Multiple Choice Problems.

1. Suppose f(x) is a continuous function with values given by the table below.

Х	-2	-1	0	1
f(x)	0	3	0	-3

Which of the following statements are correct?

I f(x) = 2 must have a root $c \in (-1, 0)$.

II f(x) = 2 must have a root $c \in (0, 1)$.

III f'(x) = 3 must have a root $c \in (-1, 0)$.

IV f'(x) = 0 must have a root $c \in (-2, 0)$.

A. Only II; B. Only IV; C. Only I and IV; D. Only II and III; E. None of the above.

- 2. Suppose you are estimating the root of $x^3 = 5x 1$ using Newton's method. If you use $x_1 = 2$, find the exact value of x_2
 - **A** $x_2 = 2 \frac{1}{7}$ **B** $x_2 = 2 + \frac{1}{7}$ **C** $x_2 = 8 - \frac{8}{9}$ **D** $x_2 = 8 + \frac{8}{9}$ **E** $x_2 = 5 + \frac{1}{7}$
- 3. Consider the function

$$f(x) = \frac{2 - x^2}{x(x - 3)}$$

Which of the following statements are correct?

I f(x) has vertical asymptotes y = 3 and y = 0.

II f(x) has vertical asymptotes x = 0 and x = 3.

III f(x) has a horizontal asymptote y = -1.

- **IV** f(x) has no horizontal asymptote.
- **V** f(x) has no slant asymptote.

A. Only II; B. Only II and IV; C. Only I,III and V; D. Only II,III and V; E. None of the above.

4. Consider the function:

$$f(x) = x^3 + 6x$$

Which of the following statements are correct?

- **I** f(x) is an odd function.
- II f(x) is increasing for x > 0 and is decreasing on for x < 0.
- **III** f(x) is increasing on for all x.
- **IV** f(x) is concave up on $(0, \infty)$ and concave down on $(-\infty, 0)$.
- **V** f(x) has no critical point and no inflection point.

A. Only I, III, V; B. Only I, II, IV; C. Only I, III, IV; D. Only III, IV; E. None of the above.

5. Compute the limit:

$$\lim_{x \to 5} \frac{\sqrt[3]{x} - \sqrt[3]{5}}{x - 5}$$

- $\mathbf{A} \ +\infty$
- $\mathbf{B} \ 0$
- $C \frac{1}{3}\sqrt[3]{5}$
- **D** $\frac{1}{3}5^{-\frac{2}{3}}$
- E Does not exist

6. Find the limit:

$$\lim_{x \to 0} \, 3x \cdot \sin(\frac{1}{2x})$$

- $\begin{array}{c}
 A & \frac{2}{3} \\
 B & \frac{3}{2} \\
 C & 0
 \end{array}$
- $D \ \infty$

 ${\bf E}\,$ Does not exist.

7. For what value of k will f(x) be continuous for all values of x?

$$f(x) = \begin{cases} \frac{x^2 - 3k}{x - 3} & \text{if } x \le 2; \\ \\ 8x - k & \text{if } x > 2; \end{cases}$$

 $\mathbf{A} \ k = 2$

B k = 3

$$\mathbf{C} \ k = 4$$

- $\mathbf{D} \ k = 5$
- ${\bf E}\,$ None of the above

8. Evaluate

$$\int_{-\pi}^{\pi} \sin x \cdot \sqrt{\cos x + 2} \, dx$$

A $\frac{4}{3}$ **B** 0 **C** $-\frac{4}{3}$ **D** $-\frac{2}{3}$ **E** 2

- 9. Estimate the area under the graph of $f(x) = -x^2 + 4x + 5$ from x = 0 to x = 4 using the areas of 4. rectangles of equal width.
 - A The upper sum (overestimate) is 34 and the lower sum (underestimate) is 30.
 - **B** The upper sum (overestimate) is 34 and the lower sum (underestimate) is 26.
 - C The upper sum (overestimate) is 30 and the lower sum (underestimate) is 26.
 - **D** The upper sum (overestimate) is 17 and the lower sum (underestimate) is 13.
 - ${\bf E}\,$ None of the above.

- 10. A car is moving according to $s(t) = -t^2 + 4t + 5$. Which of the following statements are correct?
 - **I** The velocity at t = 2 is 4.
 - **II** The velocity at t = 2 is 0.
 - **III** The average velocity from t = 0 to t = 2 is 4.5.
 - **IV** The average velocity from t = 0 to t = 2 is 5.

A. Only II; B. Only III; C. Only I and IV; D. Only II and III; E. None of the above.

11. A car is moving according to $s(t) = -t^2 + 4t + 5$. Which of the following statements are correct?

I The car is slowing down from t = 0 to t = 2.

II The car is speeding up from t = 2 to t = 4.

- **III** The car is moving in positive direction from t = 0 to t = 5.
- **IV** The car is moving in negative direction from t = 2 to t = 5.

A. Only I; B. Only III; C.Only I,II and IV; D. Only I and II; E. None of the above.

12. Find y if

 $y' = 2x\sin(x^2), \ y(0) = 4$

A $y = -2\cos(x) + 6$ **B** $y = -\cos(x^2) + 5$ **C** $y = \cos(x^2) + 3$ **D** $y = x^2\cos(\frac{x^3}{3}) + 4$ **E** $y = x^2\sin(\frac{x^3}{3}) + 4$ Standard Response Problems.

1. Find $\frac{dy}{dx}$ if (a) $y = x \tan(x^2)$

(b) $x^2 = 3y + \cos(y)$

2. If the radius of a circular ink blot is growing at a rate of 3 cm/min. How fast (in cm^2/min) is the area of the blot growing when the radius is 10 cm?

3. Let

$$f(x) = \frac{1}{2x - x^2}$$
 for $x \in (0, 2)$.

Let f(0) = f(2) = 3.

- (a) Is f(x) continuous on [0, 2]?
- (b) Find the critical point and the local minimum of f(x) in (0, 2).

(c) Does f(x) have absolute maximum or minimum in [0, 2].

4. Evaluate

$$\int \frac{x^2}{\sqrt{3+x^3}} \, dx$$

- 5. Suppose $f(x) = x^4 6x^2 3$.
 - (a) Identify the intervals over which f(x) is increasing and decreasing, and all values of x where f(x) attains its local maximum or minimum.

(b) Identify the intervals over which f(x) is concave up and down, and all values of x where f(x) has an inflection point.

(c) Sketch the graph of y = f(x).

6. A box with square base and open top is to have a volume of 32 in^3 . Find the dimensions of the box that minimizes the amount of material used.

7. Find the average of the function

$$f(x) = \frac{\cos x}{\sin^2 x}$$

over the interval $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.

8. Find the area of the region enclosed by the graphs of the equations y = -x - 4 and $y = -x^2 + x + 4$.

Algebraic

• $a^2 - b^2 = (a - b)(a + b)$

•
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

• Quadratic Formula: $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Geometric

- Area of Circle: πr^2
- Circumference of Circle: $2\pi r$
- Circle with center (h, k) and radius r:

$$(x-h)^2 + (y-k)^2 = r^2$$

• Distance from (x_1, y_1) to (x_2, y_2) :

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- Area of Triangle: $\frac{1}{2}bh$
- $\sin \theta = \frac{\text{opposite leg}}{\text{hypotenuse}}$
- $\cos \theta = \frac{\text{adjacent leg}}{\text{hypotenuse}}$
- $\tan \theta = \frac{\text{opposite leg}}{\text{adjacent leg}}$
- If $\triangle ABC$ is similar to $\triangle DEF$ then

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$

- Volume of Sphere: $\frac{4}{3}\pi r^3$
- Surface Area of Sphere: $4\pi r^2$
- Volume of Cylinder/Prism: (height)(area of base)
- Volume of Cone/Pyramid: $\frac{1}{3}$ (height)(area of base)

Trigonometric

- $\sin^2 \theta + \cos^2 \theta = 1$
- $\sin(2\theta) = 2\sin\theta\cos\theta$
- $\cos(2\theta) = \cos^2 \theta \sin^2 \theta$ = $1 - 2\sin^2 \theta$ = $2\cos^2 \theta - 1$
- Table of Trig Values

x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$\sin(x)$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos(x)$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
$\tan(x)$	0	$\sqrt{3}/3$	1	$\sqrt{3}$	DNE

Limits

- $\lim_{x \to a} f(x)$ exists if and only if $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$
- $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ • $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0$

Derivatives

•
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- $(\cot x)' = -\csc^2 x$
- $(\csc x)' = -\csc x \cdot \cot x$

Theorems

- (IVT) If f is continuous on [a, b], $f(a) \neq f(b)$, and N is between f(a) and f(b) then there exists $c \in (a, b)$ that satisfies f(c) = N.
- (MVT) If f is continuous on [a, b] and differentiable on (a, b) then there exists $c \in (a, b)$ that satisfies $f'(c) = \frac{f(b) - f(a)}{b - a}.$
- (FToC P1) If $F(x) = \int_a^x f(t) dt$ then F'(x) = f(x).

Other Formulas

01

• Newton's Method:
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

•
$$\sum_{i=1}^{n} c = cn$$

•
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

•
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$