Multiple Choice Problems.

1. Suppose $f(x)$ is a continuous function with values given by the table below.

x	-2	-1	0	1
$\mathrm{f}(\mathrm{x})$	0	3	0	-3

Which of the following statements are correct?
I $f(x)=2$ must have a root $c \in(-1,0)$.
II $f(x)=2$ must have a root $c \in(0,1)$.
III $f^{\prime}(x)=3$ must have a root $c \in(-1,0)$.
IV $f^{\prime}(x)=0$ must have a root $c \in(-2,0)$.
A. Only II;
B. Only IV;
C. Only I and IV;
D. Only II and III; E. None of the above.
2. Suppose you are estimating the root of $x^{3}=5 x-1$ using Newton's method. If you use $x_{1}=2$, find the exact value of x_{2}

A $x_{2}=2-\frac{1}{7}$
B $x_{2}=2+\frac{1}{7}$
C $x_{2}=8-\frac{8}{9}$
D $x_{2}=8+\frac{8}{9}$
E $x_{2}=5+\frac{1}{7}$
3. Consider the function

$$
f(x)=\frac{2-x^{2}}{x(x-3)}
$$

Which of the following statements are correct?
I $f(x)$ has vertical asymptotes $y=3$ and $y=0$.
II $f(x)$ has vertical asymptotes $x=0$ and $x=3$.
III $f(x)$ has a horizontal asymptote $y=-1$.
IV $f(x)$ has no horizontal asymptote.
V $f(x)$ has no slant asymptote.
A. Only II; B. Only II and IV; C. Only I,III and V; D. Only II,III and V; E. None of the above.
4. Consider the function:

$$
f(x)=x^{3}+6 x
$$

Which of the following statements are correct?
I $f(x)$ is an odd function.
II $f(x)$ is increasing for $x>0$ and is decreasing on for $x<0$.
III $f(x)$ is increasing on for all x.
IV $f(x)$ is concave up on $(0, \infty)$ and concave down on $(-\infty, 0)$.
V $f(x)$ has no critical point and no inflection point.
A. Only I, III, V; B. Only I,II, IV; C. Only I,III, IV; D. Only III, IV; E. None of the above.
5. Compute the limit:

$$
\lim _{x \rightarrow 5} \frac{\sqrt[3]{x}-\sqrt[3]{5}}{x-5}
$$

A $+\infty$
B 0
C $\frac{1}{3} \sqrt[3]{5}$
D $\frac{1}{3} 5^{-\frac{2}{3}}$
E Does not exist
6. Find the limit:

$$
\lim _{x \rightarrow 0} 3 x \cdot \sin \left(\frac{1}{2 x}\right)
$$

A $\frac{2}{3}$
B $\frac{3}{2}$
C 0
D ∞
E Does not exist.
7. For what value of k will $f(x)$ be continuous for all values of x ?

$$
f(x)= \begin{cases}\frac{x^{2}-3 k}{x-3} & \text { if } x \leq 2 \\ 8 x-k & \text { if } x>2\end{cases}
$$

A $k=2$
B $k=3$
C $k=4$
D $k=5$
E None of the above
8. Evaluate

$$
\int_{-\pi}^{\pi} \sin x \cdot \sqrt{\cos x+2} d x
$$

A $\frac{4}{3}$
B 0
C $-\frac{4}{3}$
D $-\frac{2}{3}$
E 2
9. Estimate the area under the graph of $f(x)=-x^{2}+4 x+5$ from $x=0$ to $x=4$ using the areas of 4 . rectangles of equal width.

A The upper sum (overestimate) is 34 and the lower sum (underestimate) is 30 .
B The upper sum (overestimate) is 34 and the lower sum (underestimate) is 26 .
C The upper sum (overestimate) is 30 and the lower sum (underestimate) is 26 .
D The upper sum (overestimate) is 17 and the lower sum (underestimate) is 13 .
E None of the above.
10. A car is moving according to $s(t)=-t^{2}+4 t+5$. Which of the following statements are correct?

I The velocity at $t=2$ is 4 .
II The velocity at $t=2$ is 0 .
III The average velocity from $t=0$ to $t=2$ is 4.5 .
IV The average velocity from $t=0$ to $t=2$ is 5 .
A. Only II;
B. Only III;
C. Only I and IV; D. Only II and III;
E. None of the above.
11. A car is moving according to $s(t)=-t^{2}+4 t+5$. Which of the following statements are correct?

I The car is slowing down from $t=0$ to $t=2$.
II The car is speeding up from $t=2$ to $t=4$.
III The car is moving in positive direction from $t=0$ to $t=5$.
IV The car is moving in negative direction from $t=2$ to $t=5$.
A. Only I;
B. Only III; C.Only I,II and IV;
D. Only I and II; E. None of the above.
12. Find y if

$$
y^{\prime}=2 x \sin \left(x^{2}\right), \quad y(0)=4
$$

A $y=-2 \cos (x)+6$
B $y=-\cos \left(x^{2}\right)+5$
C $y=\cos \left(x^{2}\right)+3$
D $y=x^{2} \cos \left(\frac{x^{3}}{3}\right)+4$
E $y=x^{2} \sin \left(\frac{x^{3}}{3}\right)+4$

Standard Response Problems.

1. Find $\frac{d y}{d x}$ if
(a) $y=x \tan \left(x^{2}\right)$
(b) $x^{2}=3 y+\cos (y)$
2. If the radius of a circular ink blot is growing at a rate of $3 \mathrm{~cm} / \mathrm{min}$. How fast (in $\mathrm{cm}^{2} / \mathrm{min}$) is the area of the blot growing when the radius is 10 cm ?
3. Let

$$
f(x)=\frac{1}{2 x-x^{2}} \quad \text { for } \quad x \in(0,2)
$$

Let $f(0)=f(2)=3$.
(a) Is $f(x)$ continuous on $[0,2]$?
(b) Find the critical point and the local minimum of $f(x)$ in $(0,2)$.
(c) Does $f(x)$ have absolute maximum or minimum in $[0,2]$.
4. Evaluate

$$
\int \frac{x^{2}}{\sqrt{3+x^{3}}} d x
$$

5. Suppose $f(x)=x^{4}-6 x^{2}-3$.
(a) Identify the intervals over which $f(x)$ is increasing and decreasing, and all values of x where $f(x)$ attains its local maximum or minimum.
(b) Identify the intervals over which $f(x)$ is concave up and down, and all values of x where $f(x)$ has an inflection point.
(c) Sketch the graph of $y=f(x)$.
6. A box with square base and open top is to have a volume of $32 \mathrm{in}^{3}$. Find the dimensions of the box that minimizes the amount of material used.

7. Find the average of the function

$$
f(x)=\frac{\cos x}{\sin ^{2} x}
$$

over the interval $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.
8. Find the area of the region enclosed by the graphs of the equations $y=-x-4$ and $y=-x^{2}+x+4$.

Algebraic

- $a^{2}-b^{2}=(a-b)(a+b)$
- $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
- Quadratic Formula: $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Geometric

- Area of Circle: πr^{2}
- Circumference of Circle: $2 \pi r$
- Circle with center (h, k) and radius r :

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

- Distance from $\left(x_{1}, y_{1}\right)$ to $\left(x_{2}, y_{2}\right)$:

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

- Area of Triangle: $\frac{1}{2} b h$
- $\sin \theta=\frac{\text { opposite leg }}{\text { hypotenuse }}$
- $\cos \theta=\frac{\text { adjacent leg }}{\text { hypotenuse }}$
- $\tan \theta=\frac{\text { opposite leg }}{\text { adjacent leg }}$
- If $\triangle A B C$ is similar to $\triangle D E F$ then

$$
\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}
$$

- Volume of Sphere: $\frac{4}{3} \pi r^{3}$
- Surface Area of Sphere: $4 \pi r^{2}$
- Volume of Cylinder/Prism: (height)(area of base)
- Volume of Cone/Pyramid: $\frac{1}{3}$ (height)(area of base)

Trigonometric

- $\sin ^{2} \theta+\cos ^{2} \theta=1$
- $\sin (2 \theta)=2 \sin \theta \cos \theta$
- $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$

$$
\begin{aligned}
& =1-2 \sin ^{2} \theta \\
& =2 \cos ^{2} \theta-1
\end{aligned}
$$

- Table of Trig Values

x	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
$\sin (x)$	0	$1 / 2$	$\sqrt{2} / 2$	$\sqrt{3} / 2$	1
$\cos (x)$	1	$\sqrt{3} / 2$	$\sqrt{2} / 2$	$1 / 2$	0
$\tan (x)$	0	$\sqrt{3} / 3$	1	$\sqrt{3}$	DNE

Limits

- $\lim _{x \rightarrow a} f(x)$ exists if and only if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$
- $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$
- $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0$

Derivatives

- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- $(\cot x)^{\prime}=-\csc ^{2} x$
- $(\csc x)^{\prime}=-\csc x \cdot \cot x$

Theorems

- (IVT) If f is continuous on $[a, b], f(a) \neq f(b)$, and N is between $f(a)$ and $f(b)$ then there exists $c \in(a, b)$ that satisfies $f(c)=N$.
- (MVT) If f is continuous on $[a, b]$ and differentiable on (a, b) then there exists $c \in(a, b)$ that satisfies $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.
- (FToC P1) If $F(x)=\int_{a}^{x} f(t) d t$ then $F^{\prime}(x)=f(x)$.

Other Formulas

- Newton's Method: $\quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
- $\sum_{i=1}^{n} c=c n$
- $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$

