Name: \qquad ID: \qquad
Clear your desk of everything except pens, pencils and erasers. Show all work clearly and in order. No notes, phones and calculators. You have 10 minutes to finish these TWO problems for 10 points.
Formula Sheet.

- Work: Suppose $f(x)$ is a force function. The work in moving an object from a to b is given by: $W=\int_{a}^{b} f(x) d x$
- If f is a one-to-one differentiable function with inverse function f^{-1} and $f^{\prime}\left(f^{-1}(a)\right) \neq 0$, then the inverse function is differentiable at a and

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}
$$

1. A vertical right cylindrical tank has height 2 ft and radius 2 ft . It is full of soda weighing $60 \mathrm{lbs} / f t^{3}$. How much work does it take to pump all of the soda from a tank to an outlet which is at the level of the top of the tank.
(a) (5 points) Set up the integral for the work.

$$
V=\int_{0}^{2} 60 \cdot(2-y) \cdot 4 \pi \cdot d y
$$

(b) (2 points) Evaluate the integral.

$$
\begin{aligned}
V=240 \pi \cdot \int_{0}^{2} 2-y \cdot d y & =\left.240 \pi \cdot\left(2 y-\frac{1}{2} y^{2}\right)\right|_{0} ^{2} \\
& =240 \pi \cdot(4-2)=480 \pi \mathrm{ft}-1 \mathrm{~b} .
\end{aligned}
$$

2. (3 points) Suppose that the differentiable function $y=f(x)$ has an inverse. The graph of f passes through the origin with slope 4 , i.e., $f(0)=0$ and $f^{\prime}(0)=4$. Find the slope of the graph of f^{-1} at the origin.

$$
\begin{aligned}
& f^{\prime}(0)=4, \quad f(0)=0 \Rightarrow f^{\prime}(0)=0 \\
& \left(f^{-1}\right)^{\prime}(0)=\frac{1}{f^{\prime}\left(f^{\prime}(0)\right.}=\frac{1}{f^{\prime}(0)}=\frac{1}{4}
\end{aligned}
$$

