t \cdot\left(\tan \left(t^{2}-1\right)\right)^{\prime}}{\left(\tan \left(t^{2}-1\right)\right)^{2}}=\frac{3 \cdot \tan \left(t^{2}-1\right)-3 t \cdot\left(\tan \left(t^{2}-1\right)\right)^{\prime}}{\left(\tan \left(t^{2}-1\right)\right)^{2}}
$$

(Chain Rule:) $\left(\tan \left(t^{2}-1\right)\right)^{\prime}=$ outer $^{\prime}($ inner $) \cdot$ inner $^{\prime}=\sec ^{2}\left(t^{2}-1\right) \cdot(2 t)$.

$$
f^{\prime}(t)=\left(\frac{3 t}{\tan \left(t^{2}-1\right)}\right)^{\prime}=\frac{3 \cdot \tan \left(t^{2}-1\right)-3 t \cdot\left(\tan \left(t^{2}-1\right)\right)^{\prime}}{\left(\tan \left(t^{2}-1\right)\right)^{2}}=\frac{3 \cdot \tan \left(t^{2}-1\right)-3 t \cdot \sec ^{2}\left(t^{2}-1\right) \cdot(2 t)}{\left(\tan \left(t^{2}-1\right)\right)^{2}}
$$

(e) [Trig functions+Double Chain Rule]
$f(x)=3 \sec (\cos (2 x))$
1st Chain rule: Outer function: $3 \sec (\boldsymbol{\square})$; Inner function: $\cos (2 x)$.

$$
f^{\prime}(x)=\text { outer }^{\prime}(\text { inner }) \cdot \text { inner }^{\prime}=3 \sec (\cos (2 x)) \cdot \tan (\cos (2 x)) \cdot(\cos (2 x))^{\prime}
$$

2nd Chain rule: $(\cos (2 x))^{\prime}=-\sin (2 x) \cdot 2$. Put these two together, we have

$$
\begin{aligned}
f^{\prime}(x)=\text { outer }^{\prime}(\text { inner }) \cdot \text { inner }^{\prime} & =3 \sec (\cos (2 x)) \cdot \tan (\cos (2 x)) \cdot(-\sin (2 x) \cdot 2) \\
& =-6 \sec (\cos (2 x)) \cdot \tan (\cos (2 x)) \cdot \sin (2 x)
\end{aligned}
$$

Q12[Sec2.7, Rates of Change/Functions of motion] The height of a projectile is given by the function $h(t)=-4 t^{2}+8 t+40$, where t is measured in seconds and h in feet.
(a)[Velocity and position] Find the velocity $v(t)$ at time t.

Solution:

$$
v(t)=h^{\prime}(t)=\left(-4 t^{2}+8 t+40\right)^{\prime}=-4 \cdot 2 t+(8 t)^{\prime}+(40)^{\prime}=-8 t+8
$$

(b) Find the maximum height of the projectile?

Solution:Maximum height is reached when the velocity is zero. Set $v(t)=-8 t+8=0$ and solve for $t=1$ (s). Then the maximum height= $h(1)=-4 \cdot 1^{2}+8 \cdot 1+40=44$ (feet).
(c)[Acceleration and velocity] What is the acceleration $a(6)$ after 6 seconds?

Solution: $a(t)=v^{\prime}(t)=(-8 t+8)^{\prime}=-8($ for all $t)$. Then $a(6)=-8\left(\mathrm{ft} / \mathrm{s}^{2}\right)$.

Q13[Sec2.7, Graph of the velocity] The accompanying figure shows the velocity $v(t)$ of a particle moving on a horizontal coordinate line, for t in the closed interval $[0,6]$.

Solution:

(a) When does the particle move forward?

Move forward $\Longleftrightarrow v>0 \Longleftrightarrow t \in(4,6)$
(b) When does the particle slow down?

Slow down \Longleftrightarrow Speed $|v|$ drops $\Longleftrightarrow t \in(2,4)$
(c) When is the particle's acceleration positive?
acceleration positive $\Longleftrightarrow a(t)=v^{\prime}(t)>0 \Longleftrightarrow$ slope of the tangent line is positive $/ v$ is increasing $\Longleftrightarrow t \in(2,6)$
(d) When does the particle move at its greatest speed in $[0,6]$? greatest speed \Longleftrightarrow highest or lowest point in the graph $\Longleftrightarrow t=6$ (greatest speed=6)

Q14[Sec2.6, Implicit differentiation] Consider the curve $y^{2}+2 x y+x^{3}=x$
(a) Find $\frac{d y}{d x}$ in terms of x, y. Apply Implicit differential rule to the equation $y^{2}+2 x y+x^{3}=x$.

$$
\begin{aligned}
\left(y^{2}+2 x y+x^{3}\right)^{\prime} & =(x)^{\prime} \\
\Longrightarrow\left(y^{2}\right)^{\prime}+(2 x y)^{\prime}+\left(x^{3}\right)^{\prime} & =1 \quad(*) \\
\Longrightarrow 2 y \cdot y^{\prime}+2 y+2 x y^{\prime}+3 x^{2} & =1 \quad(* *)
\end{aligned}
$$

From $(*)$ to $(* *)$, we use the chain rule for $\left(y^{2}\right)^{\prime}$ and product rule for $(2 x y)^{\prime}$, where

$$
\begin{aligned}
& \text { chain rule }:\left(y^{2}\right)^{\prime}=2 y(x) \cdot y^{\prime}(x)=2 y y^{\prime} \\
& \text { product rule }:(2 x y)^{\prime}=(2 x)^{\prime} \cdot y(x)+2 x \cdot y^{\prime}(x)=2 y+2 x y^{\prime} \\
& \left(x^{3}\right)^{\prime}=3 x^{2}
\end{aligned}
$$

$(* *)$: leave all the terms containing y^{\prime} on the left hand side and move all the rest terms to the right hand side of the equation, and then solve for y^{\prime} :

$$
\begin{aligned}
& 2 y \cdot y^{\prime}+2 y+2 x \cdot y^{\prime}+3 x^{2}=1 \\
\Longrightarrow & 2 y \cdot y^{\prime}+2 x \cdot y^{\prime}=1-2 y-3 x^{2} \\
\Longrightarrow & (2 y+2 x) \cdot y^{\prime}=1-2 y-3 x^{2} \\
\Longrightarrow & \frac{d y}{d x}=y^{\prime}=\frac{1-2 y-3 x^{2}}{2 y+2 x}
\end{aligned}
$$

(b) Find $\frac{d y}{d x}$ at $(1,-2)$ and find the slope of the tangent line of the curve at the point $(1,-2)$. Plug $(x, y)=(1,-2)$ into the expression in part (a), we have

$$
\begin{aligned}
\frac{d y}{d x}=y^{\prime}=\frac{1-2 y-3 x^{2}}{2 y+2 x} & =\frac{1-2 \times(-2)-3 \times 1^{2}}{2 \times(-2)+2 \times 1} \\
& =\frac{1+4-3}{-4+2} \\
& =\frac{2}{-2} \\
& =-1
\end{aligned}
$$

(c) Find the equation of the tangent line of the curve at the point $(1,-2)$.

Solution: Slope=-1. Point $(1,-2)$. The slope-point formula gives the formula for the tangent line:

$$
y=(-1)(x-1)-2 \Longleftrightarrow y=-x-1
$$

Q15, Sec2.8, Related Rates A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $1 \mathrm{ft} / \mathrm{s}$, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 6 ft from the wall?

Solution: Pythagorean theorem: $x^{2}+y^{2}=10^{2}$, where $x=x(t), y=y(t)$ are both functions of t. Take derivative with respect to t both sides of the equations:

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{\prime}=\left(10^{2}\right)^{\prime} & \Longleftrightarrow\left(x^{2}\right)^{\prime}+\left(y^{2}\right)^{\prime}=\left(10^{2}\right)^{\prime} \\
& \Longleftrightarrow 2 x \cdot x^{\prime}+2 y \cdot y^{\prime}=0
\end{aligned}
$$

From the problem, we know that $x^{\prime}=1 \mathrm{ft} / \mathrm{s}$ and $x=6$. At that moment, we can solve for y from $6^{2}+y^{2}=10^{2}$, which gives $y^{2}=100-36=64 \Longrightarrow y=8 \mathrm{ft}$. Then plug $x^{\prime}=1, x=6, y=8$ into $2 x \cdot x^{\prime}+2 y \cdot y^{\prime}=0$, we have

$$
2 \cdot 6 \cdot 1+2 \cdot 8 \cdot y^{\prime}=0 \Longrightarrow y^{\prime}=-\frac{3}{4}(\mathrm{ft} / \mathrm{s})
$$

(Remark: the negative sign of y^{\prime} means that y is decreasing at a rate of $\frac{3}{4} \mathrm{ft} / \mathrm{s}$.)
Q16, Challenging problem The gas law for an ideal gas at absolute temperature T (in kelvins=K), pressure P (in atmospheres=atm), and volume $V($ in liters $=\mathrm{L})$ is given by

$$
P=\frac{n R T}{V}
$$

where n is the number of moles of the gas (constant) and R is the gas constant.
(a) Suppose n, R, V are all constants. Find the rate of change of the pressure with respect to the temperature $\frac{\mathrm{d} P}{\mathrm{~d} T}$.
Solution: Since $\frac{n R}{V}$ is a constant, take derivative with respect to T gives that

$$
P=\frac{n R T}{V}=\frac{n R}{V} \cdot T \Longrightarrow \frac{\mathrm{~d} P}{\mathrm{~d} T}=\frac{\mathrm{d}\left(\frac{n R}{V} \cdot T\right)}{\mathrm{d} T}=\frac{n R}{V}
$$

(b) Suppose n, R, T are all constants. Find the rate of change of the pressure with respect to the volume $\frac{\mathrm{d} P}{\mathrm{~d} V}$.
Solution: Since $n R T$ is a constant, take derivative with respect to V gives that

$$
P=\frac{n R T}{V}=n R T \cdot V^{-1} \Longrightarrow \frac{\mathrm{~d} P}{\mathrm{~d} V}=\frac{\mathrm{d}\left(n R T \cdot V^{-1}\right)}{\mathrm{d} V}=n R T \cdot \frac{\mathrm{~d}\left(V^{-1}\right)}{\mathrm{d} V}=n R T \cdot\left(-V^{-2}\right)=-\frac{n R T}{V^{2}}
$$

(c) Suppose the rate of change of the pressure with respect to the volume is $-0.10 \mathrm{~atm} / \mathrm{L}$ when the volume of the gas is 2 L . Find the the rate of change of the pressure with respect to the volume when the volume of the gas is 4 L .
Solution: When $V=2$, by part (b),

$$
-0.10=\frac{\mathrm{d} P}{\mathrm{~d} V}=-\frac{n R T}{V^{2}}=-\frac{n R T}{2^{2}}
$$

We can solve for $n R T$ (as an entire piece) as $n R T=4 \times 0.10=0.40$. Therefore, if $V=4$, then (plug $n R T=0.40$ entirely)

$$
\frac{\mathrm{d} P}{\mathrm{~d} V}=-\frac{n R T}{V^{2}}=-\frac{0.40}{4^{2}}=-0.025(\mathrm{~atm} / \mathrm{L}) .
$$

